mud pump drill bit in stock
The reason we have to leave the middle of our “drill bit” open when we are washing/drilling a well with two hoses is that at the end of the drilling process we need to be able to slip a wellscreen down through the pipe and “bit” and then pull the drillpipe up and out of the ground. Otherwise the sand at the bottom of the hole will quickly collapse when we pull the drillpipe out and we won’t be able to get a well screen back down to the bottom of the hole.
We could achieve much more effective drilling if we could use a point or some other shape in the middle of the bit. Basically with teeth cut in the end of a pipe, we are grinding away at the circumference of the hole and just using the general associated loosening to evacuate the center of the hole. This is obviously not the most efficient way to do this.
With a mud pump and a re-circulating drilling fluid system, everything changes. It gets much easier. Drilling is more efficient. We can add bentonite to the drilling fluid and solidify the sandy walls of the hole so they won’t collapse when we remove the drill bit.
Using this techique permits us to drill the hole with a more efficient drillbit that will mechanically eat away the entrie area of the hole, not just the edges. After we drill the hole, the bentonite will hold the hole open so we can remove our drilling pipe and replace it with out well screen pipe. Here are some photographs of the drill bit I use. It was fabricated by a local welding shop for $55.00.
John, in Brandon, Mississippi sent this picture of a drill bit that he fabricated. It has square pieces of carbide on the outside and he welded a piece across the middle and ran quarter inch bolts through it. This looks like a great bit for mud pump drilling!
Continental Emsco Drilling Products, Inc., which consisted of Emsco drilling machinery and Wilson mobile rigs, was purchased by National-Oilwell, Inc on July 7, 1999. To our knowledge, no pumps have been manufactured and sold under the Emsco brand name since National-Oilwell acquired them.
Fairbanks Morse pumps are currently manufactured in Kansas City, Kansas. Fairbanks Morse is a division of Pentair ever since August, 1997 when Pentair purchased the General Signal Pump Group.
Gaso pumps are manufactured by National Oilwell Varco. Gaso was acquired as "Wheatley Gaso" by National-Oilwell in the year 2000. At the time, Wheatley Gaso was owned by Halliburton.
Skytop Brewster pumps are no longer available as new pumps. Skytop Brewster(Cnsld Gold), a unit of Hansen PLC"s Consolidated Gold Fields subsidiary, was acquired while in bankruptcy by National-Oilwell, Inc. in November, 1999.
The 2,200-hp mud pump for offshore applications is a single-acting reciprocating triplex mud pump designed for high fluid flow rates, even at low operating speeds, and with a long stroke design. These features reduce the number of load reversals in critical components and increase the life of fluid end parts.
The pump’s critical components are strategically placed to make maintenance and inspection far easier and safer. The two-piece, quick-release piston rod lets you remove the piston without disturbing the liner, minimizing downtime when you’re replacing fluid parts.
Electronic Pump Stroke Counters are a vital part to any drilling rig operation. When a mud pump is in operation, the driller must know how much mud is flowing down hole in order to keep the operation running at peak efficiency. Pump stroke counters assist the driller by measuring the mud pump’s strokes per minute and total strokes. So, how does a pump stroke counter tally the mud pump’s strokes
Electronic Pump Stroke Counters are a vital part to any drilling rig operation. When a mud pump is in operation, the driller must know how much mud is flowing down hole in order to keep the operation running at peak efficiency. Pump stroke counters assist the driller by measuring the mud pump’s strokes per minute and total strokes. So, how does a pump stroke counter tally the mud pump’s strokes, and why it is important? In order to understand that, you’ll need to know some basic information about mud pumps.
Knowing how a mud pump functions is important in understanding the role a pump stroke counter plays in rig operations. Mud pumps act as the heart of the drilling rig, similar to how our heart works. Just as our heart circulates blood throughout our bodies, a mud pump circulates essential drilling mud down the hole and back up to the surface. Mud tanks house drilling mud, and a mud pump draws the fluid from the mud pump. A piston draws mud in on the backstroke through the open intake valve and pushes mud through the discharge valve and sends it towards the rig. By circulating fluid, the mud pump ensures that the drill bit is cool and lubricated and that cuttings are flushed from the hole. The two main kinds of pumps used are duplex and triplex pumps, where the duplex pump has two pistons and the triplex pump has three. Whether the rig is using a duplex or triplex pump, it is important to know how many strokes per second the pistons are moving. The driller monitors strokes per minute to determine how much costly, yet essential, mud is being pumped into the system with the use of a mud pump stroke counter system. Now, that you know about mud pumps, you’ll need to know what’s in a stroke counter system.
Stroke Counter — The stroke counter stainless steel box is mounted on the driller’s console and is either square or rectangular in shape, depending on the number of pumps it is monitoring. Stroke counters will show strokes per minute and total strokes, and when a particular mud pump is operating the strokes/minute and total strokes will be displayed. Power is supplied by a 3.6 volt lithium battery, and the counter contains a crystal-controlled real time clock with 100 parts per million accuracy or better. Each counter is mounted to the console with 1/4” stainless steel hex head bolts, lock washers and nuts.
Micro Limit Switch — The micro switch is connected to a c clamp near the mud pump piston. The micro switch stainless steel rod (sometimes called a whisker) sticks out in the piston housing near the piston. As the piston passes the rod, it moves the rod and the switch sends an electronic signal back to the counter. The counter increases by one each time the piston moves the rod, counting the mud pump’s strokes. The switch’s signal is then transmitted to the stroke counter. These micro switches are built to stand up to demanding outdoor conditions. They can withstand shock, equipment vibration, extreme temperatures, water and dust.
Cable and Junction Box – A cable is connected to the back of the pump stroke counter and then to the junction box. From the junction box, the cables travel to the limit switches.
Pump Stroke Counters are like a blood pressure machine. Each time our heart pumps, a blood pressure machine reads our systolic and diastolic blood pressure by way of our pulse. A mud pump stroke counter functions in much the same way. Just as a blood pressure machine detects our pulse so too does a limit switch rod detect the movement of the piston. When the stainless steel rod is moved, the micro limit switch detects the movement. The signal is sensed as a contact closure, and it is transmitted to the stroke counter where the contact closure is converted to a logic pulse. The pulse feeds two separate circuits. The total strokes circuit reads and displays the closures one at a time, totaling them up to reveal the total strokes in the LED window. The second pulse is sent along a separate circuit which is a rate circuit. This rate circuit will average the closures against the real time clock. The result is displayed as the total strokes per minute.
Pump stroke counters are essential to drilling rig operations because they measure the efficiency of mud pumps. Knowing strokes per minute and total strokes of the pistons helps the driller to determine if the correct amount of mud is going down hole. Having this information aids in running a drilling rig at peak efficiency, assists in extending drill bit life, and avoids costly overuse of drilling rig mud. Unsure which pump stroke counter is right for your application? Give our friendly, knowledgeable staff a call or email. We’ll keep you turning right.
Electronic Pump Stroke Counters are a vital part to any drilling rig operation. When a mud pump is in operation, the driller must know how much mud is flowing down hole in order to keep the operation running at peak efficiency. Pump stroke counters assist the driller by measuring the mud pump’s strokes per minute and total strokes. So, how does a pump stroke counter tally the mud pump’s strokes
Electronic Pump Stroke Counters are a vital part to any drilling rig operation. When a mud pump is in operation, the driller must know how much mud is flowing down hole in order to keep the operation running at peak efficiency. Pump stroke counters assist the driller by measuring the mud pump’s strokes per minute and total strokes. So, how does a pump stroke counter tally the mud pump’s strokes, and why it is important? In order to understand that, you’ll need to know some basic information about mud pumps.
Knowing how a mud pump functions is important in understanding the role a pump stroke counter plays in rig operations. Mud pumps act as the heart of the drilling rig, similar to how our heart works. Just as our heart circulates blood throughout our bodies, a mud pump circulates essential drilling mud down the hole and back up to the surface. Mud tanks house drilling mud, and a mud pump draws the fluid from the mud pump. A piston draws mud in on the backstroke through the open intake valve and pushes mud through the discharge valve and sends it towards the rig. By circulating fluid, the mud pump ensures that the drill bit is cool and lubricated and that cuttings are flushed from the hole. The two main kinds of pumps used are duplex and triplex pumps, where the duplex pump has two pistons and the triplex pump has three. Whether the rig is using a duplex or triplex pump, it is important to know how many strokes per second the pistons are moving. The driller monitors strokes per minute to determine how much costly, yet essential, mud is being pumped into the system with the use of a mud pump stroke counter system. Now, that you know about mud pumps, you’ll need to know what’s in a stroke counter system.
Stroke Counter — The stroke counter stainless steel box is mounted on the driller’s console and is either square or rectangular in shape, depending on the number of pumps it is monitoring. Stroke counters will show strokes per minute and total strokes, and when a particular mud pump is operating the strokes/minute and total strokes will be displayed. Power is supplied by a 3.6 volt lithium battery, and the counter contains a crystal-controlled real time clock with 100 parts per million accuracy or better. Each counter is mounted to the console with 1/4” stainless steel hex head bolts, lock washers and nuts.
Micro Limit Switch — The micro switch is connected to a c clamp near the mud pump piston. The micro switch stainless steel rod (sometimes called a whisker) sticks out in the piston housing near the piston. As the piston passes the rod, it moves the rod and the switch sends an electronic signal back to the counter. The counter increases by one each time the piston moves the rod, counting the mud pump’s strokes. The switch’s signal is then transmitted to the stroke counter. These micro switches are built to stand up to demanding outdoor conditions. They can withstand shock, equipment vibration, extreme temperatures, water and dust.
Cable and Junction Box – A cable is connected to the back of the pump stroke counter and then to the junction box. From the junction box, the cables travel to the limit switches.
Pump Stroke Counters are like a blood pressure machine. Each time our heart pumps, a blood pressure machine reads our systolic and diastolic blood pressure by way of our pulse. A mud pump stroke counter functions in much the same way. Just as a blood pressure machine detects our pulse so too does a limit switch rod detect the movement of the piston. When the stainless steel rod is moved, the micro limit switch detects the movement. The signal is sensed as a contact closure, and it is transmitted to the stroke counter where the contact closure is converted to a logic pulse. The pulse feeds two separate circuits. The total strokes circuit reads and displays the closures one at a time, totaling them up to reveal the total strokes in the LED window. The second pulse is sent along a separate circuit which is a rate circuit. This rate circuit will average the closures against the real time clock. The result is displayed as the total strokes per minute.
Pump stroke counters are essential to drilling rig operations because they measure the efficiency of mud pumps. Knowing strokes per minute and total strokes of the pistons helps the driller to determine if the correct amount of mud is going down hole. Having this information aids in running a drilling rig at peak efficiency, assists in extending drill bit life, and avoids costly overuse of drilling rig mud. Unsure which pump stroke counter is right for your application? Give our friendly, knowledgeable staff a call or email. We’ll keep you turning right.
The drilling industry has roots dating back to the Han Dynasty in China. Improvements in rig power and equipment design have allowed for many advances in the way crude oil and natural gas are extracted from the ground. Diesel/electric oil drilling rigs can now drill wells more than 4 miles in depth. Drilling fluid, also called drilling mud, is used to help transfer the dirt or drill cuttings from the action of the drilling bit back to the surface for disposal. Drill cuttings can vary in shape and size depending on the formation or design of the drill bit used in the process.
Watch the video below to see how the EDDY Pump outperforms traditional pumps when it comes to high solids and high viscosity materials commonly found on oil rigs.
Solids control equipment including shakers, hydro-cyclones, and centrifuges are utilized to clean the drill cuttings from the drilling fluid, which then allows it to be reused and recirculated. The circuit includes the mixing of the drilling fluid in the rig tanks.
The drilling fluid is prepared to control fluid loss to the formation by the addition of chemicals or mineral agents. Commercial barite or other weighting agents are added to control the hydrostatic pressure exuded on the bottom of the well which controls formation pressures preventing fluid or gas intrusion into the wellbore.
The fluid is charged into high-pressure mud pumps which pump the drilling mud down the drill string and out through the bit nozzles cleaning the hole and lubricating the drill bit so the bit can cut efficiently through the formation. The bit is cooled by the fluid and moves up the space between the pipe and the hole which is called the annulus. The fluid imparts a thin, tough layer on the inside of the hole to protect against fluid loss which can cause differential sticking.
The fluid rises through the blowout preventers and down the flowline to the shale shakers. Shale shakers are equipped with fine screens that separate drill cutting particles as fine as 50-74 microns. Table salt is around 100 microns, so these are fine cuttings that are deposited into the half-round or cuttings catch tank. The drilling fluid is further cleaned with the hydro-cyclones and centrifuges and is pumped back to the mixing area of the mud tanks where the process repeats.
The drill cuttings contain a layer of drilling fluid on the surface of the cuttings. As the size of the drill cuttings gets smaller the surface area expands exponentially which can cause rheological property problems with the fluid. The fluid will dehydrate and may become too thick or viscous to pump so solids control and dilution are important to the entire drilling process.
One of the most expensive and troubling issues with drilling operations is the handling, processing, and circulation of drilling mud along with disposing of the unwanted drill cuttings. The drilling cuttings deposited in the half round tank and are typically removed with an excavator that must move the contents of the waste bin or roll-off box. The excavators are usually rented for this duty and the equipment charges can range from $200-300/day. Add in the cost for the day and night manpower and the real cost for a single excavator can be as much as $1800/day.
Using the excavator method explained above, the unloading of 50 barrels of drill cuttings from the half round can take as long as two hours. This task is mostly performed by the solids control technicians. The prime duty for the solids control technicians is to maintain the solids control equipment in good working order. This involves maintenance for the equipment, screen monitoring and changing, centrifuge adjustments, and retort testing to prepare a daily operational summary of the solids control program.
Offshore drilling rigs follow a similar process in which the mud is loaded into empty drums and held on the oil platform. When a certain number of filled drums is met, the drums are then loaded onto barges or vessels which take the drilling mud to the shore to unload and dispose of.
Oil field drilling operations produce a tremendous volume of drill cuttings that need both removal and management. In most cases, the site managers also need to separate the cuttings from the drilling fluids so they can reuse the fluids. Storing the cuttings provides a free source of stable fill material for finished wells, while other companies choose to send them off to specialty landfills. Regardless of the final destination or use for the cuttings, drilling and dredging operations must have the right high solids slurry pumps to move them for transport, storage, or on-site processing. Exploring the differences in the various drilling fluids, cutting complications, and processing options will reveal why the EDDY Pump is the best fit for the job.
The Eddy Pump is designed to move slurry with solid content as high as 70-80 % depending on the material. This is an ideal application for pumping drill cuttings. Drill cuttings from the primary shakers are typically 50% solids and 50% liquids. The Eddy Pump moves these fluids efficiently and because of the large volute chamber and the design of the geometric rotor, there is very little wear on the pump, ensuring long life and greatly reduced maintenance cost for the lifetime of the pump.
plumbed to sweep the bottom of the collection tank and the pump is recessed into a sump allowing for a relatively clean tank when the solids are removed. The Eddy Pump is sized to load a roll-off box in 10-12 minutes. The benefit is cuttings handling is quicker, easier, safer, and allows for pre-planning loading where the labor of the solids control technician is not monopolized by loading cuttings. Here, in the below image, we’re loading 4 waste roll-off bins which will allow the safe removal of cuttings without fear of the half-round catch tank running over.
Mud cleaning systems such as mud shaker pumps and bentonite slurry pumps move the material over screens and through dryers and centrifuges to retrieve even the finest bits of stone and silt. However, the pump operators must still get the raw slurry to the drill cuttings treatment area with a power main pump. Slurry pumps designed around the power of an Eddy current offer the best performance for transferring cuttings throughout a treatment system.
Options vary depending on whether the company plans to handle drill cuttings treatment on-site or transport the materials to a remote landfill or processing facility. If the plan is to deposit the cuttings in a landfill or a long-term storage container, it’s best to invest in a pump capable of depositing the material directly into transport vehicles. Most dredging operations rely on multiple expensive vacuum trucks, secondary pumps, and extra pieces of equipment.
Using an EDDY Pump will allow a project to eliminate the need for excavators/operators to load drill cuttings, substantially lowering both labor and heavy equipment costs. The EDDY Pump also allows a company to eliminate vacuum trucks once used for cleaning the mud system for displacing fluids. Since the pump transfers muds of all types at constant pressure and velocity throughout a system of practically any size, there’s little need for extra equipment for manual transfer or clean up on the dredge site.
The EDDY Pump can fill up a truck in only 10 minutes (compared to an hour) by using a mechanical means such as an excavator. For this reason, most companies can afford one piece of equipment that can replace half a dozen other units.
This application for the Eddy Pump has the potential to revolutionize the drilling industry. Moving the excavator out of the “back yard” (the area behind the rig from the living quarters) will make cuttings handling a breeze. Trucking can be easier scheduled during daylight hours saving on overtime and incidences of fatigued driving. Rig-site forklifts can move the roll-off boxes out of the staging area and into the pump loading area. The operator can save money on excavators rental, damages, and keep the technician operating the solids control equipment.
The EDDY Pump is ideal for drilling mud pump applications and can be connected directly onto the drilling rigs to pump the drilling mud at distances over a mile for disposal. This eliminates the need for costly vacuum trucks and also the manpower needed to mechanically move the drilling mud. The reasons why the EDDY Pump is capable of moving the drilling mud is due to the hydrodynamic principle that the pump creates, which is similar to the EDDY current of a tornado. This tornado motion allows for the higher viscosity and specific gravity pumping ability. This along with the large tolerance between the volute and the rotor allows for large objects like rock cuttings to pass through the pump without obstruction. The large tolerance of the EDDY Pump also enables the pump to last many times longer than centrifugal pumps without the need for extended downtime or replacement parts. The EDDY Pump is the lowest total life cycle pump on the market.
Mud pump is one of the most critical equipment on the rig; therefore personnel on the rig must have good understanding about it. We’ve tried to find the good training about it but it is very difficult to find until we’ve seen this VDO training and it is a fantastic VDO training about the basic of mud pumps used in the oilfield. Total length of this VDO is about thirteen minutes and it is worth to watch it. You will learn about it so quickly. Additionally, we also add the full detailed transcripts which will acceleate the learning curve of learners.
Powerful mud pumps pick up mud from the suction tank and circulate the mud down hole, out the bit and back to the surface. Although rigs usually have two mud pumps and sometimes three or four, normally they use only one at a time. The others are mainly used as backup just in case one fails. Sometimes however the rig crew may compound the pumps, that is, they may use three or four pumps at the same time to move large volumes of mud when required.
Rigs use one of two types of mud pumps, Triplex pumps or Duplex pumps. Triplex pumps have three pistons that move back-and-forth in liners. Duplex pumps have two pistons move back and forth in liners.
Triplex pumps have many advantages they weight 30% less than a duplex of equal horsepower or kilowatts. The lighter weight parts are easier to handle and therefore easier to maintain. The other advantages include;
• One of the more important advantages of triplex over duplex pumps, is that they can move large volumes of mud at the higher pressure is required for modern deep hole drilling.
Triplex pumps are gradually phasing out duplex units. In a triplex pump, the pistons discharge mud only when they move forward in the liner. Then, when they moved back they draw in mud on the same side of the piston. Because of this, they are also called “single acting.” Single acting triplex pumps, pump mud at a relatively high speeds. Input horsepower ranges from 220 to 2200 or 164 to 1641 kW. Large pumps can pump over 1100 gallons per minute, over 4000 L per minute. Some big pumps have a maximum rated pressure of over 7000 psi over 50,000 kPa with 5 inch/127 mm liners.
Here is a schematic of a triplex pump. It has three pistons each moving in its own liner. It also has three intake valves and three discharge valves. It also has a pulsation dampener in the discharge line.
Look at the piston at left, it has just completed pushing mud out of the liner through the open discharge valve. The piston is at its maximum point of forward travel. The other two pistons are at other positions in their travel and are also pumping mud. But for now, concentrate on the left one to understand how the pump works. The left piston has completed its backstroke drawing in mud through the open intake valve. As the piston moved back it instead of the intake valve off its seat and drew mud in. A strong spring holds the discharge above closed. The left piston has moved forward pushing mud through the now open discharge valve. A strong spring holds the intake valve closed. They left piston has completed its forward stroke they form the length of the liner completely discharging the mud from it. All three pistons work together to keep a continuous flow of mud coming into and out of the pump.
Crewmembers can change the liners and pistons. Not only can they replace worn out ones, they can also install different sizes. Generally they use large liners and pistons when the pump needs to move large volumes of mud at relatively low pressure. They use a small liners and pistons when the pump needs to move smaller volumes of mud at a relatively high pressure.
In a duplex pump, pistons discharge mud on one side of the piston and at the same time, take in mud on the other side. Notice the top piston and the liner. As the piston moves forward, it discharges mud on one side as it draws in mud on the other then as it moves back, it discharges mud on the other side and draws in mud on the side it at had earlier discharge it. Duplex pumps are therefore double acting.
Double acting pumps move more mud on a single stroke than a triplex. However, because of they are double acting they have a seal around the piston rod. This seal keeps them from moving as fast as a triplex. Input horsepower ranges from 190 to 1790 hp or from 142 to 1335 kW. The largest pumps maximum rated working pressure is about 5000 psi, almost 35,000 kPa with 6 inch/152 mm linings.
A mud pump has a fluid end, our end and intake and the discharge valves. The fluid end of the pump contains the pistons with liners which take in or discharge the fluid or mud. The pump pistons draw in mud through the intake valves and push mud out through the discharge valves.
The power end houses the large crankshaft and gear assembly that moves the piston assemblies on the fluid end. Pumps are powered by a pump motor. Large modern diesel/electric rigs use powerful electric motors to drive the pump. Mechanical rigs use chain drives or power bands (belts) from the rig’s engines and compounds to drive the pump.
A pulsation dampener connected to the pump’s discharge line smooths out surges created by the pistons as they discharge mud. This is a standard bladder type dampener. The bladder and the dampener body, separates pressurized nitrogen gas above from mud below. The bladder is made from synthetic rubber and is flexible. When mud discharge pressure presses against the bottom of the bladder, nitrogen pressure above the bladder resists it. This resistance smoothes out the surges of mud leaving the pump.
Here is the latest type of pulsation dampener, it does not have a bladder. It is a sphere about 4 feet or 1.2 m in diameter. It is built into the mud pump’s discharge line. The large chamber is form of mud. It has no moving parts so it does not need maintenance. The mud in the large volume sphere, absorbs this surges of mud leaving the pump.
A suction dampener smooths out the flow of mud entering into the pump. Crewmembers mount it on the triplex mud pump’s suction line. Inside the steel chamber is a air charged rubber bladder or diaphragm. The crew charges of the bladder about 10 to 15 psi/50 to 100 kPa. The suction dampener absorbs surges in the mud pump’s suction line caused by the fast-moving pump pistons. The pistons, constantly starts and stops the mud’s flow through the pump. At the other end of the charging line a suction pumps sends a smooth flow of mud to the pump’s intake. When the smooth flow meets the surging flow, the impact is absorbed by the dampener.
Workers always install a discharge pressure relief valve. They install it on the pump’s discharge side in or near the discharge line. If for some reason too much pressure builds up in the discharge line, perhaps the drill bit or annulus gets plugged, the relief valve opens. That opened above protects the mud pump and system damage from over pressure.
Some rig owners install a suction line relief valve. They install it on top of the suction line near the suction dampener. They mount it on top so that it won’t clog up with mud when the system is shut down. A suction relief valve protects the charging pump and the suction line dampener. A suction relief valve usually has a 2 inch or 50 mm seat opening. The installer normally adjusts it to 70 psi or 500 kPa relieving pressure. If both the suction and the discharged valves failed on the same side of the pump, high back flow or a pressure surge would occur. The high backflow could damage the charging pump or the suction line dampener. The discharge line is a high-pressure line through which the pump moves mud. From the discharge line, the mud goes through the stand pipe and rotary hose to the drill string equipment.
A mud pump (sometimes referred to as a mud drilling pump or drilling mud pump), is a reciprocating piston/plunger pump designed to circulate drilling fluid under high pressure (up to 7,500 psi or 52,000 kPa) down the drill string and back up the annulus. A mud pump is an important part of the equipment used for oil well drilling and manufactured according to API specification 7K.
The advantages of the drilling mud pump include the ability to move high-solids-content fluids laden with abrasives, the ability to pump large particles, ease of operation and maintenance, reliability, and the ability to operate over a wide range of pressures and flow rates by changing the diameter of pump liners and pistons.
As an important equipment for oilfield drilling operation, a drilling mud pump delivers circulating high-pressure drilling fluid or drilling mud to the bottom of the oil well, flushes the bottom of the well, breaks the rock, cools, lubricates and clean the drill bit, and carries the cuttings back to the ground.
The drilling mud is also used to suspend and carry out drill cuttings from the drill bits as it is brought in and out of the hole. This ensures that the drill bit does not clog and overheat, and makes the entire drilling operation smooth and safe.
Rotational power is supplied to the mud pump through an external power source like a diesel engine or electric motor. The power end of the mud pump converts the rotational energy through a crankshaft to a reciprocating motion of pistons.
The pistons move back and forth in mud pump liners, exerting a force on the cylinder chamber. During the retraction of the piston, valves open to allow the fluid to be drawn into the cylinder. Once the piston has fully retracted, it is pushed back into the cylinder.
The global mud pumps market size is expected to grow at a CAGR of 3.80% during the forecast period of 2023-2028. The market growth is likely to be driven by the increasing frequency of exploration activities due to the rising demands for energy and reduction in harmful carbon emissions.
Mud pump is a type of piston/plunger driven pump that is capable of utilizing drilling fluids under high pressure. The mud pumps are an essential part of heavy drilling processes and are usually used in conjunction with other pumps. These pumps help circulate the drilling fluid through the drill bit and bring it back to the surface.
The increasing demand for minerals, oil, and gas has expanded the demand for mud pumps. With rising offshore mining activities and the rapidly thriving population around the world, the market is expected to expand further in the forecast period.
The mud pump market is expected to develop rapidly with the benefits provided by it. Increasing demand for directional and horizontal drilling and the mud pump’s capability to handle high-pressure drilling operations can further propel the market.
Technological advancements have enabled mud pumps to eliminate harmful carbon emissions and increase operating efficiency. With the increasing demand for electric mud pumps, the market can experience new growth opportunities.
Based on type, the market can be segmented into a duplex, triplex, and quintuplex. Based on operation, it can be bifurcated into electric and fuel engine. Based on application, the market can be divided into oil and gas, mining, and construction, among others. The regional markets for the mud pumps market can be divided into North America, Europe, the Asia Pacific, Latin America, the Middle East and Africa.
The comprehensive EMR report provides an in-depth assessment of the market based on Porter"s five forces model along with giving a SWOT analysis. The report gives a detailed analysis of the following key players in the global mud pumps market, covering their competitive landscape and the latest developments like mergers, acquisitions, investments and expansion plans.
Based on types, the mud pump market can be segmented into a duplex, triplex, and quintuplex. Among these types of pumps, triplex pumps are likely to account for the largest share of the market due to the advantages they provide over duplex pumps. The shift from duplex pumps to triplex pumps is expected to propel the market growth owing to its lesser weight and similar efficiency.
Based on operation, the mud pumps market can be bifurcated into electric and fuel engine. The electrically operating mud pump segment is rapidly developing due to its environmental advantages over the fuel engine pumps. With the increasing exploration activities conducted in all the regions around the world to meet the surging demand for energy and minerals is expected to amplify the market value.
Mud King Products, headquartered in Texas, United States, is a company operating in the oil and gas industry. The company was founded in 2000 and has been working in specialized sectors to manufacture various such as triplex mud pumps, handling tools, swivel cartridges, gate valves and butterfly valves, block hooks, and rotary tables.
GD Energy Products, LLC is an oil and gas company, founded in 1859, headquartered in Texas, United States. It is a global leader in the design and manufacturing of positive displacement pumps and associated aftermarket parts. The company provides products and services including falcon spring retainer, pump repair, redline packing, mud pumps, coiled tubing, and electric fracturing, among many other services.
Boy, oh boy, is it hot! It is 104 degrees here in the Texas sun. This hot weather and some questions from a colleague lead me to today’s column on drilling fluid hydraulics.
I arrived in Fort Worth, Texas, some 20-plus years ago a few months before the annual summer heat hit. A common drilling problem in this area is bit balling and drill cuttings packing off around the drill bit, drill collars, and stabilizers when drilling in some of the local formations.
My recommendation to remedy this problem—based on what the drillers told me over the phone—was to have them add an inhibitive polymer (PHPA), a filtration control polymer (PAC), and a detergent to their fluid mix.
As described in previous columns, these products inhibit or minimize the drill cuttings from getting water wet and minimize the stickiness of the cuttings surface so they do not agglomerate or stick together or stick to the drill steel. These recommendations worked to a degree but did not entirely solve the problem.
Now for the hot weather tie-in. I had to go to a drilling location to troubleshoot a slow penetration rate and bit-balling problem. As I recall, the temperature was 109 degrees—and I don’t think there was any shade for 109 miles!
The driller was following my suggestions (made from the comfort of my air-conditioned truck) for his drilling fluid product mix but was unhappy with the results and the cost in relation to the footage drilled.
Drilling fluid alone didn’t solve the problem in this case. We must also consider if the drilling fluid products were mixed correctly so they can perform their intended purposes (addressed in a previous column).
What type of drill bit are we using (roller cone with teeth or buttons, drag bit, PDC)? What are we using for a mud pump (centrifugal or piston)? How much flow (gallons per minute) and pressure (pounds per square inch) do we have available?
Hydraulics describes how fluid flow inside tubulars and annular spaces uses pressure. Mechanical force (pressure) is supplied by the mud pump—a push or pull which tends a system to change its state of rest or motion.
The relationship of physical properties of a drilling fluid in conjunction with a shear stress (pumping pressure) and a shear rate (velocity of the fluid or flow rate) is termed rheological behavior. Bits, pumps, flow rate and pump pressure, and drilling fluid rheological properties all relate to fluid hydraulics.
So back to our problem of bit balling. In softer formations such as clay or shale, a long-tooth roller cone bit or drag bit are commonly used. A balled bit is when the formation being drilled packs off between the teeth or otherwise sticks to the cutting surfaces to prevent them from cutting new hole. In effect, you’re spinning in place.
Drilling fluid design can minimize this effect. Full control needs optimization of drilling fluid hydraulics. As was noted, hydraulics uses pressure and volume produced by the mud pump. If we can focus the pressure and flow against the cutting structure of the bit, we can keep the cutting surfaces clean; in effect, we will be blasting these surfaces clean with high-pressure fluid flow.
The pressure in our system comes from the mud pump. We know that the pressure of the fluid at the pump is greater than the pressure of the fluid as the fluid exits the borehole.
So, if the pressure gauge at the pump is reading 500 psi and the pressure is effectively zero as the fluid exits the borehole, where did the pressure go? In its simplest form, the available pressure is lost due to overcoming the internal friction of the moving fluid, the friction of passing through the drill string and drill bit, and moving against the borehole walls.
If we were to run hydraulics optimization software, we would find that 50% to 65% of the total pressure available is lost at the bit and provides the best case for cutting surface cleaning and maximum penetration rate. Therefore, we need to minimize the pressure losses at all other points in the system to maximize the pressure available at the bit.
Internally overcoming friction is really overcoming the resistance to flowing, which we have previously defined as viscosity. The total solids content of the drilling fluid (measured as density) and how these solids interact with each other (measured as plastic viscosity and yield point) are used in pressure loss calculations.
In short, a lighter fluid with minimal solids and controlled rheology (see previous columns) has less pressure loss while flowing and therefore more of the total system pressure is available to be lost at the bit.
Pressure is also lost inside the hoses and drill pipe as the flowing fluid interacts with the inside surfaces of these tubulars. And there is pressure loss in the annular spaces with two surfaces for the drilling fluid to interact with: the outside surface of the drill string and the borehole wall.
Inside our tubulars, turbulent flow can be expected due to pumping volume and rather small internal diameter. Luckily, drill steel will not be eroded by this turbulent flow.
The annulus is a much different environment. We do not want erosion of the borehole walls and we have added drilled cuttings to the drilling fluid that need to be transported to the surface. The magnitude of annular pressure loss is a function of type of flow, annular velocity, and mud properties, requiring laminar flow to maintain borehole wall integrity and effective cuttings transport. An uphole annular velocity of 60 to 120 feet per minute usually meets our requirements.
Rheology and hydraulics calculations provide the means for adjusting the drilling fluid’s properties, the flow rate, and bit nozzle size to optimize system pressure losses under the constraints imposed by the rig equipment.
Exploring this statement may answer some questions about pump type and bit design. The previous discussion would be primarily suited to positive displacement or piston pumps and drill bits that allow for adjusting the bit nozzle size.
Many of you drill with centrifugal pumps and use drill bits with no nozzles or open centers. Sure, you can drill with centrifugal pumps. They do allow for high flow rates, but they also lose efficiency with higher viscosity drilling fluids, have limited pressure limits, and lose efficiency with depth.
The impeller is an extremely high shear point and will break down cuttings to very small sizes that may not be removed from the drilling fluid, thus increasing the fluid’s density. These limitations may or may not be an issue in your local area.
Centrifugal pumps do not work as well as positive displacement pumps when using jetted bits. Often the jets are too restrictive and too much pressure is lost at this point, so open center bits are preferred. Hole cleaning and cutting surface cleaning are accomplished by drilling fluid chemistry and flow volume. Hydraulics optimization is seldom used when drilling with centrifugal pumps.
Drag bits are very common in the water well business. Most of the designs have an open center and use flow volume to clean the cutting surface and move the drilled cuttings to the surface. I personally have never seen one with jets unless you consider a PDC bit a sophisticated drag bit.
They work well in many geologic environments, but they do have one big drawback, especially when drilling soft formations such as in the example we discussed earlier.
You can create a “cutting” so large that it can’t be suspended or transported by the drilling fluid. It may be too large to even get past the side of the bit or fit in the annular space around drill collars or stabilizers. This causes packing off and restricts flow. Sometimes these sausages can’t be pumped out of the hole and must be pulled out by tripping out of the hole. In general, drag bits are not good candidates for hydraulics optimization.
The major goal of hydraulics optimization is to balance hole cleaning, pump pressure, and pressure drop across the bit. The drilling fluid’s density and rheological properties are the parameters that affect this hydraulic efficiency.
Returning to our story: It was hot and dry on location. The driller was using my recommended drilling fluid product mix, the crew mixed the products correctly, and they were still only making about 20 feet of new hole every couple of hours.
We looked at each part of the system, using the system approach to troubleshooting. We knew the geology was clay and a shale rock that easily got water wet and sticky. Mud system checked out for this geology. Piston pump for pressure and flow, poor flow coming out of the hole. Long-tooth bit should handle the formations. What’s missing?
We tripped the bit out of the hole and found it all balled up and mud and cuttings packed off around the stabilizer. It was obvious we were not cleaning the cuttings away from the bit teeth and insufficient flow to move them up into the flow stream and to the surface.
It took the rig crew with hammer and chisel to clean that drill bit. There were no jets installed and the seats were washed out so no regular bit jets could be installed.
It took some convincing and a long discussion about hydraulics optimization, but the driller decided to try something different. He welded some half-inch washers across the jet seats to mimic real bit jets. After tripping back in the hole, continuing with the proper drilling fluid mix, controlling the rate of penetration to allow the circulating fluid pressure to clean the cutting surfaces and the fluid flow to entrain and carry the drill cuttings—the driller made 400 feet that day! I got sunburned but we were successful.
Drilling fluid hydraulics optimization can make a huge difference in your results. You don’t need full-fledged computing power to understand the concepts and get meaningful results.
We didn’t use any math today at all. Know the geology. Formulate the proper drilling fluid and choose the best bit and pump with as much fluid pressure as you can. Put it to work for you.