mud pump shives in stock
ISO 9001:2000 certified worldwide manufacturer of standard & custom industrial products including sheaves mud pump sheaves. ISO 9001:2000 certified worldwide manufacturer of standard & custom industrial products including V-belt sheaves. V-belt sheaves are available in standard QD style, standard taper bushed style, hi-cap wedge QD style & conventional taper bushed style. Conventional stock sheaves include combination QD sheaves, combination groove TB sheaves, fractional horsepower sheaves, single groove variable pitch sheaves & two groove variable pitch sheaves. Hi-cap wedge QD style feature 2 groves & 3V belt cross sections. Hi-cap wedge QD style out side dia. sizes ranging from 220 in. to 2.2 in.
Explore high-quality pump shafts, sheaves, and pulleys from Bell & Gossett, Taco, and other trusted manufacturers at Stockpile Express. A pump shaft facilitates optimum flow output, while a pump sheave, or pulley, connects pumps to motors or engines to provide power. Our selection of these essential pump parts includes options made in stainless steel and brass; these durable materials resist corrosion and withstand exposure to harsh environments. Find the right shafts, sheaves, and pulleys for the productive operation of your pump in the collection at Stockpile Express.
We commonly receive the call to help assist in properly sizing pulleys and sheaves for pump applications. Generally, this is in high pressure wash applications but we also run into a fair amount of agricultural applications where this knowledge can be leveraged. Pulleys or “sheaves” are commonly used for connecting pumps to motors or engines via drive belts. Most pulleys are cast iron or aluminum construction and are offered in either fixed-bore or tapered bushing styles.
For proper operation of any brand or pump type, it is critical to size pulleys and sheaves, correctly, in order to maintain correct RPM, (revolutions per minute). RPM speed is what determines the pump output flow rate – in gallons per minute, liters per minute, etc.
Incorrect pump RPM will adversely affect the pump performance. If the pump is turning too slow – it will not give full performance. Conversely, if the pump is turning too fast, it could cause premature mechanical failures (i.e. valve wear or elastomer failure).
Therefore, it is absolutely critical to ensure correct pulley sizing and analysis of the drive unit, (motor, engine, etc.) relative to the pump. For the sake of this discussion, we will assume standard electric motors at 1750 RPM and standard gas engines at 3400RPM. Do note, one must determine the rpm of their drive unit to be able to accurately calculate the pulley/sheave size.
If you start with an incorrect figure for RPM – you will size your equipment incorrectly. This could lead to shorter equipment lifespans and/or reduced output flow rates. Thus, ultimately a less efficient system which equates to more down time and added cost of operation. The scope of this post will be focused towards plunger pump applications. We assemble many units using this method in Omaha, NE. Dultmeier Sales is proud to display the Built in the USA logo on our products. Here are just a handful of the pulley-driven pump products that we offer.
There are complicated formulas for determining pulley ratios but in generic, layman terms, simply divide the driven component (pump) by RPM, the driver component (motor or engine) rated by RPM to get the required ratio. In the example below, the pump RPM is 1070, for full output, while the motor is 1750 RPM.
This means the pulley ratio must be .611 to drive the pump correctly. Hypothetically speaking, if we had a 4 inch pulley on the motor, we would require a 6.55” pulley on the pump. That mathematical equation is as follows: 4” divided by .611 = 6.55”
If the drive pulley on the engine is 4 inches in diameter, we need to calculate 4/.315 = 12.70. This means that the pump pulley must be 12.70 inches, in diameter, to run the pump at 1070 rpm. You can view a technical page from our catalog here – it will help to further explain the calculation process.
Most pulleys, or sheaves, are designed with either fixed shaft bores or tapered bushing hubs. Replaceable hubs fit the required motor or pump shaft size in either inch or mm sizes – depending on the application requirement. These hubs come with bolts to attach them to the pulley, or sheave.
Tapered style hubs simply fit into the pulley opening and then are tightened with two or three set screws, which draw the bushing and pulley together to make one assembly. The pulleys are then attached to the driver (electric motor or gas engine) and driven components (pump). The type of hub, H, SD, SH, etc. must match to a pulley with the same designation for proper fit.
As the information above shows, there are many things involved in order to determine the correct pulleys required to drive your pumps correctly. It is important to remember the larger the difference in pulley sizes, the larger the center distance required to maintain minimum contact with the smaller pulley. We would be glad to help with any sizing for your specific applications. Your Experts in Delivering Fluid Handling Solutions – We Know Flow!
A mud pump is a reciprocating piston/plunger pump designed to circulate drilling fluid under high pressure (up to 7,500 psi (52,000 kPa)) down the drill string and back up the annulus. A duplex mud pump is an important part of the equipment used for oil well drilling.
Duplex mud pumps (two piston/plungers) have generally been replaced by the triplex pump, but are still common in developing countries. Two later developments are the hex pump with six vertical pistons/plungers, and various quintuplex’s with five horizontal piston/plungers. The advantages that Duplex mud pumps have over convention triplex pumps is a lower mud noise which assists with better Measurement while drilling and Logging while drilling decoding.
Use duplex mud pumps to make sure that the circulation of the mud being drilled or the supply of liquid reaches the bottom of the well from the mud cleaning system. Despite being older technology than the triplex mud pump, the duplex mud pumps can use either electricity or diesel, and maintenance is easy due to their binocular floating seals and safety valves.
A mud pump is composed of many parts including mud pump liner, mud pump piston, modules, hydraulic seat pullers, and other parts. Parts of a mud pump:housing itself
Duplex pumps are used to provide a secondary means of fuel transfer in the event of a failure of the primary pump. Each pump in a duplex set is sized to meet the full flow requirements of the system. Pump controllers can be set for any of the following common operating modes:Lead / Lag (Primary / Secondary): The lead (primary) pump is selected by the user and the lag (secondary pump operates when a failure of the primary pump is detected.
Alternating: Operates per Lead / Lag (Primary / Secondary) except that the operating pump and lead / lag status alternate on consecutive starts. A variation is to alternate the pumps based on the operating time (hour meter) of the lead pump.
Main purpose of refining Chemical Pulp is to obtain higher yield by allowing a higher Kappa level which means more lignin and hemicellulose. This is achieved with shorter retention time in the digester. Less cooking leads to undissolved bundles of fibres, knots and shives. These must be defibrated by means of mechanical refining either Blowline or Hot Stock as first stage application.