replace mud pump motor maintenance programs factory
Pumps are often designed to operate at a single point known as the Best Efficiency Point (BEP). As components begin to wear, a pumps performance begins to decline, with operation away from this point leading to issues such as accelerated bearing or seal wear, vibration, excess temperature rise or cavitation. Quite often declining performance can start gradually, before quickly accelerating until failure if performance issues are not addressed in a timely fashion.
Corrective Maintenance is undertaken when failure has occurred. The unit may be leaking, efficiency reduced, pump stopped or motor tripped, leading to loss of production resulting in an urgent situation where parts must be sourced and fitted quicky.
Preventative Maintenance is inspection and repair scheduled at specific intervals (daily, weekly, monthly, yearly) or based on the number of hours run. Visual inspections are made externally and internally by dismantling the unit, replacing seals such as gaskets and mechanical seals, with pump parts checked for wear.
Differential Pressure:Check the operating pressure by calculating the difference between the inlet and outlet pressure of the pump ensuring it is operating on curve.
Excess Temperature – Check motor, bearing and casing temperature. Thermal imaging cameras can detect excess temperature quickly, without stoppage, dismantling or contact with the unit.
The “6 to 1 Rule” discovered by John Day Jr, (Manager of Engineering & Maintenance at Alumax South Carolina stated that the ideal ratio of Proactive Maintenance (PM) to Corrective Maintenance (CM) should be 6 to 1 - 6 PM checks to 1 RM check. If your ratio is below this then according to his theory it is being inspected too infrequently, above and inspections are too frequent.
Although Proactive Maintenance can seem to avoid the urgent costs and downtime associated with reactive maintenance, PM maintenance costs can be high due to the cost of labour in dismantling of complicated designs such as Progressing Cavity, or Triplex Plunger pumps which are often time consuming to maintain with more than one person required to undertake work.
On dismantling units, some seals require replacing regardless of condition, and excess spares can be required in case of gasket entrapment during assembly. Rental of specialist lifting equipment may be required and there can be situations where when inspected, pump parts do not require replacement.
MonitoringThe ideal situation is to ensure components are replaced before failure but not so far in advance that they have experienced little wear with valuable time spent on inspecting components which are otherwise fine.
This can be achieved through a monitoring device, where when the right data is collected, pump failure can be anticipated between 3 and 12 months in advance with an 80-95% accuracy.
With the average lead time on DN100 pumps, and units over 5 years old being 3 months or more, it is essential that spares are either on the shelf or failure is anticipated through advance ordering.
There are hazards during any maintenance activity. Always ensure the correct PPE is worn before attempting repair, that sufficient expertise is on hand and chemical data sheets of any fluid being pumped are checked prior to undertaking work. A full risk assessment should be completed in advance.
Hazardous FluidsIrritation, Chemical burns, ignitionEnsure when pump is opened the unit is cool, not pressurized, ignition sources are not present, and any fluids spilt are contained.
If inspection has been neglected for some time, then additional parts may require replacing than had the unit been inspected earlier, with some pump parts becoming beyond economical repair.
Enables planned work to be undertaken during lower activity levels and at lowest cost & risk.Pump has to be crucial within a process or above a certain size for monitoring to be cost effective
Thread Sealant –The use of semi-permanent thread sealant will ensure vitality important threaded fasteners such as bolts or screws on shafts, couplings or pump casings do not self-loosen due to vibration and become disengaged.
Interchangeable Spares –Our range of pumps are modular in design utilizing interchangeable spares, meaning on site stock holding of parts can be reduced by up to 80% further reducing slow moving stock.
Repair & Replace –Choosing to repair an existing pump within a process of vital importance, as well as replace, is a strategy we recommend for maximizing plant efficiencies and reducing downtime. Should unexpected pump failure occur, your process can be restored quickly.
Checklists & Logs –The use of checklists and logs ensures a fully repeatable process ensuring important maintenance intervals are not missed. Logs can provide valuable insight and reveal a pattern before failure occurs enabling easier troubleshooting.
indicates which areas should be checked, but note that a units maintenance routine is dependent on several factors such as hours of operation, duty, aggressiveness of pump medium, rpm of motor, temperature, inlet conditions and location of equipment.
Repairing your pumps quickly and efficiently to get your operations back up and running is GD Energy Products’ top priority. If your pump requires immediate attention, our field engineers and service technicians can be deployed to your job site or facility. Our experienced technicians are trained to identify and inspect your pumping issue and conduct as-needed service, repairs and preventative maintenance at your preferred location.
GDEP offers a full range of 24/7 on-site pump maintenance and repair offerings tailored to your individual needs. We offer comprehensive repairs for fracking pumps, drilling pumps, well service pumps, fluid ends and modules. Additionally, our customers have access to 24/7 service, ongoing parts support and product maintenance.
GDEP’s inspection program offers a comprehensive and proactive approach to solving your pump issues. Our field service technicians can utilize advanced troubleshooting procedures to uncover various underlining issues with the capability of performing onsite repairs using genuine, high-quality OEM replacement parts to guarantee maximum performance
If you have a large fleet or pumps that simply require more attention, we can provide you with a dedicated field service technician with either half-day or full 24/7 coverage.
Our state-of-the-art repair facilities operate in a constant state of readiness to provide your pumps with the most comprehensive and cutting-edge repair and maintenance services. With facilities strategically located in all major shale plays throughout the United States, we are able to provide our customers with efficient service on a local level.
If you have a large-scale repair that cannot be completed in the field, bring your pump to any one of our repair facilities and expect the same level of service and expertise. A highly trained and experienced team of field engineers, service technicians and repair mechanics possess all the necessary skills and insights required to overhaul any pump, all under one roof. Backed by our satisfaction guarantee, you can have the confidence your pumps will operate at peak performance after it leaves our facility.
Our team of experts is available 24/7 to service and repair any brand of pump. Whatever your repair needs, GDEP will bring the proper experience, tools and equipment needed to get the job done.
Pump maintenance is the process of keeping your pumps in good working condition. A thorough checklist that guides the maintenance engineer for pump maintenance can be very beneficial as pump maintenance is essential to keep your pumps running smoothly and prevent them from breaking down. This includes regularly checking and cleaning your pumps and replacing any parts that are worn out.
Modern pumps are essential equipment in the industrial and manufacturing sectors. These devices allow companies to move liquids and gases from one place to another, which can be crucial to operations. While modern pumps are reliable and rarely need maintenance, they require some attention over time.
The ideal way of classifying pump maintenance is through the method used for drawing out the maintenance plan. Based on this, the following are the four significant types of pump maintenance:
Corrective maintenance is the most reactive type of pump maintenance, and it involves repairing or replacing parts as needed to keep a pump functioning properly. While this approach may be necessary for some situations, it is often not ideal due to its high cost and disruption of operations.
Preventive maintenance is another common approach to pump maintenance that focuses on proactive measures such as regular inspections and adjustments. This can help avoid potential problems and keep pumps operating at peak efficiency. Using a reliable checklist for pump maintenance, engineers conduct a thorough checking and carry out the needful maintenance as and when needed. This approach is widely used in industries.
Predictive maintenance uses advanced sensors and equipment to monitor the condition of pumps and other components in real-time. This enables users to detect potential problems before they become serious issues that require extensive repairs or replacements. However, this type of maintenance is cost-intensive and unsuitable for small-scale pump systems.
This type of pump maintenance is a newer type of pump maintenance that uses data collected from sensors to assess the condition of pumps and other equipment. This information is then used to develop a customized maintenance plan tailored to the equipment’s specific needs. This approach can be more effective than traditional pump preventive maintenance plans and can help to reduce downtime and costs. But setting up a CBM system can prove to be a costly affair.
Whether you are using one of these approaches or a combination of them, it is essential to ensure that your pump maintenance program is adequately designed and implemented to optimize the performance and longevity of your pumps. Pump maintenance plans are also created based on the system they target, including mechanical, electrical, and hydraulic. Mechanical maintenance typically involves replacing parts that have worn out or broken down due to normal wear and tear. Electrical pump maintenance requires checking the wiring for any signs of damage and replacing fuses if necessary. And hydraulic pump maintenance may involve changing fluid levels or upgrading the oil viscosity depending on the level of use.
The strength and effectiveness of your pump preventive maintenance plan depending on how robust your checklist is. While you would want to include all possible checks in the plan, it is impractical and inadvisable for all routine checks. Therefore the checklist is divided based on the frequency of checks making it more sustainable and effective:
Please note that the pump preventive maintenance schedule for each pump would depend on its design and application, and hence you should always consult the pump manufacturer for the same. However, the above checklist is a general checklist that can guide the process of pump preventive maintenance. A well-maintained pump will last longer and perform better than one not correctly cared for.
Check the manufacturer’s recommendation for service interval schedules. Depending on the type of pump, different servicing may be required at different intervals.
Maintain the proper records for all pump maintenance activity. Good data collection will give you the correct information about the pump’s health and operational condition.
Based on the checklist, pump maintenance may seem a simple task that needs to be done regularly. However, this is not true. Understanding the pump behaviour and performing suitable maintenance activities requires years of experience. Therefore, it is always advisable to hire a qualified expert to carry out pump maintenance due to the following reasons:
Safety – Pump maintenance through a qualified expert, ensures that all safety hazards are identified and eliminated. This keeps you, your equipment, and your employees safe from harm.
Efficiency – Qualified experts know how to service and maintain pumps to operate at peak efficiency. This can save you money on your energy bills and help prolong the life of your pump.
Peace of Mind – Pump maintenance can be a complex task. By entrusting it to a qualified expert, you can rest assured that the job will be done correctly and on time.
Avoid Downtime – Downtime is costly, both in terms of lost productivity and repair costs. Pump maintenance through a qualified expert can help minimize the risk of unexpected downtime.
Compliance – Pump maintenance through a qualified expert can help ensure that your pump complies with all relevant safety and environmental regulations. This can save you from costly fines or penalties.
The majority of reliable pump manufacturers offer pump maintenance as a part of their service. Therefore, it is always a good practice to hire them to execute the pump maintenance of your site. They will also be able to create an effective schedule and an exhaustive checklist that your site engineers can follow for pump inspection. Ensuring that pump preventive maintenance is done at the right time in the right way will make your overall system more reliable and efficient.
Many things go into getting the most life out of your mud pump and its components — all important to extend the usage of this vital piece of equipment on an HDD jobsite. Some of the most important key points are covered below.
The most important thing you can do is service your pump, per the manufacturer’s requirements. We get plenty of pumps in the shop for service work that look like they have been abused for years without having basic maintenance, such as regular oil changes. You wouldn’t dream of treating your personal vehicle like that, so why would you treat your pump like that.
Check the oil daily and change the oil regularly. If you find water or drilling mud contamination in the oil, change the oil as soon as possible. Failure to do so will most likely leave you a substantial bill to rebuild the gear end, which could have been avoided if proper maintenance procedures would have been followed. Water in the oil does not allow the oil to perform correctly, which will burn up your gear end. Drilling mud in your gear end will act as a lapping compound and will wear out all of the bearing surfaces in your pump. Either way it will be costly. The main reasons for having water or drilling mud in the gear end of your pump is because your pony rod packing is failing and/or you have let your liners and pistons get severely worn. Indication of this is fluid that should be contained inside the fluid end of your pump is now moving past your piston and spraying into the cradle of the pump, which forces its way past the pony rod packing. Pony rod packing is meant to keep the oil in the gear end and the liner wash fluid out of the gear end. Even with brand new packing, you can have water or drilling fluid enter the gear end if it is sprayed with sufficient force, because a piston or liner is worn out.
There is also usually a valve on the inlet of the spray bar. This valve should be closed enough so that liner wash fluid does not spray all over the top of the pump and other components.
Liner wash fluid can be comprised of different fluids, but we recommend just using clean water. In extremely cold conditions, you can use RV antifreeze. The liner wash or rod wash system is usually a closed loop type of system, consisting of a tank, a small pump and a spray bar. The pump will move fluid from the tank through the spray bar, and onto the inside of the liner to cool the liner, preventing scorching. The fluid will then collect in the bottom of the cradle of the pump and drain back down into the collection tank below the cradle and repeat the cycle. It is important to have clean fluid no matter what fluid you use. If your liners are leaking and the tank is full of drilling fluid, you will not cool the liners properly — which will just make the situation worse. There is also usually a valve on the inlet of the spray bar. This valve should be closed enough so that liner wash fluid does not spray all over the top of the pump and other components. Ensure that the water is spraying inside the liner and that any overspray is not traveling out of the pump onto the ground or onto the pony rod packing where it could be pulled into the gear end. If the fluid is spraying out of the cradle area and falling onto the ground, it won’t be long before your liner wash tank is empty. It only takes a minute without the cooling fluid being sprayed before the liners become scorched. You will then need to replace the pistons and liners, which is an avoidable costly repair. Make a point to check the liner wash fluid level several times a day.
Drilling fluid — whether pumping drilling mud, straight water or some combination of fluid — needs to be clean. Clean meaning free of solids. If you are recycling your fluid, make sure you are using a quality mud recycling system and check the solids content often throughout the day to make sure the system is doing its job. A quality mud system being run correctly should be able to keep your solids content down to one quarter of 1 percent or lower. When filling your mud recycling system, be sure to screen the fluid coming into the tanks. If it is a mud recycling system, simply make sure the fluid is going over the scalping shaker with screens in the shaker. If using some other type of tank, use an inline filter or some other method of filtering. Pumping out of creeks, rivers, lakes and ponds can introduce plenty of solids into your tanks if you are not filtering this fluid. When obtaining water out of a fire hydrant, there can be a lot of sand in the line, so don’t assume it’s clean and ensure it’s filtered before use.
Cavitation is a whole other detailed discussion, but all triplex pumps have a minimum amount of suction pressure that is required to run properly. Make sure this suction pressure is maintained at all times or your pump may cavitate. If you run a pump that is cavitating, it will shorten the life of all fluid end expendables and, in severe cases, can lead to gear end and fluid end destruction. If the pump is experiencing cavitation issues, the problem must be identified and corrected immediately.
The long and the short of it is to use clean drilling fluid and you will extend the life of your pumps expendables and downhole tooling, and keep up with your maintenance on the gear end of your pump. Avoid pump cavitation at all times. Taking a few minutes a day to inspect and maintain your pump can save you downtime and costly repair bills.
I wrote a series of columns last year and into January this year on well and pump rehabilitation and methods to improve the operating efficiency in both. This month, as a start to a two-part series and a logical continuation to the topic, I’ll expand the discussion outlining my concept of a well and pump preventive maintenance program with suggested procedures and recommended intervals.
As we launched this new enterprise, we decided to offer a preventive maintenance program on a trial basis. This would be our way of introducing and acquainting ourselves to a previously unknown base of new clients, introducing our new division to our existing clients, and as a way of gaining a full understanding of each water system’s particular needs.
Many of these newly discovered clients, especially local smaller water districts and cities, informed me they had wanted to implement some type of preventive maintenance program for their facility, but didn’t know where to start.
The new preventive maintenance program was more than a method of gaining new business for our firm, especially since the late 1970s were also somewhat sluggish in the local irrigation business. Diversifying and expanding into the municipal and commercial water systems market not only provided badly needed revenue, but allowed us to keep current personnel who might otherwise have been laid off or assigned reduced hours during long winter periods.
Since we were already a long-established water systems firm, moving into this larger and slightly different market did not require substantial retraining or expansion of our service staff. We were also able to use our existing equipment and rolling stock, particularly our service vehicles and pump hoists.
As we moved cautiously into developing a preventive maintenance program for the various clients, one thing became rapidly apparent. The program was going to have to be customized and tailored for each client and the specific needs and number of pumps for each water purveyor. For systems with multiple well and pump stations, this meant we had to individualize the program for each client.
Although I was in charge and responsible for this new division—which included my cultivating new clients, submitting bids and proposals, and performing engineering and design—I was still young and didn’t wish to simply come out of the field and into the office to assign the maintenance and troubleshooting to the other employees. So, for the first four years of this new enterprise I alternated between field work and office work.
This not only helped me expand my skills in field work and troubleshooting, but allowed me the opportunity to visit and work with many of the new and diverse water system clients we gained throughout western Oregon. Eventually, the time and effort required to split my duties became more than I could reasonably handle, but those years were instrumental as they allowed me to learn new techniques, expand my troubleshooting skills, and increase my knowledge of water wells, pumps, and electrical and hydraulic theory.
Before actually embarking on a new preventive maintenance (PM) program, we first had to decide how often to recommend individual site visits and develop some type of database to routinely document each individual client and their water system facilities, as well as track each PM and service procedure conducted at each site and for each unit.
As far as building a database, after considering various methods of record keeping I settled on using a single master file for each client. Each file included information on each separate well and pump station. Each was assigned a unique identification code with the specific details of each facility recorded on “master data sheets” (Figures 1, 2, 3).
The PM program was originally envisioned, structured, and priced to be a fairly rapid “in and out” to gather and record the most critical information such as static and operating (pumping water level) conditions of each well and pump and to conduct general maintenance on individual pump and driver units within a pumping plant. Therefore, it was important to provide a uniform set of tasks and criteria to follow and evaluate what was needed without spending unnecessary time or effort on less important or trivial tasks.
Determining and maintaining a reasonable, uniform cost for a PM program was also vital since we could not effectively sell the program to most clients solely from harping on the advantages gained from potential energy savings and improving pump efficiency—at least not in 1979.
To effectively sell and conduct the program to many water systems, it was important to stress we would keep each site visit meaningful and the cost to a minimum by concentrating on just the primary elements of an effective PM program. These elements included: (1) performing necessary routine maintenance at appropriate intervals; (2) determining the current efficiency and operating condition of each pump and motor; (3) identifying and heading off any serious situations with an individual unit that could result in significant downtime and higher repair costs if not addressed soon; and (4) maintaining the inspection reports and records as a collection of current and past data within a master file.
The site visit field form was developed specifically to act as a guideline of the tasks the technician was expected to perform on each unit, each in a fundamental order. By using this initial form over the first to three months of the trial PM program, we were able to quickly determine the typical cost for a single pump station inspection and thereafter apply that unit cost to pump stations with multiple units.
Since many municipal or industrial pumping plants or stations consist of three to four separate units in total, especially those found in water booster or wastewater pump stations, we were able to expand the horizontal use of each form to permit entering up to four separate units on a single sheet.
As important to booster pump stations as this program was, the primary selling point was made to those clients with wells and well pumps or wastewater pumps. Since many wells and well pumps can exhibit a sudden failure due to years of ignorance or lack of maintenance, this program permitted a routine examination and tracking of the well’s pumping water level and the operating condition of the well pump and driver (usually an electric motor).
For example, by checking the static and pumping levels of each well during each visit around the same time each year, we were able to quickly develop an accurate, in-house database on seasonal water levels in most regions of western Oregon and the Willamette Valley.
This type of inspection was particularly important for installations using submersible pump motors since periodic examination of the motor’s insulation resistance often provided a yardstick of a motor’s current condition, or more importantly, any progressive decline.
If this occurred, it usually provided the client with advance notice in one to two years this unit was heading for or nearing failure. This provided enough notice to the client to permit an orderly and scheduled repair or replacement of the motor rather than a rushed and more expensive emergency approach.
Although we were generally careful to require all field data and information be vetted and approved by the engineering department before contacting the client, we did demonstrate to each technician how to determine and record a few basic field observations and calculations. These included static and pumping water levels from wells along with water horsepower, input horsepower, and plant efficiency from pumping units. These were often requested by the clients, particularly when the they were present for the inspections.
Although our original PM program was developed and implemented for both potable and wastewater pumping systems, since Water Well Journal primarily focuses on wells and well pump systems, we will limit this discussion to this group.
This means each field technician must be properly trained and observant in electrical, mechanical, and confined space safety. The most basic of these is always observing OSHA’s mandated “lock out/tag out” procedures for protection against errant automatic or manual starting of electrical motors or engines (drivers) used to drive pumps. This not only protects from possible electrical shocks, but additional forms of injury that could occur. An example that could occur is a pump starting while the tech is repacking or greasing it or changing the motor oil.
Finally, many water systems use potentially harmful chemicals and feed systems in their facilities (high-strength chlorine, acids, or caustics) or other ancillary systems interconnected to the pump start/run signal. Even though locking out the pump motor may prevent its start and operation, it may not necessarily disconnect or disable these other systems.
To help meet your professional needs, this column covers skills and competencies found in DACUM charts for drillers, pump installers, and geothermal contractors. PI refers to the pumps chart. The letter and number immediately following is the skill on the chart covered by the column. This column covers: PIE-18, 22: PIF-2, 3, 4, 5, 6, 7: PIG-3, 8, 10 More information on DACUM and the charts are available at www.NGWA.org/Certification and click on “Exam Information.”
The next area with a type of hazard occurs from exposure to confined spaces. Although most potable water pumping units are not located in regulated confined spaces, many control valves and other equipment are commonly situated in tanks or underground vaults or chambers. Accumulated or released vapors or gases within these environments, especially those heavier than air in underground vaults or facilities, can overcome a worker within seconds. Recognizing these potential hazards and equipping each employee with a gas sniffer or alarm to notify the tech should hazardous or flammable gases or a low oxygen level exist and an approved breathing mask/tank is recommended.
In conclusion, it is vitally important anyone charged with conducting preventive maintenance and service be fully trained and capable in understanding and performing the procedural and safety measures required for each unit in each pumping station and observe the proper shutdown (lockout/tagout), service, and reactivation protocols.
This concludes this first installment on setting up a well and pump maintenance program. Next month, we’ll wrap up with an overview on setting up the forms and performing the field work.
Heavy Machinery is the most expensive construction equipment you own. It’s also the costliest to repair or replace. This guide will show you how to save money and extend the life cycle of your equipment with regular maintenance best practices.
We’ll identify commonly overlooked areas of maintenance, and identify simple things you can do to greatly impact the long-term value of your most vital equipment. Even the most powerful and dependable Cat® machinery requires basic attention to ensure it provides the exceptionally long service life and unmatched productivity of Cat construction vehicles.
Being proactive in your heavy equipment maintenance schedule helps prevent expensive downtime. Regular maintenance helps predict when failure is likely to occur, allowing you to find a solution to problems before they happen.
An example is an $80,000 machine that requires approximately $24,000 in maintenance and repair costs during 5,000 operating hours. By implementing sound preventive maintenance tips, this maintenance cost drops by 25 percent to $18,000.
A successful preventive maintenance program extends construction equipment life and minimizes unscheduled downtime caused by equipment breakdown. Benefits from a proper PM program include:
Preventive maintenance is more than regular maintenance like lubricating and changing and filters. A proper preventive maintenance (PM) program is all-inclusive. It’s an intentional approach to equipment management from the time equipment is purchased until the end of its useful life.
Sudden failure is when machinery breaks without warning. Usually, the reason is obvious. The part is then fixed or replaced, and the equipment is returned to service.
Intermittent failure happens sporadically. This stoppage happens randomly, and it can be difficult to identify the cause. Intermittent failure is frustrating, costly in downtime and usually can be prevented by anticipating the cause and addressing it during maintenance.
Gradual failure is entirely preventable by doing routine maintenance and inspections. Wearing parts and components are noted to be near the end of their lifespan and are replaced before failure occurs.
Thermally induced failure is where extremes in temperature cause break-downs in the equipment. This usually happens during large temperature fluctuations such as when a machine is being started in cold weather and is being warmed up. It also occurs when equipment is overheated. Extremely hot or cold periods can be prepared for during maintenance, and thermal failure can often be prevented.
Erratic failure is the most difficult to predict and detect. This occurs at random times and under varying conditions. Most erratic machinery failures are the result of sudden overloads on hydraulic or electrical systems. With electronic components, many erratic failures come from software or hardware malfunctions that are preventable by using diagnostic equipment during regular machinery maintenance.
Anticipating failure is at the heart of all preventive maintenance programs. Thorough knowledge of your machinery’s systems is the key to anticipating what’s likely to fail if proper maintenance is ignored. Cat Preventive Maintenance Agreements from MacAllister Machinery help you anticipate and predict problems before they leave your equipment inoperable.
Thorough product knowledge is invaluable when it comes to implementing an effective preventive maintenance program. Often, gaining this vital information is as simple as finding it in the machine’s equipment manual that has been researched and documented to isolate issues and prescribe the proper preventive maintenance.
Owner’s manuals are also a great source of troubleshooting information. Not only do manuals prescribe maintenance steps and techniques, but they often have bullet-point itemization or flow charts of what to do during malfunctions.
Another valuable resource for getting to know your machines inside out is to involve the machine operators. Unless you’re on the controls on a daily basis, you’re not likely to have the intimate knowledge of each machine’s idiosyncrasies and quirks. Daily operators get a “feel” for the machine. Operators sense when something’s amiss, and they’ll tell you. Listening to them and appreciating their input is a wise preventive maintenance strategy.
Stopping operation and dealing with a suspected problem between scheduled maintenance periods can be an enormous savings in failure costs and subsequent losses.
Knowledgeable machinery operators are more productive and cause less wear on machinery than untrained workers. Knowledgeable operators are also going to be safer to themselves and others working nearby. Properly trained operators will be more respectful of their equipment and more likely to look after it before, during and after construction duties. That’s going to save you money in repairs and replacement.
Operator training should be built into your preventive maintenance program. Operators have to know more than just how to start and run their machinery. They need to be aware of what routine, day-to-day maintenance tasks are required and how to perform them without fail.
Operator training can include a review of the operator’s manual, demonstration of the systems and all controls. Testing can be a part of training as well to ensure operators have acquired the right skills including pre and post operation maintenance tasks.
All Cat equipment we handle at MacAllister Machinery is supplied with detailed manuals from the factory that include a heavy equipment maintenance schedule. This extremely valuable resource has been painstakingly assembled through the knowledge, talent and experience of Cat designers and engineers. No one knows more about the right maintenance intervals for their machinery than Cat.
Factory-recommended maintenance intervals are a minimal standard and are based on normal operating conditions. This may vary depending on local climate and specific site environmental concerns like dust, mud, humidity, ice, snow, rain and excessive temperature fluctuations. It can also vary according to the operator load that’s put on the machine.
Following factory-recommended maintenance intervals and keeping precise records is important not just for economical operation of your machinery, but also to protect your warranty.
Keeping detailed service records is an important component in your preventive maintenance plan. It’s impossible to mentally keep track of what type of servicing has been done on your machinery, and that includes when maintenance was done and when it needs to be done again.
Documented service records let you keep an accurate picture of a particular machine’s history. Routine and regular interval servicing should be written in a booklet kept in your maintenance facility or even in the machine itself. This should include the date, what type of servicing was performed, what parts were replaced, when the next regular servicing is required and notations as to any peculiarities or irregularities that were observed.
Service records don’t just provide a chronological record of the maintenance of machines. Detailed maintenance records give you documented proof that your machinery has been maintained according to the manufacturer’s recommendations. This is important for daily operations, but it also strongly supports any warranty claim where there may be a dispute that mechanical failure was caused by neglect to perform the required maintenance.
Documenting your service tasks can be done by using a pen on paper ledger. It can be on a computer file using a spreadsheet or stored in a manual file kept in your office drawer along with other paperwork associated with the machine. Small booklets placed on the machine are common. Whiteboards on office walls are another simple and proven technique for seeing heavy equipment maintenance schedules at a glance.
A heavy equipment maintenance checklist is highly recommended to aid in remembering tasks and ticking them off as servicing is complete. Organize check-sheets with each itemized task associated with certain intervals. That might be daily, monthly or seasonally. It also may be according to machine time where certain hourly milestones need specific attention.
Documenting your machinery servicing lets you plan for future tasks. This includes being reminded to order replacement parts, fluids and filters, as well as scheduling maintenance that needs outsourcing to a dealer where shop-time is required or a dealer site visit is requested.
Lights:If your vehicle has any lights — headlights, brake lights, warning lights, etc. — they should be inspected to ensure they are working properly. Any burned-out bulbs should be replaced.
Air filter:Check the oil filter to see if it is dirty and needs to be replaced. These filters should be replaced regularly anyway, but a dirty filter can make your engine run poorly.
Covers and guard:Any existing safety covers or finger guards should be inspected to ensure they are in good shape. Any damaged covers should be removed and replaced.
Preventive maintenance can help catch small problems before they become big ones that might completely sideline your equipment. It might take a few extra minutes every day, but it’s worth it in the long run.
MacAllister Machinery provides site inspections and in-shop service as part of our preventive maintenance programs included in a Customer Value Agreement. We also provide diagnostic technology with technical analysis to thoroughly inspect each major system of your machine. Including this extensive computer diagnostic lets you automatically record if you’ve completed maintenance tasks like scheduling fuel, oil, coolant and hydraulic fluid sampling.
Perhaps nothing is so important, and so often overlooked in machinery maintenance, as fluid levels. Analyzing engine oil, fuel, coolant and hydraulic fluid tell an internal tale describing the health of your machine. These analyses are also indicators of maintenance effectiveness and predictors of potential failures.
Condition monitoring should be an overall part of your preventative maintenance plan to prevent breakdown and avoid unnecessary repair costs that rob you of efficiency and profit. Partnering with MacAllister Machinery delivers the support you need to complete projects on time and under budget. Cat Condition Monitoring is a proactive approach to collecting and analyzing data crucial to the health of your fleet.
Equipment Inspections — The most effective way to identify maintenance issues is through frequent inspections. We’ll not only assist in analyzing data collected, but we’ll also train your team to learn how to spot and correct maintenance issues before they contribute to costly breakdowns and repairs.
Historical Data — Cat condition monitoring includes collecting, organizing and responding to equipment service reports and historical documentation. We analyze the data and make accurate recommendations for maintenance, inspections and repairs that reduce operating costs and increase lifecycle performance.
Site Assessment — There are many internal and external factors that combine to impact your bottom line. Site condition assessment evaluates everything from long-term equipment performance and maintenance history to work environments and seasonal weather conditions for deeper insight into how to be more productive.
Regular care and preventive maintenance of machines are priorities for heavy equipment. That includes routine machinery maintenance you do as the owner as well as outsourced maintenance with assistance by Cat equipment professionals like you’ll find at MacAllister Machinery.
MacAllister Machinery offers an all-in-one solution for managing your fleet of Cat equipment at a cost that makes sense for your budget. It’s called a Cat Preventive Maintenance (PM) Agreement, and it will keep your equipment operating at peak performance through comprehensive preventive maintenance
As your authorized Cat dealer for Indiana and Michigan, we offer state-of-the-art capabilities in preventive maintenance. We’ll assist in analyzing your heavy equipment, applications and requirements to help build a customized plan to improve the efficiency of your fleet, save you money and improve your ROI. Fill out a MacAllister Machinery contact form today to request maintenance on your machinery.
Everyone agrees that reactive maintenance is probably the worst pump reliability strategy. Maintaining equipment only after it breaks can mean unexpected downtime, emergencies, rush charges, overtime, and replacement of expensive parts.
The best pump reliability strategy is not either preventive or predictive maintenance, it’s a combination of the two, strategically applied. In this post, we’ll discuss the differences between predictive and preventive maintenance and when it’s best to use them.
Many operators rely heavily on “reactive” maintenance rather than preventing and planning for future repairs. As discussed in our eBook, 36 Ways to Kill Your Pump, “reactive” maintenance accounts for unplanned equipment downtime and increased costs.
Preventive and predictive maintenance programs extend the overall life of the equipment and result in fewer unplanned breakdowns. The choice is not one or the other, it’s a combination of the two.
Preventative maintenance is any variety of scheduled maintenance to a pump or other piece of equipment. Generally, it includes scheduled routine maintenance, such as equipment calibration, greasing, oil change, and analysis.
One of the biggest ways to prevent failures is to make sure your equipment is properly aligned and balanced. Misalignment and pump unbalance are the two most common reliability problems for rotating equipment. Laser alignment also fits within this category since its a service completed upon installation, setting the pump up for success.
These programs are designed to keep your maintenance costs low by preventing costly failures before they happen. If you need a preventative maintenance checklist, you can download one here.
Up to 50% of damage to rotating machinery is directly related to misalignment. Misalignment can cause increased vibration, premature seal and bearing failure, and increased power consumption. An unbalanced pump causes similar issues, such as vibration, which can be easily avoided with the right preventative maintenance measures.
Predictive maintenance services are used to monitor the condition of equipment over time. Vibration analysis, for example, measures the vibration of the equipment while it is still in service. This allows the technician to see the change in vibrations over time to predict when a problem may occur, and why.
Predictive maintenance should be part of routine maintenance for pumps and rotating equipment that absolutely can NOT go down. Operators and maintenance managers get a glimpse into the future life of the pump as it"s running today. This allows them to plan for repairs and avoid unexpected downtime.
Not all pumps are equally important in a manufacturing process, so not all pumps should receive the same maintenance plan. It wouldn’t make sense to spend time and money on vibration analysis for a pump in a non-essential application.
Before creating a maintenance plan, place the pumps into categories. This will help determine how much time and money to invest in each one. Use these categories to get started:
Regularly maintaining pumps will extend the life of your pump. When a pump is properly maintained, the parts that need replacing are usually the less expensive wear parts.
Check shaft alignment – believe it or not, shaft alignment can change! Thermal growth and machine movement due to load shifts can cause pumps to move out of alignment.
Up to 50% of damage to rotating machinery is directly related to misalignment. That’s huge. Machine vibration, bearing damage, premature seal wear, and coupling damage are all examples of issues pumps experience when misaligned.
For the most accurate alignment, we always recommend laser alignment. It’s the most accurate method available (to .0001), and once familiar, an operator can align a pump/motor very quickly. It is the most expensive method to get into if doing alignments in-house and can be difficult to learn at first. But when looking for long-term results, the laser align method is the better choice.
Precision rebuild or precision maintenance is the practice of rebuilding a pump as close to OEM specifications as possible. Attention to detail is required for precision rebuilds.
Precision rebuilds are proven to reduce failures and should be a central piece of a pump reliability strategy. If the team lacks capacity, tools, or expertise to rebuild pumps to OEM standards, look for a capable local shop.
Add taps with isolating ball valves into piping on the suction and discharge sides of the pump. Use these to mount pressure indicators to ensure the pump is performing properly.
Read the pump manual and follow each step in the procedure. The procedures therein give the best possible instruction for long and trouble-free life for the pump.
Upon start-up, record the pump performance baseline data – amps, suction pressure, discharge pressure. This is handy when troubleshooting issues, should they arise.
Vibration monitoring is a very helpful tool for predicting pump failures. Some manufacturing facilities have a vibration technician on staff to take readings on critical pumps. These technicians may read the results themselves or send them to a firm that can interpret the readings and provide a report.
Unfortunately, this is not a skill easily attained by a maintenance team. It requires expensive equipment and a great deal of training to be an effective vibration technician. Unless the facility has a large population of critical equipment, this is a service best hired out.
Arguably the most important piece of a preventative/predictive maintenance plan... The TRAINING! Training isn’t just for the maintenance team, it’s for everyone in contact with pumps, operators especially! Failure prevention is everyone’s responsibility.
The maintenance team is the keeper and protector of equipment in the facility. Train operators on the signs of failure so they can report it quickly. Show them how to properly start-up or shut down a pump and how their actions will affect other parts of the system.
If all these steps were do-able by a maintenance team alone, everyone’s reliability goals would be already met. Some of the steps we’ve laid out require specialized training, tools, or specialized training on tools to make them effective. It’s likely the team doesn’t possess all these as they’re expected to know how to fix every machine in the plant. Hire outside help where it makes sense.
Look to a preventative maintenance program and predictive maintenance measures to save on annual maintenance costs and unscheduled downtime. We recommend working with your local equipment supplier to schedule a preventative or predictive maintenance program for your pumps.
Need more information about our preventative and predictive maintenance services? We are happy to help businesses in Wisconsin and upper Michigan. Got a noisy, underperforming pump? Consider our FREE Bad Actor Pump Assessment!
Before we dive into our recommended centrifugal pump maintenance schedule, let make sure you a good grasp of how the pump itself works. In its simplest form, a centrifugal pump is made from a housing with an inlet and outlet. There is an impeller that is located inside the housing, and a motor or drive that is responsible for rotating the impeller. The pumps casing (outer shell) is designed to create a gradually widening channel which is known as the volute. When the motor (or drive) rotates the impeller it is creating centrifugal force.
● On the other side, the volute causes the fluid to slow down and the pressure inside the pump’s housing begins to increase. This increase in pressure forces the liquid out the discharge (outlet) of the pump and then on to the piping systems of the process.
Casing (Volute)– As we learned earlier, this acts as a pressure containment vessel. It directs the flow of liquid in and out of the centrifugal pump. It slows down the speed of the fluid while increasing the pressure within the casing.
A routine centrifugal pump maintenance program not only extends the life of your system, but also reduces operating costs. Consistent maintenance also ensures there is enough maintenance history recorded to identify the source of the problem faster.
Maintenance Programs for centrifugal pumps can be grouped into three categories: routine, quarterly, and annual maintenance. Routine maintenance is the process of setting a schedule to inspect, log, and repair components. This focuses on components that are leading indicator of potential failure.
○ During downtime, inspect the pump’s packing to make sure there is adequate lubrication. If the packing looks compressed and dry, replace the packing and add lubricant per the operation manual.
○ Imminent pump failure can be detected by monitoring overall pump vibration. Excessive vibration can result from a change in pump alignment, bearing failures, cavitation, and obstructions in the suction and discharge lines.
○ The difference in pressure read by the suction and discharge gauges will provide the total developed head pressure of the pump. Confirm this reading is within the pump’s designed performance. You can find this on the manufactured website or your operation manuals.
For oil-lubricated pumps, as a rule of thumb, you should change the oil after the first 200 hours of operation for a new pump. Then again after every three months or 2,000 operating hours, whichever comes first. Your operation manual will have specific instructions for oil change intervals and oil grade.
For grease-lubricated pumps, as a rule of thumb bearings should be greased every three months or 2,000 operating hours, whichever comes first. Your operation manual should have specific instructions for grease intervals and grease grade to be used.
Keep a log of your pump’s performance at least once per year.Performance benchmarks should be established early on in the life of the pump. At a minimum, the benchmarking data should include head pressure, flow rate, motor amp draw, and vibration at each bearing.
Shaft And Sleeve– inspect for grooves or pitting. Check bearing fits and shaft runout, and replace the shaft and sleeve if worn or if the shaft runout is greater than 0.002 inches.
Casing– inspect for signs of wear, corrosion or pitting. If wear exceeds a depth of 1/8-inch, the casing should be replaced. Check gasket surfaces for signs of irregularities.
Impeller– inspect the impeller for wear, erosion or corrosion damage. If the vanes are bent or show wear in excess of 1/8-inch deep, replace the impeller.
Seal Chamber/Stuffing Box Cover– check for pitting, cracks, erosion or corrosion. Inspect for any wear, scoring or grooves that might be on the chamber face. Replace if worn more than 1/8-inch deep.
Uncouple from pump & overspeed turbine. Ensure that trip valve will stop turbine with steam supply valve (throttle valve) fully open. Compare tripping speed with previous records. Adjust trip mechanism & repeat procedure. Follow manufacturer’s instructions when making adjustments.
Where the process will allow it, test run the turbine coupled to the pump. When not possible, run the turbine uncoupled. With a tachometer − verify proper governor operation & control. Determine if hand (booster) valves are completely closed when required to carry load. This influences steam economy.
Even armed with these best practice centrifugal pump maintenance schedules, you may run into issues that require some extra help. That’s where we come in. Reach out to the experts at Rasmussen Mechanical Services and ensure your system is running the way it should. Call us at 1-800-237-3141, emailsales@rasmech.com,orcontact usonline.
Blackmer sliding-vane pumps stand ready to meet the needs of the rapidly growing oil and gas industry in the United States. Photo courtesy of Blackmer, a brand of PSG, a Dover company.
In some parts of North America, you can still clearly see the oil and gas pumping industry hard at work. Fly over Texas and see a checkerboard of sucker-rod “donkey” pumps, nodding in unison, pulling up millions of barrels of oil from deep beneath the surface.
At hydraulic fracturing sites, gigantic “frac” pumps dominate the landscape and shake the earth—splitting the mud, shale, and rock into bits with enormous pressure. That’s how oil corporations and service companies capture the elusive black gold buried deep inside—the material that literally fuels the multi-billion dollar oil and gas industry.
You can’t see the pumps that dive thousands of feet below the ocean’s surface from offshore rigs, and the pumps that transport the oil and gas are not visible, either. Hidden inside about 140 huge refineries throughout the U.S. there are even more pumps that keep the oil and gas industry functioning. It is up to the experienced maintenance professionals to make sure all of these pumps are hard at work every second of every day.
The massive oil and gas industry relies on a wide variety of pumps to perform every stage of the process—including upstream, midstream, and downstream functions. According to The Freedonia Group, Cleveland, the United States demand for oil and gas infrastructure equipment is forecast to hit $12.1 billion through 2016, which makes this a market that is vitally dependent on equipment that runs efficiently.
Different pumps present different obstacles, especially within a market as diverse as oil and gas. Mark Dufrene is the general manager for Pump & Process Technologies, a division of CastleOak LLC in Longview, TX—a distributor of Blackmer, Pentair, EnviroGear, Aurora, Fairbanks, Myers, and other centrifugal, rotary-gear, positive-displacement, and reciprocating pump brands for oil and gas applications. Each pump for each application must be treated differently.
According to Dufrene, a 27-year veteran of the pump industry, “There is a tendency to treat centrifugal and positive-displacement pumps the same. Some people use a control system on centrifugal pumps and just throttle back on the valve to control the flow. You can’t do this with a positive-displacement pump because, when you throttle back on the discharge valve, you create more pressure. It becomes self-defeating.”
One of the biggest problems contributing to excessive pump maintenance in the oil and gas space involves having a pump that is improperly sized or misaligned, Dufrene said. “People sometimes think bigger is better, but this is not always the case,” he said. “This can be a system issue.”
Advancements in technology, such as variable-frequency drives (VFDs), have contributed greatly to the longevity of most oil and gas pumps and have helped keep the maintenance manageable. A VFD is a type of adjustable-speed drive used in electro-mechanical drive systems to control AC motor speed and torque by varying motor input frequency and voltage.
VFDs can optimize impeller diameter, which slows down the equipment and gives it longer life and less wear. “Instead of running the equipment at 1,800 rpm, with a maximum impeller diameter it can run at 1,400 rpm,” Dufrene explained. “This doesn’t sound like much, but it makes a big difference. It can extend the life of the pump and prevent it from running dry and cavitating. VFDs and other PLC controls can help to eliminate some of the misapplied and improperly sized equipment because you can use the speed control to compensate for errors made in pump selection.”
Changes are inevitable, and each change presents new maintenance concerns. “Every day is different,” Dufrene said. “If a guy has a mission to pump liquid from Point A to Point B, that is pretty simple—but it is not reality. When you dive into someone’s process and discover they want to pump from Point A to Point B to Point S to Point Z, it becomes more complicated. Every time they make a change, the system curve changes. Therefore, the pump curves change, but they may be using a fixed-speed piece of equipment to do all of the applications. This is not realistic, and it leads to problems. The pump does not always operate at the one design point. This is a dynamic system as opposed to a static system.”
A Griswold 811 series pump installed in a Lease Asset Custody Transfer (LACT) unit located in the Eagle Ford play in Texas. A LACT unit automatically measures, samples, and transfers the oil from a lease location in the oilfield into a pipeline. Photo courtesy of Griswold, a brand of PSG, a Dover company.
Odessa Pumps, a DistributionNOW Company, has been providing equipment to the oil and gas market for more than 30 years with a full range of applications, including chemical injection and high-pressure injection pumps. Joe Lewallen, Jr. is the general manager of Applied Pumping Solutions for Odessa Pumps’ Irving, TX operation, and Brian Verdehem is director of sales. They describe their five most common maintenance problems and solutions for oil and gas pumping applications.
Improperly sized and installed equipment. “It’s a fact that the majority of centrifugal pumps installed today are oversized.” Verdehem said.Pumps are often oversized for an application then operated in an unstable region of the centrifugal pump performance curve. “Operating in these unstable regions of the pump curve can result in lower mean time between repair (MTBR) on the seal and bearings, as well as the turned and cast components,” Verdehem said. “This is especially prevalent in pumps with higher suction specific speeds (>11,000 Nss), where the stability window on the curve is less forgiving. These factors can often be avoided by properly sizing the pump and configuring the pump package with a VFD. Operating in variable speed can ‘right size’ the pump performance curve to the current system variables. Having a pump supplier who knows pump hydraulics and who can evaluate the system head variables is essential to implanting a successful VFD system into a pump installation.”
Contamination of lubrication leads to bearing failure. Bearing failure is the biggest cause of maintenance issues in pumping applications. Proper lubrication of the bearing is the simplest way to avoid it. “Changing and maintaining an optimal environment for the lubrication fluid by investing in labyrinth or magnetic type bearing isolators, can provide great benefits on extending the machine life on oil-sump designs, and avoiding unexpected failures. Investments in oil-mist systems are often an efficient way of lubricating multiple pump assets within a consolidated production or process unit,” Verdehem said.
Improper mechanical-seal selection results in premature seal failure. Centrifugal pump units in the oil and gas sector also require an extensive knowledge of mechanical seals. “New sealing technology and proper material selection leads to longer operation before service is required,” Lewallen said. “Many customers and equipment providers omit this important part of pump application. Misapplication of the seal design is one of the most common areas of centrifugal pump failure, and once the seal fails, that can lead to loss of product, environmental contamination, and other maintenance issues.”
Incorrect material selection on pump material and gasket/elastomers, resulting in premature failure. “Liquid compatibility with the gaskets and elastomers in a pump’s construction are often overlooked by customers and inexperienced pump suppliers,” Verdehem said. Taking the extra time to ensure that your metallic and non-metallic pump components are compatible with the liquid during the pump-proposal stage, can help decrease the onset of premature and costly downtime. There are plenty of publications and compatibility charts available online for use in confirming compatibility on metallic and polymer based components. An experienced pump supplier will take a conservative approach on material selection if they have full transparency on the customer’s liquid properties and process conditions. It’s important that customers provide the pump supplier with this information at time of quote request.
Preventive maintenance in oil and gas pumping applications is much the same as in other industries, Lewallen said. “On larger horsepower equipment a baseline vibration reading is taken when the equipment is commissioned. Our technicians provide a PM service for many of our customers. With an initial vibration reading by our technicians, subsequent readings can identify a problem early.”
“Shaft alignment to the manufacturer’s specification is also crucial,” Lewallen said. “The proper use of shaft sealing technology is another important factor for equipment reliabilit