safety factor for wire rope slings brands

Have you wondered why rigging experts always suggest a sling that has a significantly higher breaking strength than the actual weight of the load you are lifting? The manufacturers know that the rigging used in overhead applications need to have room for error. This is known as the Safety Factor.

Northern Strands manufactures wire rope slings rated up to 36,000 lbs and sells round synthetic slings that are rated up to 140,000 lb capacity. This capacity is the Working Load Limit of the sling, which is the maximum amount of weight or force that the sling"s user is allowed to put on the sling. Note: These slings do not break at the working load limit. These slings are designed with a safety factor of 5:1. This means that 5 times as much force as the working load limit has to be applied to the sling before it potentially fails. This means the wire rope slings have a Breaking Strength of up to 180,000 lbs and the round synthetic slings can withhold up to 700,000 lbs.

Wear - Working load limits are based on slings in brand new condition and a safety factor can help account for normal wear and tear until it is deemed unfit for further use.

Uneven loading - Slings are made up of either wires or fibers that must all share the weight of the load evenly. If any situation arises where the sling is bent or wrapped around an object, there is potential that some of the wires or fibers will be taking on a greater share of the load than others.

Visit Northern Strands website to use the sling tension calculator. The Northern Strands Sling Calculator has been designed to assist you in selecting slings with enough load carrying capacity for your lifting applications. It is your responsibility to assure that the slings you use are appropriate for your application. http://www.northernstrands.com/sling-calculator.aspx

safety factor for wire rope slings brands

Wire rope is often used in slings because of its strength, durability, abrasion resistance and ability to conform to the shape of the loads on which it is used. In addition, wire rope slings are able to lift hot materials.

Wire rope used in slings can be made of ropes with either Independent Wire Rope Core (IWRC) or a fiber-core. It should be noted that a sling manufactured with a fiber-core is usually more flexible but is less resistant to environmental damage. Conversely, a core that is made of a wire rope strand tends to have greater strength and is more resistant to heat damage.

Wire rope may be manufactured using different rope lays. The lay of a wire rope describes the direction the wires and strands are twisted during the construction of the rope. Most wire rope is right lay, regular lay. This type of rope has the widest range of applications. Wire rope slings may be made of other wire rope lays at the recommendation of the sling manufacturer or a qualified person.

Wire rope slings are made from various grades of wire rope, but the most common grades in use are Extra Improved Plow Steel (EIPS) and Extra Extra Improved Plow Steel (EEIPS). These wire ropes are manufactured and tested in accordance with ASTM guidelines. If other grades of wire rope are used, use them in accordance with the manufacturer"s recommendations and guidance.

When selecting a wire rope sling to give the best service, consider four characteristics: strength, ability to bend without distortion, ability to withstand abrasive wear, and ability to withstand abuse.

Rated loads (capacities) for single-leg vertical, choker, basket hitches, and two-, three-, and four-leg bridle slings for specific grades of wire rope slings are as shown in Tables 7 through 15.

Rated loads for a sling in a choker hitch are the values shown in Table 7, 9, 11, 13, 14, or 15, provided that the angle of the choke is 120 degrees or more (Fig. 2). Use the values in Fig. 2 or those from the sling manufacturer or a qualified person for angles of choke less than 120 degrees.

Ensure that slings made of rope with 6×19 and 6x37 classifications and cable slings have a minimum clear length of rope 10 times the component rope diameter between splices, sleeves, or end fittings unless approved by a qualified person,

Ensure that braided slings have a minimum clear length of rope 40 times the component rope diameter between the loops or end fittings unless approved by a qualified person,

Ensure that grommets and endless slings have a minimum circumferential length of 96 times the body diameter of the grommet or endless sling unless approved by a qualified person, and

Perform welding of handles or other accessories to end attachments, except covers to thimbles, before assembly of the sling. Ensure that welded end attachments are proof tested by the manufacturer or a qualified person. Retain the certificates of proof test and make them available for examination.

Do not use wire rope clips to fabricate wire rope slings, except where the application precludes the use of prefabricated slings and where the sling is designed for the specific application by a qualified person,

Use damaged slings only after they are repaired, reconditioned, and proof tested by the sling manufacturer or a qualified person using the following criteria:

Ensure that wire rope slings have suitable characteristics for the type of load, hitch, and environment in which they will be used and that they are not used with loads in excess of the rated load capacities described in the appropriate tables. When D/d ratios (Fig. 4) are smaller than those listed in the tables, consult the sling manufacturer. Follow other safe operating practices, including:

Ensure that multiple-leg slings are selected according to Tables 7 through 15 when used at the specific angles given in the tables. Ensure that operations at other angles are limited to the rated load of the next lower angle given in the tables or calculated by a qualified person,

When D/d ratios (see Fig. 6) smaller than those cited in the tables are necessary, ensure that the rated load of the sling is decreased. Consult the sling manufacturer for specific data or refer to the WRTB (Wire Rope Technical Board) Wire Rope Sling Users Manual, and

Ensure that the load applied to the hook is centered in the base (bowl) of the hook to prevent point loading on the hook, unless the hook is designed for point loading,

Before initial use, ensure that all new swaged-socket, poured-socket, turnback-eye, mechanical joint grommets, and endless wire rope slings are proof tested by the sling manufacturer or a qualified person.

Permanently remove from service fiber-core wire rope slings of any grade if they are exposed to temperatures in excess of 180 degrees F (82 degrees C).

Follow the recommendations of the sling manufacturer when you use metallic-core wire rope slings of any grade at temperatures above 400 degrees F (204 degrees C) or below minus 40 degrees F (minus 40 degrees C).

safety factor for wire rope slings brands

Sling made with both loop eyes formed as in Type III, except that the loop eyes are turned to form a loop eye which is at a right angle to the plane of the sling body. This type of sling is commonly referred to as a twisted-eye sling.

Return-eye (reversed-eye) sling is formed by using multiple widths of webbing held edge-to-edge. A wear pad is attached on one or both sides of the sling body and on one or both sides of the loop eyes to form a loop eye at each end which is at a right angle to the plane of the sling body.

safety factor for wire rope slings brands

When is the last time you inspected your wire ropes? If you do not know the answer to this question, you should strongly consider changing how you value safety. Working in the material handling and lifting industry, many working hazards can damage property and harm human beings.

Wire rope slings are an essential part of rigging and lifting, and as a result, they are often found in factories, industrial sites, and warehouses. Considering the amount of use these material handling devices undergo, it is important to recognize that wear-and-tear occurs in all wire rope slings. Although they are durable, they are still subject to damage. Identifying damage (big and small) is essential to keeping your business on track and your employees safe.

It would help if you always inspected your slings the moment they arrive, or at least before using them for the first time. However, most manufacturers take extreme pride in shipping products. Many things can happen in transit. Take the time to ensure that your wire rope slings are exactly the ropes you ordered.

Always inspect the wire ropes before using them. With eyes and hands, you can take a quick pass over ropes to ensure no surface damage. Do you notice any broken wires or kinks? If you do, you should discard use the slings immediately. Any sign of damage requires immediate removal of slings from the operation.

Depending on the usage, you need to have a schedule for an in-depth inspection of your wire rope slings. Issues can arise in the core, which is difficult to notice with a simple inspection. Never use wire rope slings that you suspect are damaged.

safety factor for wire rope slings brands

Wire ropes are essential for safety purposes on construction sites and industrial workplaces. They are used to secure and transport extremely heavy pieces of equipment – so they must be strong enough to withstand substantial loads. This is why the wire rope safety factor is crucial.

You may have heard that it is always recommended to use wire ropes or slings with a higher breaking strength than the actual load. For instance, say that you need to move 50,000 lbs. with an overhead crane. You should generally use equipment with a working load limit that is rated for weight at least five times higher – or 250,000 lbs. in this case.

This recommendation is all thanks to the wire rope safety factor. This calculation is designed to help you determine important numbers, such as the minimum breaking strength and the working load limit of a wire rope.

The safety factor is a measurement of how strong of a force a wire rope can withstand before it breaks. It is commonly stated as a ratio, such as 5:1. This means that the wire rope can hold five times their Safe Work Load (SWL) before it will break.

So, if a 5:1 wire rope’s SWL is 10,000 lbs., the safety factor is 50,000 lbs. However, you would never want to place a load near 50,000 lbs. for wire rope safety reasons.

The safety factor rating of a wire rope is the calculation of the Minimum Break Strength (MBS) or the Minimum Breaking Load (MBL) compared to the highest absolute maximum load limit. It is crucial to use a wire rope with a high ratio to account for factors that could influence the weight of the load.

The Safe Working Load (SWL) is a measurement that is required by law to be clearly marked on all lifting devices – including hoists, lifting machines, and tackles. However, this is not visibly listed on wire ropes, so it is important to understand what this term means and how to calculate it.

The safe working load will change depending on the diameter of the wire rope and its weight per foot. Of course, the smaller the wire rope is, the lower its SWL will be. The SWL also changes depending on the safety factor ratio.

The margin of safety for wire ropes accounts for any unexpected extra loads to ensure the utmost safety for everyone involved. Every year there aredue to overhead crane accidents. Many of these deaths occur when a heavy load is dropped because the weight load limit was not properly calculated and the wire rope broke or slipped.

The margin of safety is a hazard control calculation that essentially accounts for worst-case scenarios. For instance, what if a strong gust of wind were to blow while a crane was lifting a load? Or what if the brakes slipped and the load dropped several feet unexpectedly? This is certainly a wire rope safety factor that must be considered.

Themargin of safety(also referred to as the factor of safety) measures the ultimate load or stress divided by theallowablestress. This helps to account for the applied tensile forces and stress thatcouldbe applied to the rope, causing it to inch closer to the breaking strength limit.

A proof test must be conducted on a wire rope or any other piece of rigging equipment before it is used for the first time.that a sample of a wire rope must be tested to ensure that it can safely hold one-fifth of the breaking load limit. The proof test ensures that the wire rope is not defective and can withstand the minimum weight load limit.

First, the wire rope and other lifting accessories (such as hooks or slings) are set up as needed for the particular task. Then weight or force is slowly added until it reaches the maximum allowable working load limit.

Some wire rope distributors will conduct proof loading tests before you purchase them. Be sure to investigate the criteria of these tests before purchasing, as some testing factors may need to be changed depending on your requirements.

When purchasing wire ropes for overhead lifting or other heavy-duty applications, understanding the safety dynamics and limits is critical. These terms can get confusing, but all of thesefactors serve an important purpose.

Our company has served as a wire rope distributor and industrial hardware supplier for many years. We know all there is to know about safety factors. We will help you find the exact wire ropes that will meet your requirements, no matter what project you have in mind.

safety factor for wire rope slings brands

One of the biggest causes of injuries and fatalities in the lifting and rigging industry is accidents caused by falls. As heavy objects are being lifted, sometimes the lifting sling can fail and lead to potential catastrophes. To prevent these situations, it is critical that you must use the correct types of lifting slings for your lifting jobs. Read 3 factors you should consider when choosing the right lifting sling, and learn the different types of slings we carry at US Cargo Control.

The other thing that you should note is the fragility of the load you are lifting. The goal is to not only lift an object but protect the object from getting damaged in the lifting process. For lifting heavy objects or objects made of hard metals, we recommend using chain slings to perform the job.

Saw random numbers on your load-bearing equipment and didn’t know what they meant? Read what Working Load Limit, Breaking Strength, and Safety Factor mean.

When you’re looking at the object you will be lifting, observe the object’s shape and design to tell you where the center of gravity is. You do not want to miss the center of the load before you begin to lift because you can potentially thrust the load and cause damage. If you’re lifting irregularly-shaped loads, consider using nylon slings as these have great flexibility and strength.

You’re going to lift objects that have sharp edges. Although nylon slings work best for loads needed for flexibility, the fabric will not perform well because it will be fighting against sharp edges. They will cause ripping to the sling, and this will likely result in the object falling and getting damaged.

If you’re having to lift objects with sharp edges, we recommend using chain slings or wire rope slings. We also carry corner protectors that can cover the edges of the object and protect your slings and chains.

Now that you know the three critical factors to consider when choosing a sling, you need to learn the many different types of slings there are. This will help you identify which sling is worth the investment for your lifting situations.

Known as synthetic web slings or nylon web slings, our nylon lifting straps perform well for lifting breakable, delicate objects. Its heavy-duty synthetic material has great stretch and flexibility that help the slings mold to the shape of the load. Not only that, the nylon lifting sling’s material is treated to improve abrasion resistance and reduce wear, even in the most rigorous lifting applications.

They are lightweight, easy to handle, and offer a wider body with more stretch than a polyester sling. Its attributes make synthetic slings a popular choice for rigging purposes and are essential to have around, but they should not be used in extreme or rugged conditions. Nylon rigging straps will wear down more quickly than other types of slings if you go against its limits!

If you’re depending on a sling that requires extra strength and durability, the chain sling is your best choice. The chain lifting sling is the strongest and most durable type of sling and is highly popular to use for heavy lifting operations. They will perform better than polyester round slings or nylon slings because they’re more durable, tolerant to hot temperatures, and cut-resistant. When we say chain slings are tolerant to hot temperatures, this means they are useful for lifts in extremely hot temperatures or to secure extremely hot objects.

We offer three trusted brands of lifting chain slings, Crosby, KWB, and Pewag. We offer chain slings from these brands because we want you to have the highest-quality slings that will perform the lifting job successfully. We sell these in two types, standard and adjustable, and we also offer custom options if needed.

Polyester slings can be confused with nylon slings due to their material that is also made of a web-like fabric. The difference is that while nylon slings stretch easily, polyester round slings have a little stretch to them. These are useful to have for lifting operations where strength is needed, but not a lot of stretch needed.

Manufactured in the USA from a continuous loop of polyester yarn that creates exceptional strength, the round slings are versatile, pliable, convenient, and cost-effective. Because of their many benefits, you can use these in vertical, choker, or basket hitches, making them effective to lift a wide variety of cargo!

Known as steel cable or wire sling, these are more durable than synthetic slings and more cost-effective than chain slings. Wire rope slings are an excellent choice not only for lifting, but also for hoisting, towing, or anchoring loads. Its fabrication offers abrasion-resistance and heat-resistance, as they are made by weaving individual strands or wire around a core.

Wire rope slings are favorable by riggers as they can come in a wide variety of materials, diameters, and configurations. Each steel wire rope configuration will offer different benefits and are suited to certain applications. For example, a smaller number of large outer wires offers better wear and corrosion resistance, while a larger number will provide better flexibility and fatigue-resistance.

Contact our sales team today at 866-444-9990. Our team of product experts is here to answer any questions about rigging hardware, lifting slings, and more.

safety factor for wire rope slings brands

Examine slings for wear, fatigue, crushed or broken wires, kinking, ballooning or "bird-caging", heat damage, etc. Check both before and after using slings to detect any damage or defects. See Hoist wire rope for more inspection tips.

safety factor for wire rope slings brands

The LKING STEEL LIMITED 6 x 37 IWRC (independent wire rope core) single-leg wire rope sling has eye-and-eye endings and a mechanical splice for lifting loads with vertical, choker, or basket configurations in general industry applications. The 6 x 37 IWRC construction contains six strands of wire rope with approximately 37 wires per strand wrapped around a separate 7 X 7 wire rope, which has seven strands with seven wires per strand, in the center of the sling. This construction provides more flexibility than a 6 x 7 or 6 x 19 wire rope sling. The wire rope construction has more abrasion and heat resistance than a web sling. This eye-and-eye sling has an eye, or loop, on both ends, and can be used with vertical, choker, and basket lifting configurations. The eyes are secured with a mechanical (also called Flemish) splice that is stronger than a hand splice. This sling has a minimum D/d ratio of 25 and meets American Society of Mechanical Engineers (ASME) specification B30.9 and Occupational Safety and Health Administration (OSHA) specification 1910.184.

Slings are used to lift heavy objects for industrial applications. Types of slings include web slings, wire rope slings, chain slings, and mesh slings. The appropriate type of sling for an application depends on the strength-to-weight ratio, flexibility and resistance to bending, resistance to abrasion and cutting, resistance to crushing, resistance to stretching, and resistance to high temperatures and other environmental stressors. Slings have one, two, three, or four legs; or a continuous loop of webbing or wire rope. Legs are support branches that extend from a single point at the top of the sling to the item being lifted so the weight of the load is distributed evenly among the branches. Slings have eyes (loops) or alloy steel fittings on the ends.

A vertical lifting configuration connects a crane hook directly to a load with a single, vertical sling, usually by means of a hook. In a choker configuration, the sling wraps entirely around the load, and one loop passes through the other to form a slip noose, or choker. In a basket configuration, the sling passes under the load and both ends of the sling connect to the crane hook. Load capacity is the maximum weight to be lifted in a vertical configuration. The capacity in a choker configuration is approximately equal to the vertical capacity times 0.8. The capacity in a basket configuration, with sling ends at a 90-degree angle, is approximately equal to twice the vertical capacity. Load capacity in a basket configuration decreases if the angle of the sling is less than 90 degrees. For example, a sling with a capacity of 2,000 lb. in a vertical configuration will have an approximate capacity of (2,000)(0.8)=1,600 lb. in a choker configuration and an approximate capacity of (2,000)(2)=4,000 lb. in a basket configuration, if the sling ends are at a 90-degree angle to the load. A wire rope sling"s capacity in a basket configuration applies only when the configuration meets the sling"s minimum D/d ratio, which is the ratio of the diameter of the rope"s curve around the load (D) to the diameter of the sling (d). If the minimum D/d ratio is not met, the capacity of the sling is decreased.

LKING STEEL LIMITED Lifting Technologies manufactures lifting solutions including slings, cranes, and hoists. Founded in 1967, the company is headquartered in Shanghai, China.

B) if the 2legswire rope sling, the hanging points should be on both sides of the goods and the hooks are above the center of gravity of the suspended objects.

C) if it is three legs or four legs wire rope sling, the hanger must be proportioned on the plane around the cargo and the hook is located directly above the center of gravity of the suspended object.

safety factor for wire rope slings brands

Are you planning your next overhead lifting project and unsure about the best type of lifting sling to use? Or, maybe you’re not getting the service life you would expect out of the slings that you’re currently using? Alloy chain slings, wire rope slings, synthetic slings, and metal mesh slings can all be used to safely and efficiently lift, move, and position a load.

At Mazzella, we provide ideal lifting solutions—offering all styles of lifting slings, rigging hardware, wire rope, overhead cranes and hoists, and engineered lifting devices. Our goal for this article is to help you understand the basics of overhead lifting slings and provide you with the advantages and disadvantages of each type so you can make an informed decision and select the best lifting sling for your particular application.

Wire rope is a preferred lifting device for many reasons. Its unique design consists of multiple steel wires that form individual strands laid in a helical pattern around a fiber or steel core. This structure provides strength, flexibility, and the ability to handle bending stresses.

Wire rope slings are popular in construction, automotive, oil and gas, and general manufacturing industries where a variety of heavy loads and rugged conditions exist. They’re also very popular in steel mills and forging facilities where the durability of the rope is really put to the test.

Different configurations of the material, wire, and strand structure will provide different benefits for the specific lifting application—including abrasion resistance, strength, flexibility, and fatigue resistance. Wire rope slings have a lower initial cost than alloy chain, while remaining fairly lightweight in design.

Wire rope slings are available in single-leg or multi-leg assemblies and can be used in a variety of hitches including vertical, choker, and basket hitches. The Design Factor for wire rope slings is a 5:1 ratio, meaning the breaking strength of the sling is five times higher than the rated Working Load Limit (W.L.L). Per the Wire Rope Users Manual, a design factor is necessary to allow for conditions such as wear, abrasion, damage, and variations in loads which are not readily apparent. Although wire rope slings have a design factor, the user should never exceed the rated Working Load Limit.

When it comes to toughness and dependability—alloy chain slings are the bulldogs of lifting slings. Chain slings can be used to lift very heavy and bulky loads on a regular or repetitive basis. Their flexible design provides strength and durability so they can withstand impact, extreme temperatures, and exposure to chemicals and UV rays.

Chain slings are preferred in high-temperature applications and for lifting heavy-duty loads. Their strength and durability allow them to be used in foundries, steel mills, heavy machine shops, and any other environment where repetitive lifts or harsh conditions would damage or destroy a wire rope sling or synthetic nylon or polyester sling. If any damage does occur on a chain sling, they are completely repairable and can be load tested-and re-certified after the repair.

Alloy chain slings can be heated up to temperatures of 1000°F, however the Working Load Limit must be reduced in accordance with the manufacturer’s recommendations when continually exposed to temperatures above 400°F.

Chain slings can be configured in single-leg, 2-leg, 3-leg, and 4-leg designs. They can be configured for use in vertical, choker, or basket hitches and a variety of different sling hooks, lengths of chain, and master links can be used to create different sling assemblies for different applications.

While there are many different types of chain, alloy steel grades 63, 80, and 100 are normally recommended for overhead lifting. In some applications, chain slings made of material other than alloy steel may be used. These applications involve a corrosive or high-temperature environment. The chain material in these unique applications is often stainless steel or some other special material chain. If non-alloy chain is used for lifting, we recommend that the user document the reason for using chain other than alloy, and also follow all appropriate chain sling standards including sling identification and inspection.

The Design Factor for chain slings is a 4:1 ratio, meaning the breaking strength of the sling is four times higher than the rated Working Load Limit. Although chain slings have a design factor, the user should never exceed the rated Working Load Limit.

For highly finished parts or delicate equipment, nothing beats the flexibility, strength, and support that synthetic lifting slings can provide. Synthetic slings can be made from nylon or polyester materials and are lightweight, easy to rig, and extremely flexible. They’re extremely popular in construction and other general industries because they’re fairly inexpensive, come in a variety of standard sizes, and can be replaced easily.

Because they’re so flexible, they can mold to the shape of delicate and irregularly-shaped loads, or be used in a choker hitch to securely grip loads of round bar stock or tubes. The soft materials they’re made from are strong enough to lift heavy loads, but will protect expensive and delicate loads from scratches and crushing. Synthetic slings are extremely versatile, can be used in vertical, choker, and basket hitches and have a Design Factor of 5:1, meaning the breaking strength of the sling is five times higher than the rated Working Load Limit.

In most cases, synthetic slings cannot be repaired, so any evidence of damage is cause for removal from service. Best practice is to destroy and dispose of damaged synthetic slings to prevent further use.

Disadvantages of Using Synthetic SlingsSynthetic slings have a relatively low heat-resistance and are not recommended for use in high-heat applications

Special considerations must be made when selecting a synthetic sling to be used in chemical applications. Nylon and polyester slings have different resistance characteristics to acidic and alkaline environments.

Synthetic slings are not as durable as steel slings when it comes to abrasion and cut resistance. Corner protectors or edge guards should be used to protect against cuts and tears.

Web slings are flat belt straps made of webbing material and most commonly feature fittings, or flat or twisted eyes, on each end. Web slings are the most versatile and widely-used multi-purpose sling. They’re strong, easy to rig, and inexpensive. Compared to alloy chain slings, they’re more flexible and lighter and can be used to help reduce scratching and denting to loads. They can also be fabricated with wide load-bearing surfaces up to 48” to provide significant surface contact for heavy and large loads.

Nylon web sling performance isn’t affected by oil and grease, and they’re resistant to alkaline-based chemicals. However, they should never be used in acidic atmospheres or near chemicals used as bleaching agents. Polyester web slings can be used in acidic environments or near chemicals used as bleaching agents, but should never be used in alkaline environments.

They also have a relatively low heat-resistance and are not to be used in environments that exceed 194°F, or environments where temperatures are below -40°F. For loads with sharp edges, corner protectors or edge guards should be used to protect the sling from cuts and tears. Because there is a difference between abrasion-resistant protection and cut-resistant protection, be sure to identify the type of resistance required for your application.

Endless roundslings have load-bearing fiber or core yarns that are protected by a woven outer jacket. They are strong, soft and flexible, and protect smooth or polished surfaces from scratches, dents, and crushing. Roundslings can be used in vertical, basket, or choker hitches—which are especially useful for lifting tubes and pipes.

The woven outer jacket is designed to protect the internal load-bearing fibers and core yarns against abrasion, dirt and grease, and UV degradation. Polyester roundslings are suitable for acidic environments, or near chemicals used as bleaching agents, but should not be used in alkaline environments.

Like web slings, roundslings are more susceptible to heat damage and should not be used in environments that exceed 194°F or below -40°F. For loads with sharp edges, corner protectors or edge guards should be used to protect the sling from cuts and tears.

A number of high-performance and lightweight roundslings are available for industrial and heavy lifting applications—including steel, energy, automotive, and manufacturing. Twin-Path® roundslings have the precision and flexibility to perform heavy lifting jobs quickly and safely and only weigh 10% of the total weight of a comparable steel sling. High-performance roundslings come in standard vertical lifting capacities up to 500,000 lbs., and can also be special-ordered to handle larger capacities. These slings have less than 1% stretch at rated capacity.

Unlike standard roundslings, Twin-Path® roundslings utilize two paths of K-Spec®load-bearing fibers. The Twin-Path® patented design provides the rigger with two connections between the hook and the load for redundant back-up protection. They also feature other technologies like a Check-Fast® inspection system and an External Warning Indicator (EWI) that can provide visual indications of overloading, UV damage and degradation, or damage to the internal core fibers.

Twin-Path® slings are susceptible to cuts and tears to the jacket when used to support loads with sharp corners or edges. The specially-designed Covermax® Cover provides the best ultraviolet (UV) protection and the best abrasion protection of any commercially available synthetic lifting sling. CornerMax® Pads and CornerMax® sleeves are extremely cut resistant and can be used to protect the Twin-Path® slings in applications where cutting is a concern. If the outer jacket is cut or torn, and the load bearing fibers are not cut, Twin-Path® slings are repairable by applying a patch and proof-testing the sling after the repair is performed.

Standard Twin-Path® slings are also susceptible to heat damage, and should not be used in high heat environments above 180°F. Specially-designed slings are available with high-temperature core yarns and a high temperature cover that is resistant to temperatures up to 300°F.

Although synthetic rope slings have been in use for over sixty years, the advancement of high-performance fibers has recently improved the perception of using rope slings for overhead lifting applications. These high-performance fibers are characterized by their light weight, strength, flexibility, and versatility. Not only are they becoming more widely-accepted, but are preferred in certain lifting applications in the construction, shipyard, and offshore and deepwater industries. Because there are various types of synthetic rope material, it’s critical to know the specific fiber that a rope is made from to help understand its environmental characteristics.

Diameter to diameter, a synthetic rope sling is approximately 1/8 the weight of a steel wire rope sling with similar specifications, and compared to chain slings, they offer even more significant weight-savings.

Another major benefit of synthetic rope slings, is that if a break or failure occurs, there is no whipping motion of the sling or projectiles that could injure nearby workers. When a steel rope or chain breaks, the reaction is often violent and explosive and can potentially injure workers or damage nearby equipment.

Synthetic rope slings are more prone to damage from abrasion or cutting when lifting loads with sharp corners or edges. Additional edge protection and abrasion protection is available, but can add significant costs to the slings to try and equal the durability and resistance that more traditional steel slings offer.

Depending on the type of fiber, some newer technology synthetic ropes can be used outdoors in harsh elements (UV exposure, rain, snow, freezing temperatures), in chemically-active environments, and are neutrally-buoyant so they can be used in freshwater or saltwater environments. Consult the sling manufacturer or a Qualified person to confirm how a specific sling material may react to sunlight, UV, or chemicals.

Disadvantages of Using Synthetic Rope SlingsSynthetic rope is not as durable as steel slings in that they will experience cutting, fraying, and abrasion if used to lift loads with sharp edges

Some synthetic rope sling material may be susceptible to chemically active environments or exposure to sunlight or UV light. Consult the sling manufacturer or a Qualified person to confirm how a specific sling material may react to sunlight, UV, or chemicals.

Metal mesh slings are made from high-tensile carbon, alloy, or stainless steel wire mesh and are used primarily in metalworking and other industries where the loads can be hot, abrasive, or have the tendency to cut through softer synthetic slings. They’re resistant to corrosion and they’re designed to last in demanding and rugged operating environments.

Metal mesh slings are flexible and have a wide bearing surface that can be used to firmly grip an irregular load without extensive stretching and can be used in vertical, basket, or choker hitches. They’re extremely resistant to abrasion and cutting, however if there is evidence of even one broken wire in the sling, the entire sling needs to be removed from service. The Design Factor for wire rope slings is a 5:1 ratio, meaning the breaking strength of the sling is five times higher than the rated Working Load Limit. Although metal mesh slings have a design factor, the user should never exceed the rated Working Load Limit.

As you can see, there are many different options when it comes to selecting the proper lifting sling for the job at hand. Many factors should be considered to ensure that the lifting sling you select will provide consistent performance over many safe and reliable lifts:Strength and rated capacity of the sling

safety factor for wire rope slings brands

The end point in a wire rope sling’s useful service life is prior to the failure of the sling. It must be removed from service when normal wear or accidental damage weakens the sling to the degree that an adequate factor of safety no longer exists.

The term “Breaking Strength” is never used with reference to slings. Slings have a “Rated Capacity” that is determined by the manufacturer. A sling should never be used to lift a load that is greater than the published “Rated Capacity” for the particular sling and for the type of hitch being used. The design factor used in the calculation of a sling’s Rated Capacity compensates for normal dynamic loading and builds useful life into the sling.

Selection of a sling to lift a load is based on selecting a sling with a Rated Capacity at least equal to the weight of the load. The sling must also be proper to allow the user to select a hitch that will conform to the shape of the load and keep it under control during the lift, The use of multiple leg slings is not recommended when the angle between any leg and the vertical is greater than 450• In any case when lifting headroom is restricted and a larger leg angle is necessary, care must be exercised in selecting a sling with a proper Rated Capacity at the leg angle which will be used. A visual inspection of the sling must be conducted before each lift to make sure the sling is in new or near new condition. A manufacturer’s Rated Capacity applies only to an undamaged sling.

Slings used in selected industries are presently covered by specific codes seffing standards for the removal of a sling from service. However, many industries are presently without standards. Safety is the prime consideration on all jobs and the user must inspect a sling before each lift, and must remove the sling from service upon observation of any of the following conditions:

Our responsibility is limited to the sling as purchased new; and the responsibility for safe operation, maintenance and use rest with the purchaser.Whenever a sling is being rigged, tensioned or used to lift a load, a potentially hazardous condition exists and extreme caution should be used by riggers and personnel in the area. In all cases, safe rigging practices must be employed.