mud pump bearings free sample
Spherical roller bearings are bearings with drum-shaped rollers assembled between the inner ring with two raceways and the outer ring with spherical raceways. Spherical roller bearings have two rows of rollers, which mainly bear radial loads, but can also bear axial loads in any direction. It has high radial load capacity, especially suitable for working under heavy load or vibration load, but cannot bear pure axial load. The outer ring raceway of this type of bearing is spherical, so its alignment performance is good and it can compensate for the coaxiality error.
Spherical roller bearings are bearings with drum-shaped rollers assembled between the inner ring with two raceways and the outer ring with spherical raceways. Spherical roller bearings have two rows of rollers, which mainly bear radial loads, but can also bear axial loads in any direction. It has high radial load capacity, especially suitable for working under heavy load or vibration load, but cannot bear pure axial load. The outer ring raceway of this type of bearing is spherical, so its alignment performance is good and it can compensate for the coaxiality error.
Spherical roller bearings are bearings with drum-shaped rollers assembled between the inner ring with two raceways and the outer ring with spherical raceways. Spherical roller bearings have two rows of rollers, which mainly bear radial loads, but can also bear axial loads in any direction. It has high radial load capacity, especially suitable for working under heavy load or vibration load, but cannot bear pure axial load. The outer ring raceway of this type of bearing is spherical, so its alignment performance is good and it can compensate for the coaxiality error.
Spherical roller bearings are bearings with drum-shaped rollers assembled between the inner ring with two raceways and the outer ring with spherical raceways. Spherical roller bearings have two rows of rollers, which mainly bear radial loads, but can also bear axial loads in any direction. It has high radial load capacity, especially suitable for working under heavy load or vibration load, but cannot bear pure axial load. The outer ring raceway of this type of bearing is spherical, so its alignment performance is good and it can compensate for the coaxiality error.
The bearings can meet the challenges of applications faced with heavy radial loads and high speeds. Accommodating axialdisplacement (except for bearings with flanges on both the inner and outer rings), they offer high stiffness, low friction andlong service life.
contaminants, water and dust, while providing lubricant retention and contaminant exclusion. This provides lower friction and longer service life. Split bearings are intended primarily for bearing arrangements which are difficult to access, such as crankshafts, where they simplify maintenance and replacements.
If you"re looking for good mud pump bearing sourcing solutions, Alibaba is the perfect place for you. Explore this assortment of mud pump bearing from popular international wholesalers. Find amazing discounts and bargain sales as well as lots of shipping options to maximize your purchase. Whatever you"re looking for, you"re likely to find it here.
Get your next order of mud pump bearing here. Just type and search the products you need and compare through a large array of products and sellers. Buy a new deep groove bearing, a single row deep groove ball bearing, a double row deep groove ball bearing, a radial deep groove ball bearing, an axial deep groove ball bearing, or a deep groove ball bearing puller. Find specific measurements like a 20x42x12mm bearing or 10x26x8mm bearings. Suitable for industrial and automotive usages and transmissions, these mud pump bearing have been made of sturdy and resistant materials so they can perform at their best for a long time. Just look at the pictures and product descriptions to see their quality! They probably won"t disappoint you. Moreover, with all the discounts and shipping options available, you"ll be able to get a great product at a budget-friendly price right at your door. Just a few clicks and you"ll get mud pump bearing shipped to you internationally.
3. OEM or Non Stand Bearings:Any requirements for Non standard bearings is Easily Fulfilled by us due to its vast knowledge and links in the industry.
7. Cost Saving: We provide long-life, shock-resistant and high reliability bearings with excellent quality and better performance. Resulting in increased cost saving.
Triplex mud pumps pump drilling mud during well operations. An example of a typical triplex mud pump 10 shown in FIG. 1A has a power assembly 12, a crosshead assembly 14, and a fluid assembly 16. Electric motors (not shown) connect to a pinion shaft 30 that drives the power assembly 12. The crosshead assembly 14 converts the rotational movement of the power assembly 12 into reciprocating movement to actuate internal pistons or plungers of the fluid assembly 16. Being triplex, the pump"s fluid assembly 16 has three internal pistons to pump the mud.
As shown in FIG. 1B, the pump"s power assembly 14 has a crankshaft 20 supported at its ends by double roller bearings 22. Positioned along its intermediate extent, the crankshaft 20 has three eccentric sheaves 24-1 . . . 24-3, and three connecting rods 40 mount onto these sheaves 24 with cylindrical roller bearings 26. These connecting rods 40 connect by extension rods (not shown) and the crosshead assembly (14) to the pistons of the pump"s fluid assembly 16.
In addition to the sheaves, the crankshaft 20 also has a bull gear 28 positioned between the second and third sheaves 24-2 and 24-3. The bull gear 28 interfaces with the pinion shaft (30) and drives the crankshaft 20"s rotation. As shown particularly in FIG. 1C, the pinion shaft 30 also mounts in the power assembly 14 with roller bearings 32 supporting its ends. When electric motors couple to the pinion shaft"s ends 34 and rotate the pinion shaft 30, a pinion gear 38 interfacing with the crankshaft"s bull gear 28 drives the crankshaft (20), thereby operating the pistons of the pump"s fluid assembly 16.
When used to pump mud, the triplex mud pump 10 produces flow that varies by approximately 23%. For example, the pump 10 produces a maximum flow level of about 106% during certain crankshaft angles and produces a minimum flow level of 83% during other crankshaft angles, resulting in a total flow variation of 23% as the pump"s pistons are moved in differing exhaust strokes during the crankshaft"s rotation. Because the total flow varies, the pump 10 tends to produce undesirable pressure changes or “noise” in the pumped mud. In turn, this noise interferes with downhole telemetry and other techniques used during measurement-while-drilling (MWD) and logging-while-drilling (LWD) operations.
In contrast to mud pumps, well-service pumps (WSP) are also used during well operations. A well service pump is used to pump fluid at higher pressures than those used to pump mud. Therefore, the well service pumps are typically used to pump high pressure fluid into a well during frac operations or the like. An example of a well-service pump 50 is shown in FIG. 2. Here, the well service pump 50 is a quintuplex well service pump, although triplex well service pumps are also used. The pump 50 has a power assembly 52, a crosshead assembly 54, and a fluid assembly 56. A gear reducer 53 on one side of the pump 50 connects a drive (not shown) to the power assembly 52 to drive the pump 50.
As shown in FIG. 3, the pump"s power assembly 52 has a crankshaft 60 with five crankpins 62 and an internal main bearing sheave 64. The crankpins 62 are offset from the crankshaft 60"s axis of rotation and convert the rotation of the crankshaft 60 in to a reciprocating motion for operating pistons (not shown) in the pump"s fluid assembly 56. Double roller bearings 66 support the crankshaft 60 at both ends of the power assembly 52, and an internal double roller bearing 68 supports the crankshaft 60 at its main bearing sheave 64. One end 61 of the crankshaft 60 extends outside the power assembly 52 for coupling to the gear reducer (53; FIG. 2) and other drive components.
As shown in FIG. 4A, connecting rods 70 connect from the crankpins 62 to pistons or plungers 80 via the crosshead assembly 54. FIG. 4B shows a typical connection of a connecting rod 70 to a crankpin 62 in the well service pump 50. As shown, a bearing cap 74 fits on one side of the crankpin 62 and couples to the profiled end of the connecting rod 70. To reduce friction, the connection uses a sleeve bearing 76 between the rod 70, bearing cap 74, and crankpin 62. From the crankpin 62, the connecting rod 70 connects to a crosshead 55 using a wrist pin 72 as shown in FIG. 4A. The wrist pin 72 allows the connecting rod 70 to pivot with respect to the crosshead 55, which in turn is connected to the plunger 80.
In use, an electric motor or an internal combustion engine (such as a diesel engine) drives the pump 50 by the gear reducer 53. As the crankshaft 60 turns, the crankpins 62 reciprocate the connecting rods 70. Moved by the rods 70, the crossheads 55 reciprocate inside fixed cylinders. In turn, the plunger 80 coupled to the crosshead 55 also reciprocates between suction and power strokes in the fluid assembly 56. Withdrawal of a plunger 80 during a suction stroke pulls fluid into the assembly 56 through the input valve 82 connected to an inlet hose or pipe (not shown). Subsequently pushed during the power stroke, the plunger 80 then forces the fluid under pressure out through the output valve 84 connected to an outlet hose or pipe (not shown).
In contrast to using a crankshaft for a quintuplex well-service pump that has crankpins 62 as discussed above, another type of quintuplex well-service pump uses eccentric sheaves on a direct drive crankshaft. FIG. 4C is an isolated view of such a crankshaft 90 having eccentric sheaves 92-1 . . . 92-5 for use in a quintuplex well-service pump. External main bearings (not shown) support the crankshaft 90 at its ends 96 in the well-service pumps housing (not shown). To drive the crankshaft 90, one end 91 extends beyond the pumps housing for coupling to drive components, such as a gear box. The crankshaft 90 has five eccentric sheaves 92-1 . . . 92-5 for coupling to connecting rods (not shown) with roller bearings. The crankshaft 90 also has two internal main bearing sheaves 94-1, 94-2 for internal main bearings used to support the crankshaft 90 in the pump"s housing.
In the past, quintuplex well-service pumps used for pumping frac fluid or the like have been substituted for mud pumps during drilling operations to pump mud. Unfortunately, the well-service pump has a shorter service life compared to the conventional triplex mud pumps, making use of the well-service pump as a mud pump less desirable in most situations. In addition, a quintuplex well-service pump produces a great deal of white noise that interferes with MWD and LWD operations, further making the pump"s use to pump mud less desirable in most situations. Furthermore, the well-service pump is configured for direct drive by a motor and gear box directly coupling on one end of the crankshaft. This direct coupling limits what drives can be used with the pump. Moreover, the direct drive to the crankshaft can produce various issues with noise, balance, wear, and other associated problems that make use of the well-service pump to pump mud less desirable.
One might expect to provide a quintuplex mud pump by extending the conventional arrangement of a triplex mud pump (e.g., as shown in FIG. 1B) to include components for two additional pistons or plungers. However, the actual design for a quintuplex mud pump is not as easy as extending the conventional arrangement, especially in light of the requirements for a mud pump"s operation such as service life, noise levels, crankshaft deflection, balance, and other considerations. As a result, acceptable implementation of a quintuplex mud pump has not been achieved in the art during the long history of mud pump design.
What is needed is an efficient mud pump that has a long service life and that produces low levels of white noise during operation so as not to interfere with MWD and LWD operations while pumping mud in a well.
A quintuplex mud pump is a continuous duty, reciprocating plunger/piston pump. The mud pump has a crankshaft supported in the pump by external main bearings and uses internal gearing and a pinion shaft to drive the crankshaft. Five eccentric sheaves and two internal main bearing sheaves are provided on the crankshaft. Each of the main bearing sheaves supports the intermediate extent of crankshaft using bearings. One main bearing sheave is disposed between the second and third eccentric sheaves, while the other main bearing sheave is disposed between the third and fourth eccentric sheaves.
One or more bull gears are also provided on the crankshaft, and the pump"s pinion shaft has one or more pinion gears that interface with the one or more bull gears. If one bull gear is used, the interface between the bull and pinion gears can use herringbone or double helical gearing of opposite hand to avoid axial thrust. If two bull gears are used, the interface between the bull and pinion gears can use helical gearing with each having opposite hand to avoid axial thrust. For example, one of two bull gears can be disposed between the first and second eccentric sheaves, while the second bull gear can be disposed between fourth and fifth eccentric sheaves. These bull gears can have opposite hand. The pump"s internal gearing allows the pump to be driven conventionally and packaged in any standard mud pump packaging arrangement. Electric motors (for example, twin motors made by GE) may be used to drive the pump, although the pump"s rated input horsepower may be a factor used to determine the type of motor.
Connecting rods connect to the eccentric sheaves and use roller bearings. During rotation of the crankshaft, these connecting rods transfer the crankshaft"s rotational movement to reciprocating motion of the pistons or plungers in the pump"s fluid assembly. As such, the quintuplex mud pump uses all roller bearings to support its crankshaft and to transfer crankshaft motion to the connecting rods. In this way, the quintuplex mud pump can reduce the white noise typically produced by conventional triplex mud pumps and well service pumps that can interfere with MWD and LWD operations.
Turning to the drawings, a quintuplex mud pump 100 shown in FIGS. 5 and 6A-6B has a power assembly 110, a crosshead assembly 150, and a fluid assembly 170. Twin drives (e.g., electric motors, etc.) couple to ends of the power assembly"s pinion shaft 130 to drive the pump"s power assembly 110. As shown in FIGS. 6A-6B, internal gearing within the power assembly 110 converts the rotation of the pinion shaft 130 to rotation of a crankshaft 120. The gearing uses pinion gears 138 on the pinion shaft 130 that couple to bull gears 128 on the crankshaft 120 and transfer rotation of the pinion shaft 130 to the crankshaft 120.
For support, the crankshaft 120 has external main bearings 122 supporting its ends and two internal main bearings 127 supporting its intermediate extent in the assembly 110. As best shown in FIG. 6A, rotation of the crankshaft 120 reciprocates five independent connecting rods 140. Each of the connecting rods 140 couples to a crosshead 160 of the crosshead assembly 150. In turn, each of the crossheads 160 converts the connecting rod 40"s movement into a reciprocating movement of an intermediate pony rod 166. As it reciprocates, the pony rod 166 drives a coupled piston or plunger (not shown) in the fluid assembly 170 that pumps mud from an intake manifold 192 to an output manifold 198. Being quintuplex, the mud pump 100 has five such pistons movable in the fluid assembly 170 for pumping the mud.
The additional detail of FIG. 8 shows the crankshaft 120 supported in the power assembly 110 and having the connecting rods 140 mounted thereon. As noted above, double roller bearings 122 support the ends of the crankshaft 120 in the assembly 110. Internally, main bearings 123 support the intermediate extent of the crankshaft 120 in the assembly 110. In particular, the main bearings 126 position on the main bearing sheaves 125-1 and 125-2 and are supported by carriers 125 mounted to the assembly 110 at 129. The external main bearings 122 are preferably spherical bearings to better support radial and axial loads. The internal main bearings 125 preferably use cylindrical bearings.
Five connector rods 140 use roller bearings 126 to fit on the eccentric sheaves 124-1 . . . 124-5. Each of the roller bearings 126 preferably uses cylindrical bearings. The rods 140 extend from the sheaves 124-1 . . . 124-5 (perpendicular to the figure) and couple the motion of the crankshaft 120 to the fluid assembly (170) via crossheads (160) as is discussed in more detail below with reference to FIGS. 10A-10B.
As shown in FIG. 9, the pinion shaft 130 mounts with roller bearings 132 in the power assembly 110 with its free ends 134 extending on both sides of the assembly 110 for coupling to drive components (not shown). As noted previously, the pinion gears 138 on the shaft 130 interface with the bull gears 128 on the crankshaft (120). Preferably, the interface uses helical gearing of opposite hand. In particular, the two pinion gears 138 on the pinion shaft 130 have helical teeth that have an opposite orientation or hand relative to one another. These helical teeth couple in parallel fashion to oppositely oriented helical teeth on the complementary bull gears 128 on the crankshaft 120. (The opposing orientation of helical teeth on the bull gears 128 and pinion gears 138 can best be seen in FIGS. 6A-6B). The helical gearing transfers rotation of the pinion shaft 130 to the crankshaft 120 in a balanced manner. In an alternative embodiment, the pinion shaft 130 can have one pinion gear 138, and the crankshaft 120 can have one bull gear 128. Preferably, these single gears 138/128 use herringbone or double helical gearing of opposite hand to avoid imparting axial thrust to the crankshaft 120.
The cross-section in FIG. 10A shows a crosshead 160 for the quintuplex mud pump. The end of the connecting rod 140 couples by a wrist pin 142 and bearing 144 to a crosshead body 162 that is movable in a crosshead guide 164. A pony rod 166 coupled to the crosshead body 162 extends through a stuffing box gasket 168 on a diaphragm plate 169. An end of this pony rod 166 in turn couples to additional components of the fluid assembly (170) as discussed below.
The cross-section in FIG. 10B shows portion of the fluid assembly 170 for the quintuplex mud pump. An intermediate rod 172 has a clamp 174 that couples to the pony rod (166; FIG. 10A) from the crosshead assembly 160 of FIG. 10A. The opposite end of the rod 172 couples by another clamp to a piston rod 180 having a piston head 182 on its end. Although a piston arrangement is shown, the fluid assembly 170 can use a plunger or any other equivalent arrangement so that the terms piston and plunger can be used interchangeably herein. Moved by the pony rod (166), the piston head 182 moves in a liner 184 communicating with a fluid passage 190. As the piston 182 moves, it pulls mud from a suction manifold 192 through a suction valve 194 into the passage 190 and pushes the mud in the passage 190 to a discharge manifold 198 through a discharge valve 196.
As noted previously, a triplex mud pump produces a total flow variation of about 23%. Because the present mud pump 100 is quintuplex, the pump 100 offers a lower variation in total flow, making the pump 100 better suited for pumping mud and producing less noise that can interfere with MWD and LWD operations. In particular, the quintuplex mud pump 100 can produce a total flow variation as low as about 7%. For example, the quintuplex mud pump 100 can produce a maximum flow level of about 102% during certain crankshaft angles and can produce a minimum flow level of 95% during other crankshaft angles as the pump"s five pistons move in their differing strokes during the crankshaft"s rotation. Being smoother and closer to ideal, the lower total flow variation of 7% produces less pressure changes or “noise” in the pumped mud that can interfere with MWD and LWD operations.
Although a quintuplex mud pump is described above, it will be appreciated that the teachings of the present disclosure can be applied to multiplex mud pumps having at least more than three eccentric sheaves, connecting rods, and fluid assembly pistons. Preferably, the arrangement involves an odd number of these components so such mud pumps may be septuplex, nonuplex, etc. For example, a septuplex mud pump according to the present disclosure may have seven eccentric sheaves, connecting rods, and fluid assembly pistons with at least two bull gears and at least two bearing sheaves on the crankshaft. The bull gears can be arranged between first and second eccentric sheaves and sixth and seventh eccentric sheaves on the crankshaft. The internal main bearings supporting the crankshaft can be positioned between third and fourth eccentric sheaves and the fourth and fifth eccentric sheaves on the crankshaft.
This patent application incorporates by reference the patent application having attorney docket number 0301757-NP2, titled: DRYWALL MUD PUMP WITH CLAMP OR IMPROVED FOOT VALVE, having the same inventor and filed on the same date. These two patent applications have certain disclosure in common but were filed with different claims.
The joints between drywall sheets are typically filled and sealed with strips of paper or fiberglass mat and drywall joint compound, also called “joint compound”, “drywall mud”, or just “mud”. Joint compound may be made, for example, of water, limestone, expanded perlite, ethylene-vinyl acetate polymer and attapulgite. Joint compound may be applied as a viscous fluid that is thick enough to maintain its shape while it dries and hardens. In addition to forming joints, drywall mud is used to cover nail or screw heads, form a smooth or flat surface, and provide a texture over the surface. Paint or wall paper is typically applied over the drywall sheets and drywall joint compound.
Workers often specialize in the installation of drywall, and in large projects, different crews install the drywall panels (drywall hangers) from those who finish the joints and apply the joint compound (tapers or mud men). Workers who specialize in drywall installation often use specialized tools to increase their productivity. A number of tools have been invented and used for dispensing drywall joint compound. U.S. Pat. No. 7,473,085 (by Werner Schlecht), for example, describes a drywall finishing tool that is commonly referred to as a “flat box”, which is used to apply drywall joint compound between sheets of drywall, for instance. Further, drywall joint compound has been mixed at the job site in buckets, and various pumps have been used to pump the mud from the buckets into drywall tools such as flat boxes.
U.S. patent application Ser. No. 11/292,238, publication 2007/0122301 (also by Werner Schlecht) describes a drywall mud pump, for example. Various prior art drywall mud pumps used a piston in a main cylinder. In many cases, however, the piston did not travel the full length of the main cylinder. As a result, main cylinder sizes were made fairly large so that sufficient volume of drywall mud was pumped with each stroke of the pump. Further, in a number of designs, friction was excessive, making the pumps difficult to use, especially for large projects where workers have had to pump and apply a large quantity of drywall joint compound.
For these and other reasons, needs or potential for benefit exist for drywall mud pumps that are smaller in size, such as in diameter, that have less internal friction, that allow drywall mud to move freely therethrough, that have a longer piston stroke, or a combination thereof, as examples. In addition, in many prior art drywall pump designs, it was necessary to expend effort holding the pump in place while pumping drywall joint compound, which made using the pump more difficult. As a result, needs and potential for benefit exist for drywall mud pumps that do not need to be held in place while being used, as other examples. As further examples, drywall mud pumps are needed, or would be beneficial, that are inexpensive to manufacture, reliable, easy to use, that have a long life, that are easy to service and clean, and that are simple in operation so that typical operators can effectively maintain them, or that have a combination of such features. Room for improvement exists over the prior art in these and other areas that may be apparent to a person of ordinary skill in the art having studied this document. Other needs and potential for benefit may also be apparent to a person of skill in the art of specialized drywall tools.
Various embodiments provide, for example, as an object or benefit, that they partially or fully address or satisfy one or more of the needs, potential areas for benefit, or opportunities for improvement described herein, or known in the art, as examples. Some embodiments of the invention provide, among other things, various apparatuses, drywall mud pumps, and methods of selecting, obtaining, providing, manufacturing, or making such devices, as examples. Drywall mud pumps, for example, may be used to pump drywall joint compound from buckets into tools for dispensing the drywall joint compound, for instance, which may then be used to apply the drywall joint compound between and/or over sheets of drywall. Workers or operators may use such drywall mud pumps, for example, who specialize in the installation of drywall, or specifically, those who finish the joints and apply the joint compound (tapers or mud men), for instance. Various embodiments provide, for example, as an object or benefit, that they provide specialized drywall mud pumps, for instance, to increase the productivity of such workers.
A number of embodiments provide, for example, as objects or benefits, adaptations and improvements to drywall mud pumps in which a piston may travel a greater length of the main cylinder. As a result, in certain embodiments, main cylinder sizes may be smaller while still providing sufficient volume of drywall mud with each stroke of the pump. Further, in some embodiments, friction may be reduced, making the pumps less difficult to use, especially for large projects where workers may have to pump and apply a large quantity of drywall joint compound. Further, in some embodiments, drywall mud may move more freely through the pump, in comparison with certain prior art alternatives for instance. In addition, in some embodiments, it may require less effort to hold the pump in place while pumping drywall joint compound, which may make using the pump less difficult. In particular embodiments, drywall mud pumps may not need to be held in place by the operator while being used, for examples. Moreover, particular embodiments provide, as an object or benefit, for instance, drywall mud pumps that are inexpensive to manufacture, reliable, easy to use, that have a long life, that are easy to service and clean, and that are simple in operation so that typical operators can effectively maintain them.
Benefits of various embodiments of the invention exist over the prior art in these and other areas that may be apparent to a person of ordinary skill in the art having studied this document. These and other aspects of various embodiments of the present invention may be realized in whole or in part in various drywall mud pumps as shown, described, or both in the figures and related description herein. Other objects and benefits may also be apparent to a person of skill in the art of specialized drywall tools, for example.
In specific embodiments, this invention provides various drywall mud pumps for pumping drywall joint compound from a bucket into a drywall tool, for instance. In a number of these embodiments, such a drywall mud pump may include, for example, a main cylinder having a top end and an bottom end, a rod having a longitudinal axis, a first end, and a second end, and a piston which, when the drywall mud pump is assembled, is located within the main cylinder and is attached to the rod. In various embodiments, when the drywall mud pump is assembled, the second end of the rod is located within the main cylinder. Such embodiments may also include a pump head having an output aperture, and when the drywall mud pump is assembled, the pump head may be connected to the top end of the main cylinder and the rod may pass through the pump head, for example.
Various embodiments may further include a structural component, and when the drywall mud pump is assembled, the structural component may be rigidly attached to the main cylinder or to the pump head, for instance, and may extend from the main cylinder or the pump head to a pivot point, for example. Further, a number of such embodiments may include a handle which may include, for example, a first member and a second member. Further still, in various embodiments, when the drywall mud pump is assembled, the first member may be pivotably connected to the first end of the rod, the second member may be pivotably connected to the structural component at the pivot point, and the first member may slidably or telescopically engage the second member, for instance, to allow the rod to travel in a substantially straight line along the longitudinal axis while the second member rotates about the pivot point.
In particular such embodiments, when the drywall mud pump is assembled, the structural component is rigidly attached to the pump head and extends from the pump head to the pivot point. The structural component may be a separate piece from the pump head, for example. Further, some embodiments may include, for example, a bearing mounted within the second member, and when the drywall mud pump is assembled, part of the first member may fit inside the bearing and may extend into the second member.
Even further, some such embodiments may include a clamp, for example, configured to secure the drywall mud pump to a side of a bucket. In various embodiments, the clamp may include a force-amplification mechanism, for example, and a contact surface to contact the exterior of the bucket. In addition, in a number of embodiments, when the drywall mud pump is assembled and is installed within a bucket, the contact surface may face towards the main cylinder to secure the main cylinder within the bucket by compressing the side of the bucket between the contact surface and the main cylinder, for instance.
Furthermore, particular embodiments may include, for example, a foot valve, which, when the drywall mud pump is assembled, may be attached to the bottom end of the main cylinder allowing drywall joint compound to flow into the main cylinder through the foot valve, but substantially preventing drywall joint compound from flowing out of the main cylinder through the bottom end of the main cylinder. In certain embodiments, the foot valve may include, for example, a pin and two semi-circular-shaped rigid flaps that hingedly rotate about the pin.
In other embodiments, the invention also provides various drywall mud pumps that include, for example, such a main cylinder, such a rod, and such a piston. In these embodiments, the piston may include, for example, at least one orifice through the piston to pass drywall joint compound when the piston is traveling downward in the main cylinder. In various embodiments, the piston may further include at least one flapper to block the at least one orifice to substantially prevent passage of drywall joint compound through the piston when the piston is traveling upward in the main cylinder. Such embodiments may further include a pump head, such as described above, and the pump head may include, for example, a seal around the rod.
These embodiments may further include a structural component, and when the drywall mud pump is assembled, the structural component may be attached in rigid relation to the main cylinder or to the pump head and may extend to a pivot point in rigid relation to the main cylinder. Even further, these embodiments may include a handle that may include, for example, a first member, a second member, and a bearing which may include, for instance, multiple balls or PTFE. In various embodiments, when the drywall mud pump is assembled, the first member may be pivotably connected to the first end of the rod, the second member may be pivotably connected to the structural component at the pivot point, and the first member may slidably engage the second member through the bearing, for example.
Such embodiments may have other features previously mentioned for other embodiments as well. For example, in some embodiments, the first member slidably engages the second member, part of the first member may fit inside the second member, the drywall mud pump may include a foot valve (e.g., as described above), or a combination thereof. Furthermore, in some embodiments, the drywall mud pump may include, for example, a clamp configured to secure the drywall mud pump to a side of a bucket, which may be a toggle clamp, for instance.
The invention also provides various methods, for example, of selecting, obtaining, or providing a drywall mud pump for pumping drywall joint compound from a bucket into a drywall tool. Such methods may include, for example, various acts, which may be performed in any order or in the order listed, as examples. In some such methods, these acts may include, for instance, selecting, obtaining, or providing a body that may include, for example, an inlet to take in drywall joint compound from the bucket, and an output aperture to deliver drywall joint compound to the drywall tool. Various such methods may further include acts of selecting, obtaining, or providing a driver to move the drywall joint compound through the body, and selecting, obtaining, or providing a structural component which, when the drywall mud pump is assembled, may be attached to the body and may extend to a pivot point. Such methods may also include, for further example, an act of selecting, obtaining, or providing a handle that may include, for example, a first member and a second member. In various embodiments, when the drywall mud pump is assembled, the first member may be connected in driving relation to the driver, the second member may be pivotably connected to the structural component at the pivot point, and the first member may slidably or telescopically (or both) engage the second member while the second member rotates about the pivot point, for instance.
In some embodiments, such methods may further include, for example, an act of selecting, obtaining, or providing a bearing, such as a PTFE bearing, for example, which, when the drywall mud pump is assembled, is mounted within the second member. Further, in various embodiments, when the drywall mud pump is assembled, part of the first member fits inside the bearing and extends into the second member. Moreover, particular embodiments may include, for example, an act of selecting, obtaining, or providing a clamp (e.g., as described above) configured to secure the drywall mud pump to a side of a bucket. Furthermore, some embodiments may further include, for example, an act of selecting, obtaining, or providing an inlet valve, which, when the drywall mud pump is assembled, is attached to the inlet of the body, allowing drywall joint compound to flow into the body through the inlet valve, but substantially preventing drywall joint compound from flowing out of the body through the inlet. In certain embodiments, the inlet valve may include, for example, a pin and two semi-circular-shaped rigid flaps that hingedly rotate about the pin.
In various embodiments the act of selecting, obtaining, or providing the driver may further include selecting, obtaining, or providing a piston having at least one orifice therethrough to pass drywall joint compound through the piston, and having at least one flapper to block the at least one orifice to prevent passage of drywall joint compound through the piston. Further, in some embodiments, the act of selecting, obtaining, or providing the body may include selecting, obtaining, or providing a main cylinder, and in particular embodiments, such methods may further include, for example, an act of selecting, obtaining, or providing a rod which, when the drywall mud pump is assembled, extends from the first member to the driver. Still further, in some embodiments, when the drywall mud pump is assembled, the structural component may be attached in rigid relation to the body and the pivot point may be in rigid relation to the body.
FIG. 7 is a cross sectional front view of another embodiment of a drywall mud pump, this embodiment having a toggle clamp and shown clamped inside a bucket;
FIG. 11 is a partial cross sectional view of a the handle of the drywall mud pump shown in FIGS. 7 and 8 with the grip and the pivot clamp omitted, showing, among other things, the other parts of the second member including the bearing;
FIG. 16 is an isometric view of the flappers and tube of an inlet valve or foot valve which may be part of the drywall mud pump shown in FIGS. 7 and 8, or other embodiments described herein, for example;
FIG. 27 is a flow chart illustrating, among other things, an example of a method of selecting, obtaining, or providing a drywall mud pump, for example, for pumping drywall joint compound from a bucket into a drywall tool.
Among other things, various embodiments are, include, obtain, or provide various drywall mud pumps, for example, for pumping drywall joint compound from a bucket into a drywall tool. FIGS. 1-4 illustrate a first embodiment 10 of a drywall mud pump, FIGS. 5 and 6 illustrate a second embodiment 50 of a drywall mud pump, and FIGS. 7 and 8 illustrate a third embodiment 70 of a drywall mud pump, as examples. These figures illustrate assembled drywall mud pumps. Such pumps may be sold, shipped, or stored partially or fully disassembled, however. In a number of embodiments, a drywall mud pump may include, for example, a body, which may be or include a main cylinder (e.g., 11, 51, or 71) having (e.g., in the position shown of normal operation) a top end (e.g., 111, 511, or 711) and an bottom end (e.g., 112, 512, or 712), a rod (e.g., 12, 52, or 72) having a longitudinal axis, a first end (e.g., 121, 521, or 721), and a second end (e.g., 122 or 722), and a piston (e.g., 33 or 73 shown in FIGS. 3, 4, and 7). In a number of embodiments, when the drywall mud pump (e.g., 10, 50, or 70) is assembled, the piston (e.g., 33 or 73) may be located within the main cylinder (e.g., 11, 51, or 71) and may be attached to the rod (e.g., 12, 52, or 72). Pistons 33 and 73 are examples of drivers to move drywall joint compound through the body of drywall mud pumps 10 and 70.
In various embodiments, when the drywall mud pump (e.g., 10, 50, or 70) is assembled, the second end (e.g., 122 or 722) of the rod (e.g., 12, 52, or 72) is located within the main cylinder (e.g., 11, 51, or 71), for instance, attached to the piston (e.g., 33 or 73). Such embodiments may also include a pump head (e.g., 14, 54, or 74), for instance, which may be part of the body, having an output aperture (e.g., 144, 544, 744), and when the drywall mud pump (e.g., 10, 50, or 70) is assembled, the pump head (e.g., 14, 54, or 74) may be connected to the top end (e.g., 111, 511, or 711) of the main cylinder (e.g., 11, 51, or 71), for example, with fasteners, screws, bolts, clips, pins, or the like, as examples (e.g., clips 117 are shown for this purpose in FIGS. 1-6). In a number of embodiments, the rod (e.g., 12, 52, or 72) may pass through the pump head (e.g., 14, 54, or 74), for example. In a number of embodiments, the pump head (e.g., 14, 54, or 74) may include a seal around the rod (e.g., 12, 52, or 72), for example, an elastomeric o-ring or a u-cup, which may substantially prevent drywall joint compound from leaking out of the pump around the rod when the pump is used.
Various embodiments may further include a handle (e.g., 17, 57, or 77 shown in FIGS. 1 to 8) and a bracket or structural component (e.g., 15, 55, or 75) to support the handle of the pump. In a number of embodiments, when the drywall mud pump (e.g., 10, 50, or 70) is assembled, the structural component (e.g., 15, 55, or 75) may be rigidly attached to the main cylinder (e.g., 11, 51, or 71) or to the pump head (e.g., 14, 54, or 74), for instance, and may extend from the main cylinder (e.g., 11, 51, or 71) or the pump head (e.g., 14, 54, or 74) to a pivot point (e.g., 16, 56, or 76), for example. FIG. 9 further illustrates structural component 75 (introduced in FIG. 7) having pivot point 76 at one end and pins or fasteners 99 at the other end to attach structural component 75 to pump head 74, for example.
In various embodiments, the structural component (e.g., 15, 55, or 75) may be attached in rigid relation to the main cylinder (e.g., 11, 51, or 71) or to the pump head (e.g., 14, 54, or 74) (or both) and may extend to a pivot point (e.g., 16, 56, or 76) in rigid relation to the main cylinder (e.g., 11, 51, or 71), for example. In different embodiments, this may be accomplished by attaching the structural component (e.g., 15, 55, or 75) directly to the main cylinder (e.g., 11, 51, or 71) or to the pump head (e.g., 14, 54, or 74), or may be accomplished by attaching the structural component (e.g., 15, 55, or 75) to one or more other components that may be attached to the main cylinder (e.g., 11, 51, or 71) or to the pump head (e.g., 14, 54, or 74), or both, as examples.
As used herein, in this context, two parts being in “rigid relation” means that the parts do not move (e.g., translate or rotate) significantly relative to each other (other than due to insignificant elastic deformation of the material) while the drywall mud pump is in operation. Further, as used herein, two parts being rigidly attached to each other means that the parts are in “rigid relation”. Being “rigidly attached” or in “rigid relation” does not exclude the possibility that the two parts are detachable, for example, for disassembly, cleaning, shipping, or storage of the drywall mud pump, as examples. In fact, in many embodiments, the structural component (e.g., 15, 55, or 75) may be detachable from the pump head (e.g., 14, 54, or 74), cylinder (e.g., 11. 51, or 71), or both, for example.
In a number of embodiments, the handle (e.g., 17, 57, or 77 shown in FIGS. 1 to 8) may include, for example, a first member (e.g., 171, 571, or 771) and a second member (e.g., 172, 572, or 772). Further still, in various embodiments, when the drywall mud pump (e.g., 10, 50, or 70) is assembled, the first member (e.g., 171, 571, or 771) may be pivotably connected to the first end (e.g., 121, 521, or 721) of the rod (e.g., 12, 52, or 72), the second member (e.g., 172, 572, or 772) may be pivotably connected to the structural component (e.g., 15, 55, or 75), for instance, at the pivot point (e.g., 16, 56, or 76), or both, as examples.
Various such embodiments include a handle (e.g., 17, 57, or 77) which, when the drywall mud pump (e.g., 10, 50, or 70) is assembled, may be pivotably connected to the first end (e.g., 121, 521, or 721) of the rod (e.g., 12, 52, or 72), and may be pivotably connected to the structural component (e.g., 15, 55, or 75) at the pivot point (e.g., 16, 56, or 76). Some such handles may include the first member (e.g., 171, 571, or 771) and the second member (e.g., 172, 572, or 772) previously mentioned. FIG. 10 further illustrates first member 771 (e.g., of handle 77) introduced in FIG. 7. In the embodiments illustrated in FIGS. 1-4 and 7-8, for example, the first member (e.g., 171 or 771 of handle 17 or 77) is connected in driving relation (e.g., via rod 12 or 72) to the piston (e.g., 33 or 73), which are examples of drivers.
In the embodiment illustrated, when the drywall mud pump (e.g., 10 or 70) is assembled, part of the first member (e.g., 171 or 771) may fit inside the bearing (e.g., 37 or 737) and may extend into the second member (e.g., 172, 572, or 772). In a number of embodiments, the bearing (e.g., 37 or 737) may be a linear ball bearing, for example, and may include a sleeve-like outer ring and several rows of balls retained by cages. The cages or ball tracks may be oriented to provide for low friction rolling motion in a linear direction (e.g., in the axial direction). The cages or ball tracks may then curve around to return the balls to be used again. The return cages or ball tracks, and the portions of the cages and ball tracks that curve, may be deeper to prevent the balls from contacting the moving surface (e.g., first member 171, 571, or 771) when the balls are traveling in a different direction.
Other embodiments may use other types of bearings (e.g., 37 or 737) including other linear motion bearings such as linear roller bearings, roller slides, plain bearings, bushings (e.g., metal, bronze, plastic, fluoropolymer, dry lubricant, or solid lubricant), dovetail slides, or various ball slides, as examples. In some embodiments, bearings (e.g., 37 or 737) may include a low-friction material such as a fluoropolymer such as polytetrafluoroethylene (PTFE), as another example. In particular embodiments, a bearing (e.g., 37 or 737) may include PTFE filaments or fibers, which may be woven for example, and may have a greater tensile strength than PTFE resins (as another example). Various embodiments may be greaseless or self lubricating, for instance. Some embodiments may have a solid lubricant added to the wear layer. Further, some embodiments (e.g., of bearings 37 or 737) may have a fiberglass backing. Specific embodiments of PTFE bearings are available from Polygon Composites, for instance.
In certain embodiments, bearings (e.g., 37 or 737) may include Molybdenum Disulfide (MoS2), graphite, or boron nitride, as examples. In still other embodiments, bushings may be used (e.g., for bearings 37 or 737) which may be metal, such as brass, or plastic, such as nylon, which may be lubricated with a lubricant such as grease or oil, as examples. In some embodiments, openings, passageways, or fittings to apply grease or oil may be provided (e.g., on or in handle 17, 57, or 77 or in the second member 172, 572, or 772). Further, where a single bearing (e.g., 37 or 737) is shown on the drawings, other embodiments may have multiple bearings. In some embodiments, two bearings may be provided, for instance, which may be separated by a spacer or bushing. In other embodiments, a single PTFE bearing may be provided between two brass bushings, as another example. Still other embodiments may have a single longer bearing (e.g., of plastic or PTFE).
In various embodiments, when the drywall mud pump (e.g., 10, 50, or 70) is assembled, the first member (e.g., 171, 571, or 771) may be pivotably connected to the first end (e.g., 121, 521, or 721) of the rod (e.g., 12, 52, or 72), the second member (e.g., 172, 572, or 772) may be pivotably connected to the structural component (e.g., 15, 55, or 75) at the pivot point (e.g., 16, 56, or 76), and the first member (e.g., 171, 571, or 771) may slidably engage the second member (e.g., 172, 572, or 772) through the bearing (e.g., 37 or 737), for example. Such pivotable connections may include a pin or a fastener, such as a screw or a bolt, as examples.
As shown in FIG. 7, handle 77 also includes grip 773 which may be made of an elastomeric material and may be attached to elongated member 113, second member 772, or handle 77, for example, with an adhesive. As further illustrated in FIG. 7, and shown in detail in FIG. 12, handle 77 and second member 772 thereof also includes pivot clamp 775 which extends from elongated member 113, to pivot point 76. Pivot point 76 may include a pin or fastener (e.g., a screw or bolt) that handle 77 may rotate about when pump 70 is in use. A separate fastener may pass through hole 125 in pivot clamp 775 to tighten pivot clamp 775 around elongated member 113 to secure pivot clamp 775 in place on handle 77.
In various such embodiments, the bearing (e.g., 737) may be longer, (e.g., about twice as long) as what is shown. In other embodiments, the bearing (e.g., 737) may be 1.25, 1.5, 1.75, 2.25, 2.5, 3.0, or even, 3.5 longer, than what is shown (e.g., relative to other components or to the length of the handle). Further, in some such embodiments, multiple bearings may be used instead of the one bearing 737 shown. For example, in some embodiments two bearings may be separated by a busing. In a number of embodiments, a bearing may be provided at the left end of the bearing housing (e.g., 114), and a bearing (e.g., part of the same bearing or a different bearing) may be provided at a location to support the right end of the first member (e.g., 771) when the handle (e.g., 77) is at the top or bottom of its stroke, for example. In some embodiments, this location may be just to the left of the elongated member (e.g., 113), for example. On the other hand, in other embodiments, a bearing (e.g., a plastic, PTFE, or solid lubricant bearing) may be provided between two (e.g., brass) bushings (e.g., where bearing 737 is shown in FIG. 11). Such bushings may provide a replaceable wear surface. In some embodiments, such bushings (e.g., on one or both sides of a bearing) may benefit from lubrication (e.g., a solid lubricant) that carries over from the bearing.
In the illustrated embodiments, when the drywall mud pump (e.g., 10, 50, or 70) is assembled, the structural component (e.g., 15, 55, or 75) is rigidly attached to the pump head (e.g., 14, 54, or 74) and extends from the pump head (e.g., 14, 54, or 74) to the pivot point (e.g., 16, 56, or 76). The structural component (e.g., 15, 55, or 75) may be a separate piece from the pump head (e.g., 14, 54, or 74), for example, as shown, and may be attached thereto with fasteners, such as screws or bolts, for instance (e.g., pins or fasters 99 shown in FIG. 9). In other embodiments, a structural component (e.g., in lieu of 15, 55, or 75) may pivotably attach to the pump head, as another example. In the embodiments illustrated, structural members 15, 55, and 75 are formed from flat plate, for example. Other embodiments may have a different shape, such as having an I-beam cross section, being tubular (e.g., round, square, rectangular, or oval), or being an angle beam or a channel, as examples. Structural member 55 shown in FIGS. 5 and 6 illustrates that one or more cut outs or holes may be formed in structural members, for instance, to reduce the amount of material, reduce weight, provide attachment points, or the like, as examples. In some embodiments, a structural member (e.g., corresponding to 15, 55, or 75) may be a truss or may consist of two, three, four, or more sub-members, as other examples.
FIGS. 1, 3, and 7 illustrate that a number of embodiments may also include a clamp (e.g., 18 or 78), which may be configured to secure (e.g., by clamping) the drywall mud pump (e.g., 10 or 70) to a side of the bucket (e.g., 80 shown in FIGS. 7 and 8). Bucket 80 may be a common five-gallon plastic bucket, for example. In various embodiments, the clamp (e.g., 18 or 78) may include a force-amplification mechanism (e.g., 181 or 781), for example, and a contact surface (e.g., 182 or 782), for instance, to contact the exterior of the bucket (e.g., 80). In the embodiments shown, when the drywall mud pump (e.g., 10 or 70) is assembled and is installed within a bucket (e.g., 80), the contact surface (e.g., 182 or 782) may face towards the main cylinder (e.g., 11 or 71) to secure the main cylinder (e.g., 11 or 71) within the bucket (e.g., 80), for example, by compressing the side of the bucket (e.g., 80) between the contact surface (e.g., 182 or 782) and the main cylinder (e.g., 11 or 71), for instance.
FIGS. 1 and 3 illustrate that in some embodiments, the drywall mud pump (e.g., 10) further includes a clamp bracket (e.g., 19) which, when the drywall mud pump (e.g., 10) is assembled, may extend from the pump head (e.g., 14) to the clamp (e.g., 18). In embodiment 10 of the drywall mud pump, clamp bracket 19 rigidly attaches to pump head 14, and clamp 18 attaches to clamp bracket 19. In other embodiments, the clamp (e.g., 78 shown in FIG. 7) may attach directly to the pump head (e.g., 74), or the clamp (e.g., 78) may attach directly to a ring that may attach to the pump head (e.g., 74) or to the main cylinder (e.g., 71), as examples. In some embodiments, a clamp may attach directly or indirectly to the main cylinder (e.g., 11, 51, or 71). In various embodiments, the clamp may be attached such that at least part of the clamp is in rigid relation to the main cylinder, the pump head, or both, for example.
In the embodiment shown in FIGS. 1-4, clamp 18 includes an arc-shaped jaw 185 having concave surface 182 to contact the exterior of the bucket. In this embodiment, when drywall mud pump 10 is assembled, concave surface 182 faces away from force-amplification mechanism 181 and concave surface 182 faces towards main cylinder 11 for clamping main cylinder 11 within the bucket. In this embodiment, claim 18 is a screw-type clamp, and force-amplification mechanism 181 is a threaded screw mechanism that is operated by rotating handle 183. Other embodiments of force-amplification mechanisms (e.g., 781) may use leavers, cams, or the like, as other examples.
As illustrated in FIGS. 5 and 6, in some embodiments, the drywall mud pump (e.g., 50) may include a foot plate (e.g., 59) which, when the drywall mud pump (e.g., 50) is assembled, may be attached to the pump head (e.g., 54) and may extend, for example, parallel to the main cylinder (e.g., 51), for instance, at least as far (e.g., downward) from the pump head (e.g., 54) as the bottom end (e.g., 512) of the main cylinder (e.g., 51) or from the bottom of the drywall mud pump (e.g., 50). In this embodiment, rather than clamping to a bucket, the operator steps on lower portion 592 of foot plate 59 while pumping to stabilize drywall mud pump 50. Certain embodiments may have a clamp and a foot plate, as another example.
Furthermore, particular embodiments may include, for example, an inlet valve or a foot valve (e.g., 42 or 742 shown in FIGS. 1 to 4 and 7 to 8), which, when the drywall mud pump (e.g., 10, 50, or 70) is assembled, may be attached to the bottom end (e.g., 112, 512, 712) of the main cylinder (e.g., 11, 51, or 71). The bottom end (e.g., 112, 512, 712) of the main cylinder (e.g., 11, 51, or 71) or the foot valve (e.g., 42 or 742), as examples, may be, or form, an inlet to take in drywall joint compound, for example, from bucket 80. A foot valve (e.g., 42 or 742) may allow drywall joint compound to flow into the main cylinder (e.g., 11, 51, or 71), for instance, from the bucket (e.g., 80) through the foot valve (e.g., 42 or 742), but may substantially prevent drywall joint compound from flowing out of the main cylinder (e.g., 11, 51, or 71) through the bottom end (e.g., 112, 512, 712) of the main cylinder (e.g., 11, 51, or 71).
Foot valve 42 and foot valve 742 are examples of inlet valves, which, when the drywall mud pump (e.g., 10, 50, or 70) is assembled, are (one such valve is) attached to the inlet of the body (e.g., main cylinder 11, 51, or 71) allowing drywall joint compound to flow into the inlet and into the body through the inlet valve, but substantially preventing drywall joint compound from flowing out of the body through the inlet. As used herein, a foot valve (e.g., 42 or 742) “substantially” prevents drywall joint compound from flowing out of the body or main cylinder (e.g., 11, 51, or 71), for instance, through the inlet or bottom end (e.g., 112, 512, 712) if, when the drywall mud pump is in use, the amount of drywall joint compound that passes up through the inlet valve or foot valve during an upward stroke of the piston, for example, is at least twice the amount of drywall joint compound that passes downward through the foot valve during a downward stroke of the piston. Considerably better performance may be accomplished, however, in many embodiments.
In certain embodiments, the foot valve (e.g., 42 or 742) may include, for example, a pin (e.g., 32 shown in FIGS. 1-8). In some embodiments, such a pin may have a ring at a first end, a spring detent at a second end, or both (e.g., on opposite ends), as examples. In some embodiments, two semi-circular-shaped rigid flaps may hingedly rotate about the pin (e.g., 32). FIGS. 16-19 illustrate an example of such an embodiment. In this embodiment, semi-circular-shaped rigid flaps 161 and 162 hingedly rotate about tube 163, for example, as the foot valve (e.g., 42 or 742) opens and closes. In other embodiments, corresponding flaps may have a different shape, such as rectangular. In the particular embodiment shown, the pin (e.g., 32) fits inside tube 163 and secures flaps 161 and 162 and tube 163 within the bottom end (e.g., 112, 512, or 712) of the main cylinder (e.g., 11, 51, or 71). In a number of embodiments, the pin (e.g., 32), tube (e.g., 163), or both, may extend through a portion of each of the flaps. In the specific embodiment illustrated, for example, at least when the drywall mud pump (e.g., 10, 50, or 70) is assembled, tube 163 extends through portions 164, 165, 166, 167, and 168 of flaps 161 and 162. Other embodiments may omit tube 163 or may omit the pin (e.g., 32) (or the tube may be the pin) and the tube may perform some or all of the function that the pin performs in the embodiment shown.
As shown in FIGS. 1 and 2, in the embodiment illustrated, pin 32 also attaches base 421 of foot valve 42 (e.g., to cylinder 11). FIG. 20 further illustrates base 421. Base 421 includes feet 422 which may provide space between bottom end 112 of main cylinder 11 and the bottom of the bucket (e.g., 80), for example, so that drywall joint compound can flow relatively freely into foot valve 42. Further feet 422 may partially or fully support drywall mud pump 10 against the bottom of the bucket. As shown in FIG. 20, base 421 includes holes 205 that pin 32 passes through to secure base 421 and foot valve 42 to bottom end 112 of main cylinder 11. Holes 205 may be large enough in diameter to pass pin 32, but too small to pass tube 163, for example.
In the embodiment illustrated, screw 423 shown in FIGS. 1-3 may act as a stop for flaps 161 and 162 preventing the flaps from raising or opening too far. This assures, in this particular embodiment, that flaps 161 and 162 close (i.e., lower) quickly and reliably when piston 33 starts its downward stroke. In many embodiments, foot valve 42 may further include a screen, for example, below flaps 161 and 162, that may serve to prevent debris and solid chunks of drywall joint compound from being drawn into drywall mud pump 10. Such a screen may be retained by or attached to base 421 of foot valve 42, in some embodiments, for example. Foot valve 742 shown in FIG. 7 may be similar to foot valve 42. In some embodiments, drywall mud pump 50 shown in FIGS. 5 and 6 may have a similar foot valve.
FIG. 8 illustrates that various embodiments may include a high filler (e.g., 88), a goose neck (e.g., 89), or both. Although both high filler 88 and goose neck 89 are shown in FIG. 8, only one of high filler 88 or goose neck 89 would be installed on drywall mud pump 70 at a time, in this embodiment. FIGS. 25 and 26 further illustrate high filler 88 and goose neck 89. In the embodiment illustrated, high filler 88 and goose neck 89 are each formed from a piece of tubing having a round cross section and configured at the ends of the tubing to releasably attach to pump head 74 and to a drywall tool. Where high filler 88 and goose neck 89 attach to a drywall dispensing tool, for example, high filler 88 and goose neck 89 may include a bushing, a seal such as an o-ring, or both, as examples. In the embodiment shown, high filler 88 may be used to fill a flat box, for example, without requiring the operator to bend over as far. Further, in this embodiment, goose neck 89 may be used to fill a corner tool that has a cylinder that holds drywall joint compound under pressure from a piston and spring (e.g., a pneumatic spring) for example. In some embodiments, a high filler may discharge over the bucket (e.g., 88) to avoid spills (e.g., so that spills from the high filler fall back into the bucket).
In the embodiment illustrated, high filler 88 and goose neck 89 attach (e.g., one at a time) to output aperture 744 of pump head 74. Output aperture 744, or the end of high filler 88 or goose neck 89 that attaches to the drywall dispensing tool, are examples of outlet apertures to deliver drywall joint compound to the drywall tool. Outlet apertures 144 and 544 are other such examples. In the embodiment illustrated, high filler 88 and goose neck 89 each have two bends. Specifically, high filler 88 has two 90 degree bends, and goose neck 89 has one 90 degree bend and one 180 degree bends. Other embodiments may differ.
FIGS. 5 and 6 illustrate handle 57 in a fully raised and fully lowered position for embodiment 50 of the drywall mud pump. In various embodiments, for example, the handle may rotate between 80 and 120 degrees, or between 90 and 110 degrees, from the fully raised to the fully lowered position, as examples. In specific embodiments, for example, the handle may rotate about 100 degrees from the fully raised to the fully lowered position. As used herein, “about”, when referring to angles of handle rotation, means within plus or minus 5 degrees. In other embodiments, for further example, the handle may rotate about 50, 60, 70, 80, 85, 90, 95, 105, 110, 115, 120, 125, 130, 140, or 150 degrees from the fully raised to the fully lowered position, as other examples.
A number of embodiments include various methods, for example, of selecting, obtaining, or providing a drywall mud pump (e.g., 10, 50, or 70) for pumping drywall joint compound from a bucket (e.g., 80) into a drywall tool (e.g., a flat box). Such methods may include, for example, various acts, which may be performed in various sequences or orders, examples of which include the order listed herein or shown on the drawings.
In some methods (e.g., method 270 shown in FIG. 27), an act may include, for instance, selecting, obtaining, or providing a body (e.g., act 271 shown in FIG. 27). Examples of such a body (e.g., of act 271) include main cylinder 11, 51, and 71 illustrated in FIGS. 1-8. In some embodiments, such a body (e.g., of act 271) may further include a pump head (e.g., 14, 54, or 74), for instance. In particular embodiments, such a body (e.g., of act 271) may further include other components, such as high filler 88, goose neck 89 or both (e.g., shown in FIGS. 8, 25, and 26), as examples. In a number of embodiments, such a body (e.g., of act 271) may include, for example, an inlet (e.g., bottom end 112, 512, or 712 of main cylinder 11, 51, or 71 or foot valve 42 or 72) to take in drywall joint compound from the bucket (e.g., 80), an output aperture (e.g., 144, 544, or 744 or an opening of a high filler (e.g., 88), a goose neck (e.g., 89), or both) to deliver drywall joint compound to the drywall tool, or both an inlet and an outlet.
Various such methods, including method 270 shown, may further include an act of selecting, obtaining, or providing a driver (e.g., act 272), for instance, to move the drywall joint compound through th