disassemble mud pump prosess free sample
The 2,200-hp mud pump for offshore applications is a single-acting reciprocating triplex mud pump designed for high fluid flow rates, even at low operating speeds, and with a long stroke design. These features reduce the number of load reversals in critical components and increase the life of fluid end parts.
The pump’s critical components are strategically placed to make maintenance and inspection far easier and safer. The two-piece, quick-release piston rod lets you remove the piston without disturbing the liner, minimizing downtime when you’re replacing fluid parts.
A comprehensive range of mud pumping, mixing, and processing equipment is designed to streamline many essential but time-consuming operational and maintenance procedures, improve operator safety and productivity, and reduce costly system downtime.
If you run a mud rig, you have probably figured out that the mud pump is the heart of the rig. Without it, drilling stops. Keeping your pump in good shape is key to productivity. There are some tricks I have learned over the years to keeping a pump running well.
First, you need a baseline to know how well your pump is doing. When it’s freshly rebuilt, it will be at the top efficiency. An easy way to establish this efficiency is to pump through an orifice at a known rate with a known fluid. When I rig up, I hook my water truck to my pump and pump through my mixing hopper at idle. My hopper has a ½-inch nozzle in it, so at idle I see about 80 psi on the pump when it’s fresh. Since I’m pumping clear water at a known rate, I do this on every job.
As time goes on and I drill more hole, and the pump wears, I start seeing a decrease in my initial pressure — 75, then 70, then 65, etc. This tells me I better order parts. Funny thing is, I don’t usually notice it when drilling. After all, I am running it a lot faster, and it’s hard to tell the difference in a few gallons a minute until it really goes south. This method has saved me quite a bit on parts over the years. When the swabs wear they start to leak. This bypass pushes mud around the swab, against the liners, greatly accelerating wear. By changing the swab at the first sign of bypass, I am able to get at least three sets of swabs before I have to change liners. This saves money.
Before I figured this out, I would sometimes have to run swabs to complete failure. (I was just a hand then, so it wasn’t my rig.) When I tore the pump down to put in swabs, lo-and-behold, the liners were cut so badly that they had to be changed too. That is false economy. Clean mud helps too. A desander will pay for itself in pump parts quicker than you think, and make a better hole to boot. Pump rods and packing last longer if they are washed and lubricated. In the oilfield, we use a petroleum-based lube, but that it not a good idea in the water well business. I generally use water and dish soap. Sometimes it tends to foam too much, so I add a few tablets of an over the counter, anti-gas product, like Di-Gel or Gas-Ex, to cut the foaming.
Maintenance on the gear end of your pump is important, too. Maintenance is WAY cheaper than repair. The first, and most important, thing is clean oil. On a duplex pump, there is a packing gland called an oil-stop on the gear end of the rod. This is often overlooked because the pump pumps just as well with a bad oil-stop. But as soon as the fluid end packing starts leaking, it pumps mud and abrasive sand into the gear end. This is a recipe for disaster. Eventually, all gear ends start knocking. The driller should notice this, and start planning. A lot of times, a driller will change the oil and go to a higher viscosity oil, thinking this will help cushion the knock. Wrong. Most smaller duplex pumps are splash lubricated. Thicker oil does not splash as well, and actually starves the bearings of lubrication and accelerates wear. I use 85W90 in my pumps. A thicker 90W140 weight wears them out a lot quicker. You can improve the “climbing” ability of the oil with an additive, like Lucas, if you want. That seems to help.
Outside the pump, but still an important part of the system, is the pop-off, or pressure relief valve. When you plug the bit, or your brother-in-law closes the discharge valve on a running pump, something has to give. Without a good, tested pop-off, the part that fails will be hard to fix, expensive and probably hurt somebody. Pop-off valve are easily overlooked. If you pump cement through your rig pump, it should be a standard part of the cleanup procedure. Remove the shear pin and wash through the valve. In the old days, these valves were made to use a common nail as the shear pin, but now nails come in so many grades that they are no longer a reliable tool. Rated shear pins are available for this. In no case should you ever run an Allen wrench! They are hardened steel and will hurt somebody or destroy your pump.
One last thing that helps pump maintenance is a good pulsation dampener. It should be close to the pump discharge, properly sized and drained after every job. Bet you never thought of that one. If your pump discharge goes straight to the standpipe, when you finish the job your standpipe is still full of fluid. Eventually the pulsation dampener will water-log and become useless. This is hard on the gear end of the pump. Open a valve that drains it at the end of every job. It’ll make your pump run smoother and longer.
As usual, winter — or the slow season — is the time most drillers take the time to maintain their equipment in order to get ready for the peak season. One of the main parts that usually needs attention is the mud pump. Sometimes, it is just a set of swabs to bring it up to snuff, but often, tearing it down and inspecting the parts may reveal that other things need attention. For instance, liners. I can usually run three sets of swabs before it is time to change the liner. New liners and swabs last a good long time. The second set of swabs lasts less, and by the time you put in your third set of swabs, it’s time to order new liners. Probably rods too. It’s not always necessary to change pistons when you change swabs. Sometimes just the rubber needs to be changed, saving money. How do you tell? There is a small groove around the outside of the piston. As it wears, the groove will disappear and it’s time for a new piston.
The wear groove on a piston can be a good indicator of the general health of your pump. If the wear is pretty even all around, chances are the pump is in pretty good shape. But if you see wear on one side only, that is a clue to dig deeper. Uneven wear is a sign that the rods are not stroking at the exact angle that they were designed to, which is parallel to the liner. So, it’s time to look at the gear end. Or as some folks call it, “the expensive end.”
The wear groove on a piston can be a good indicator of the general health of your pump. If the wear is pretty even all around, chances are the pump is in pretty good shape. But if you see wear on one side only, that is a clue to dig deeper.
After you get the cover off the gear end, the first thing to look at will be the oil. It needs to be fairly clean, with no drill mud in it. Also look for metal. Some brass is to be expected, but if you put a magnet in the oil and come back later and it has more than a little metal on it, it gets more serious. The brass in the big end of the connecting rod is a wearable part. It is made to be replaced at intervals — usually years. The most common source of metal is from the bull and pinion gears. They transmit the power to the mud. If you look at the pinion gear closely, you will find that it wears faster than the bull gear. This is for two reasons. First, it is at the top of the pump and may not receive adequate lubrication. The second reason is wear. All the teeth on both the bull and pinion gears receive the same amount of wear, but the bull gear has many more teeth to spread the wear. That is why, with a well maintained pump, the bull gear will outlast the pinion gear three, four or even five times. Pinion gears aren’t too expensive and are fairly easy to change.
This process is fairly straightforward machine work, but over the years, I have discovered a trick that will bring a rebuild up to “better than new.” When you tear a pump down, did you ever notice that there is about 1-inch of liner on each end that has no wear? This is because the swab never gets to it. If it has wear closer to one end than the other, your rods are out of adjustment. The trick is to offset grind the journals. I usually offset mine about ¼-inch. This gives me a ½-inch increase in the stroke without weakening the gear end. This turns a 5x6 pump into a 5½x6 pump. More fluid equals better holes. I adjust the rods to the right length to keep from running out the end of the liner, and enjoy the benefits.
Other than age, the problem I have seen with journal wear is improper lubrication. Smaller pumps rely on splash lubrication. This means that as the crank strokes, the rods pick up oil and it lubricates the crank journals. If your gear end is full of drill mud due to bad packing, it’s going to eat your pump. If the oil is clean, but still shows crank wear, you need to look at the oil you are using.
Oil that is too thick will not be very well picked up and won’t find its way into the oil holes in the brass to lubricate the journals. I’ve seen drillers that, when their pump starts knocking, they switch to a heavier weight oil. This actually makes the problem worse. In my experience, factory specified gear end oil is designed for warmer climates. As you move north, it needs to be lighter to do its job. Several drillers I know in the Northern Tier and Canada run 30 weight in their pumps. In Georgia, I run 40W90. Seems to work well.
Specifically designed for drilling companies and others in the oil and gas industry, the easy to use drilling rig inspections app makes it easy to log information about the drill rigs, including details about the drill rigs operators, miles logged and well numbers. The inspection form app covers everything from the mud pump areas and mud mixing area to the mud tanks and pits, making it easy to identify areas where preventative maintenance is needed. The drilling rig equipment checklist also covers health and safety issues, including the availability of PPE equipment, emergency response and preparedness processes, and other critical elements of the drilling process and drill press equipment.
Present embodiments relate generally to the field of drilling and processing of wells, and, more particularly, to a mud saver valve for controlling flow of mud or other fluid during insertion of casing elements into a wellbore during drilling and completion operations and the like.
During insertion of tubular elements (e.g., casing) into a wellbore during completion operations, a flow of mud or other fluid may be pumped into the tubular elements and wellbore to facilitate the tubular or casing running operation. It is now recognized that certain aspects of these existing techniques are not optimal because of various limitations (e.g., equipment limitations) during certain phases of operation. For example, when a flow of mud or other fluid is circulated, mud or other fluid can inadvertently be spilled onto a rig floor during certain phases of operation. Existing valves to control the flow of mud during insertion and/or removal of tubular elements may be costly, susceptible to wear and corrosion, and so forth.
In accordance with one aspect of the disclosure, a system includes a mud saver valve assembly having a first sleeve, a second sleeve, and a first valve element axially captured between the first sleeve and the second sleeve, wherein the first valve element includes a support ring portion extending about a circumference of the first valve element and a center portion extending across the support ring portion, wherein the center portion comprises a dome-shaped geometry.
In accordance with another embodiment of the disclosure, a system includes a casing running tool configured to couple to a casing element and add the casing element from a casing string and a mud saver valve assembly disposed within the casing running tool, wherein the mud saver valve assembly is configured to flow a fluid through the casing running tool and into the casing element, the mud saver valve assembly includes a valve element extending across a flow path of the mud saver valve assembly, and the valve element is formed from an elastomer.
FIG. 3 is a partial cross-sectional side view of an embodiment of the mud saver valve assembly, illustrating a valve element captured between sleeves of the mud saver valve assembly;
FIG. 6 is a cross-sectional side view of a valve element of the mud saver valve assembly in an opened position, in accordance with present techniques; and
Present embodiments are directed to systems and methods for controlling circulation of mud or other fluid within a wellbore during insertion of tubular elements (e.g., casing) into a wellbore during wellbore completion operations and the like. A casing running tool (e.g., tubular running tool) may be used to facilitate assembly and disassembly of casing strings. Indeed, a casing running tool may be employed to engage and lift a tubular element (e.g., a casing joint or element), align the tubular element with a casing string, stab a pin end of the tubular element into a box end of the tubular string, engage the casing string, and apply torque to make-up a coupling between the tubular element and the casing string. Thus, a casing running tool may be employed to extend the tubular or casing string. Similarly, the casing running tool may be used to disassemble tubular or casing elements from a casing string by applying reverse torque and lifting the tubular elements out of the engagement with the remaining casing string. It should be noted that torque may be applied using a top drive system coupled to the casing running tool or integral with the casing running tool.
During a process of installing or removing tubular or casing elements, it may be desirable to circulate fluids (e.g., drilling mud) through the associated casing string. Accordingly, the casing running tool may be configured to create a flow path between the tubular handling equipment and the tubular or casing element such that fluid can efficiently pass from the casing running tool into the tubular element, and thereafter the casing string. In accordance with present embodiments, a flow of mud or other fluid through the tubular elements and within the wellbore may be regulated during insertion of the tubular or casing elements. For example, the flow of mud or other fluid may be automatically enabled when a casing running tool is coupled to a tubular element and/or when a mud pump for pumping drilling mud is in a pumping mode. The flow of mud or other fluid may be blocked when the casing running tool is decoupled from a tubular element or casing string and/or when the mud pump is not in a pumping mode. To this end, present embodiments include a mud saver valve assembly that may be disposed within or coupled to the casing running tool. The mud saver valve assembly includes a valve element configured to block mud or fluid flow when a fluid flow pressure applied to the valve element is below a threshold pressure, while enabling mud or fluid flow when the fluid flow pressure applied to the valve element is above the threshold pressure. For example, the threshold pressure may be equal to or greater than a head pressure of mud or fluid that may be contained in the casing running tool and/or a mud hose when the mud pump is not in a pumping mode. Thus, when the mud pump is not pumping mud or other fluid (e.g., when the casing running tool is not coupled to a tubular element to be added to a casing string), the valve element may block flow of mud or fluid still contained in the casing running tool or mud hose, thereby preventing inadvertent flow of mud from the casing running tool and onto a rig floor or platform. However, when the pressure applied to the valve element is greater than the threshold pressure (e.g., when the mud pump is in a pumping mode as the pipe drive system is coupling a tubular element to the casing string), the valve element enables flow of mud through the casing running tool and into the tubular element and casing string.
The length of casing 38 is held in place by a casing running tool 40 that is hanging from the traveling block 22. Specifically, a gripping device 42 of the casing running tool 40 is engaged about an outer perimeter of a distal end 44 of the casing 38. This attachment via the gripping device 42 enables the casing running tool 40 to maneuver the casing 38. In the illustrated embodiment, the casing running tool 40 is holding the casing 38 in alignment with the stump 36. The gripping device 42 may include an integral seal or may be configured to couple with the casing 38 about a seal such that a sealed passage is established between the casing running tool 40 and the casing 38. Establishing this sealed passage facilitates circulation of fluid (e.g., drilling mud) through the casing running tool 40 into the casing 38 and the casing string 28. Further, the gripping device 42 couples with the casing 38 in a manner that enables translation of motion to the casing 38. Indeed, in the illustrated embodiment, the casing running tool 40 includes a top drive 46 configured to supply torque for making-up and unmaking a coupling between the casing 38 and the stump 36. It should be noted that, in some embodiments, the top drive 46 is separate from the casing running tool 40.
To facilitate the circulation of mud or other drilling fluid within the wellbore 30, the drilling rig 10 includes a mud pump 48 configured to pump mud or drilling fluid up to the casing running tool 40 through a mud hose 50. In certain embodiments, the mud hose 50 may include a stand pipe 52 coupled to the derrick 14 in a substantially vertical orientation to facilitate pumping of mud. The stand pipe 52 provides a high-pressure path for mud to flow up the derrick 14 to the casing running tool 40. From the mud hose 50 (e.g., stand pipe 52), the mud flows through a kelly hose 53 to the casing running tool 40. From the casing running tool 40, the drilling mud will flow through internal passages of the gripping device 42, into internal passages of the casing 38 and the casing string 28, and into the wellbore 30 to the bottom of the well. The drilling mud flows within the wellbore 30 (e.g., in an annulus between the casing string 28 and the wellbore 30) and back to the surface where the drilling mud may be recycled (e.g., filtered, cleaned, and pumped back up to the casing running tool 40 by the mud pump 48).
The illustrated embodiment of the drilling rig 10 further includes a controller 54 having one or more microprocessors 56 and a memory 58. The memory 58 is a non-transitory (not merely a signal), computer-readable media, which may include executable instructions that may be executed by the microprocessor 56. The controller 54 is configured to regulate operation of the mud pump 48 and/or other features of the drilling rig 10. For example, the controller 54 may be configured to regulate a flow rate of mud or other drilling fluid circulated through the casing string 28 and the wellbore 30 during installation of tubular elements (e.g., casing 38). For example, the controller 52 may regulate operation of the mud pump 48 to start, stop, increase, and/or decrease mud flow into the casing string 28 and wellbore 30 during installation of casing 38 elements. The controller 52 may also regulate other components of the drilling rig 10 to control flow of drilling mud. For example, the controller 52 may control operation of the casing running tool 40 and/or a valve disposed along the mud hose 50.
As discussed in detail below, the casing running tool 40 also includes a mud saver valve assembly 60. When a new length of casing 38 is to be added to the casing string 28, mud flow from the pump 48 and the mud hose 50 is stopped, and the casing running tool 40 (e.g., the gripping device 42) is removed from the casing string 28 (i.e., the length of casing 38 most recently added to the casing string 28). When the casing running tool 40 releases the casing string 28, mud within the casing running tool 40 may run out of the casing running tool 40 and onto the rig floor 12. To avoid spilling mud onto the rig floor 12, the casing running tool 40 includes the mud saver valve assembly 60 to block flow of mud from out of the casing running tool 40 when the mud pump 48 is not pumping mud. When the casing running tool 40 is thereafter coupled to a new length of casing 38 and the mud pump 48 resumes a pumping operation, the mud saver valve assembly 60 automatically enables flow of mud through the mud saver valve assembly 60 and the casing running tool 40 to the casing 38 and casing string 28.
As described below, the mud saver valve assembly 60 includes a valve element configured to block mud flow through the mud saver valve assembly 60 when the mud pump 48 is not running (e.g., pumping) and/or when the casing running tool 40 is decoupled from the casing 38 and/or casing string 28. In this manner, the mud saver valve assembly 60 may block mud remaining in the casing running tool 40, kelly hose 53, and/or mud hose 50 (e.g., stand pipe 52) from inadvertently flowing out of the casing running tool 40 and onto the rig floor 12 when the casing running tool 40 is decoupled from the casing 38. When the mud pump 48 is running and pumping a mud flow (e.g., when the casing running tool 40 is coupled to casing 38), the valve element may automatically enable flow of mud through the casing running tool 40 and into the casing 38. For example, the valve element may have a material construction, geometry, and/or shape that enables blockage of mud flow when the mud pump 48 not pumping, while enabling automatic flow of the mud when the mud pump 48 is pumping. As discussed further below, the valve element of the mud saver valve assembly 60 may also be formed from a durable, resilient, corrosion resistant material, thereby enabling improved longevity and useful life of the valve element and the mud saver valve assembly 60.
FIG. 2 is a cross-sectional side view an embodiment of the mud saver valve assembly 60, illustrating a valve element 80 captured between sleeves 82 of the mud saver valve assembly 60. More specifically, the valve element 80 is axially captured between an upper sleeve 84 and a lower sleeve 86. For example, the upper and lower sleeves 84 and 86 may be tubes or annular members, and the valve element 80 may have a generally circular outer diameter. In other embodiments, the upper and lower sleeves 84 and 86 and the valve element 80 may have other geometries (e.g., square, rectangular, polygonal, elliptical, etc.). As mentioned above, the mud saver valve assembly 60 is coupled to (e.g., positioned within) the casing running tool 40. For example, the mud saver valve assembly 60 may be threaded, bolted, clamped, or otherwise mechanically attached to the casing running tool 40. The upper and lower sleeves 84 and 86 generally define a flow path 85 through which a flow of drilling mud or other fluid may flow through the casing running tool 40 and into the casing element 38. When the casing running tool 40 is coupled to a length of casing 38, the mud saver valve assembly 60 is inserted axially into (e.g., “stabbed” into) the casing 38. In this manner, drilling mud may flow from the casing running tool 40, through the mud saver valve assembly 60, as indicated by arrow 88, and into the casing 38 when the mud pump 48 is pumping. As will be appreciated, the mud saver valve assembly 60 and/or the casing running tool 40 may include seals 89 (e.g., O-rings, axial seals, annular seals, etc.), gaskets, and/or other components configured to enable a flow of mud or other fluid through the casing running tool 40, the mud saver valve assembly 60, and the casing 38.
As mentioned above, the valve element 80 is configured to block mud flow through the mud saver valve assembly 60 and, thus, the casing running tool 40 when the mud pump 48 is not pumping, while automatically enabling mud flow through the mud saver valve assembly 60 and, thus, the casing running tool 40 when the mud pump 48 is pumping. To this end, the valve element 80 is formed from a flexible, yet resilient, material. For example, the valve element 80 may be formed from a rubber (e.g., steel-belted rubber), polyurethane, neoprene, other elastomer, or other suitable material. In certain embodiments, the valve element 80 may be a single molded piece. Additionally, to enable blockage of flow and/or retention of mud within the casing running tool 40 when the mud pump 48 is not in a pumping mode, the valve element 80 has a dome-shaped geometry or shape. Details and functionalities of the dome-shaped geometry of the valve element 80 are discussed in further detail below with reference to FIGS. 4-6. The sleeves 82 of the mud saver valve assembly 60 may be formed from any suitable and durable (e.g., corrosion and/or wear resistant) material, such as steel, plastic, or other material.
FIG. 3 is a partial cross-sectional side schematic view, taken within line 3-3 of FIG. 2, of the mud saver valve assembly 60, illustrating axial capture of the valve element 80 between the sleeves 82. The upper and lower sleeves 84 and 86 are coupled to one another, as indicated by arrow 100, with the valve element 80 at least partially between the upper and lower sleeves 84 and 86. In certain embodiments, the upper and lower sleeves 84 and 86 may be coupled to one another via a threaded connection, a shrink fit, an interference fit, bolts, clamps, or other fasteners. In the illustrated embodiment, the upper sleeve 84 is disposed about the lower sleeve 86, but in other embodiments the lower sleeve 86 may be disposed about the upper sleeve 84. In yet another embodiment, the upper and lower sleeves 84 and 86 may at least partially axially abut one another. Furthermore, the upper and lower sleeves 84 and 86 may include seals, gaskets, or other components disposed therebetween to block leakage of drilling mud or fluid from the mud saver valve assembly 60.
As discussed below, the valve element 80 includes a support ring portion 102 (e.g., radially outer ring) and a center portion 104 (e.g., dome-shaped portion). The support ring portion 102 is axially captured and retained between the upper and lower sleeves 84 and 86. To facilitate the axial capture of the valve element 80, the support ring portion 102 has an upper axial contour 106 and a lower axial contour 108. The upper axial contour 106 of the support ring portion 102 is received (e.g., nested within) a corresponding axial recess 110 of the upper sleeve 84 having a similar contour. Likewise, the lower axial contour 108 of the support ring portion 102 is received (e.g., nested within) a corresponding axial recess 112 of the lower sleeve 86 having a similar contour. When the upper and lower sleeves 84 and 86 are coupled to one another, the upper axial contour 106 and the lower axial contour 108 of the support ring portion 102 are captured by the axial recess 110 and the axial recess 112, respectively, thereby securing the support ring portion 102 and, thus, the valve element 80 between the upper and lower sleeves 84 and 86. When the valve element 80 is axially captured by the upper and lower sleeves 84 and 86, the center portion 104 extends across the flow path 85 of the mud saver valve assembly 60.
FIG. 4 is a perspective view of the valve element 80, illustrating the support ring portion 102 and the center portion 104. As described above, the support ring portion 102 is axially captured between the upper and lower sleeves 84 and 86 to secure the valve element 80 within the mud saver valve assembly 60. The center portion 104, which extends between the circular support ring portion 102, is exposed to an interior (e.g., flow path 85) of the mud saver valve assembly 60. Thus, the center portion 104 is exposed to a mud flow within the casing running tool 40.
FIG. 5 is a cross-sectional side view of the valve element 80, illustrating the dome-shaped configuration of the center portion 104. While the flexible, resilient material of the valve element 80 enables deformation (e.g., bending) of the segments 120 of the center portion 104, the dome-shaped configuration of the center portion 104 enables the valve element 80 to withstand a threshold pressure (e.g., stagnant drilling mud in the casing running tool 40 when the mud pump 48 is not pumping mud) without deformation of the segments 120. The number of segments 120, the type of material, the length of the slits 122, the size of the valve element 80, and so forth, may be calibrated based on empirical data to fully/partially open at certain pressures.
A concave side 140 of the center portion 104, which is exposed to the drilling mud flow from the casing running tool 40 (e.g., an upstream direction of the drilling mud flow), may withstand a threshold pressure (e.g., amount of drilling mud) applied to the concave side 140 of the center portion 104 without deforming to the point that the pressure (e.g., drilling mud) traverses or flows past the center portion 104. As will be appreciated, the threshold pressure of the concave side 140 of the center portion 104 may generally correspond to a pressure head of drilling mud that may be within the casing running tool 40, kelly hose 53, and/or stand pipe 52 when the casing running tool 40 is decoupled from the casing string 28 and the mud pump 48 pumping operation is suspended. The particular threshold pressure that the concave side 140 of the center portion 104 can withstand without allowing the pressure to traverse the center portion 104 (e.g., via excessive bending of the segments 120) may be selected by adjusting various design parameters of the center portion 104 and/or the valve element 80. For example, a material of a particular resilience may be selected to manufacture the valve element 80, such that the segments 120 do not deform and open the valve element 80 until a particular pressure applied to the concave side 140 is reached. Additionally, a number of segments 120, a thickness 142, and/or a radius of curvature 144 of the center portion 104 may be selected to achieve a desired pressure withstanding capability of the concave side 140 of the valve element 80. In certain embodiments, parameters of the valve element 80 (e.g., material resilience, number of segments 120, thickness 142, and/or radius of curvature 144) may be selected to achieve a threshold pressure of 50, 60 70, 80, 90, 100, 110, 120 pounds per square inch, or more.
Moreover, pressure (e.g., drilling mud) below the threshold pressure that is applied to the concave side 140 of the center portion 104 may improve a seal created by the center portion 104 when the mud pump 48 is not pumping mud to the casing running tool 40. For example, as indicated by arrows 146, pressure applied to the concave side 140 of the center portion 104 may cause the segments 120 of the center portion 104 to press against one another due to the dome-shaped configuration of the center portion 104. That is, a seal interface 148 (e.g., at slits 122) between adjacent segments 120 may be strengthened, as indicated by arrows 150, as a pressure below the threshold pressure is applied to the concave side 140. In this manner, the sealing capability of the valve element 80 when the mud pump 48 is not pumping mud to the casing running tool 40 may be improved, thereby further reducing inadvertent leaking of mud or fluid out of the casing running tool 40 (e.g., and onto the rig floor 12) when the casing running tool 40 is decoupled from the casing 38 or casing string 28.
As the valve element 80 and mud saver valve assembly 60 are oriented such that the concave side 140 of the center portion 140 is exposed to the flow of drilling mud within the casing running tool 40, the convex side 152 of the center portion 104 is exposed to the interior of the casing 38 and/or casing string 28 when the casing running tool 40 is coupled to the casing 38 and/or casing string 28. In other words, the convex side 152 is exposed to a downstream side of the mud saver valve assembly 60 relative to a drilling mud or fluid flow. As will be appreciated, the segments 120 will more readily and easily deform (e.g., bend) upon application of a pressure to the center portion 104 from the convex side 152. This may provide additional benefits. For example, the ability of the segments 120 to more easily deform when a pressure 154 (e.g., backpressure within the casing string 28) is applied to the convex side 152 of the valve element 80 may facilitate pressure equalization across the valve element 80.
FIG. 6 is a cross-sectional side view of the valve element 80, illustrating deformation of the segments 120 of the center portion 104 of the valve element 80 when a pressure greater than the threshold pressure is applied to the concave side 140 of the center portion 104. As discussed above, the threshold pressure that the concave side 140 of the center portion 104 may withstand and remain sealed may correspond to a pressure head of drilling mud that may be within the casing running tool 40, kelly hose 53, and/or stand pipe 52 when the casing running tool 40 is decoupled from the casing string 28 and the mud pump 48 pumping operation is suspended. However, when the mud pump 48 pumping operation resumes (e.g., when the casing running tool 40 is coupling another length of casing 38 to the casing string 28), the pressure of the drilling mud on the concave side 140 may exceed the threshold pressure, thereby causing the segments 120 to bend (e.g., invert) and, thus, open the valve element 80 to allow flow of drilling mud from the casing running tool 40 and into the casing 38 and casing string 28. After the casing 38 is added to the casing string 28 and another length of casing 38 is to be added, the mud pump 48 pumping operation may be suspended, thereby dropping the pressure applied to the concave side 140 of the center portion 104, and the segments 120 may revert back to their natural or normal shape, as shown in FIG. 5, to close the valve element 80. In this manner, inadvertent flow of drilling mud from the casing running tool 40 (e.g., onto the rig floor 12) may be blocked when the casing running tool 40 is not coupled to casing 38 to be added to the casing string 28.
In certain embodiments, the mud saver valve assembly 60 may include more than one valve element 80. For example, FIG. 7 is a schematic side view of an embodiment of the mud saver valve assembly 60 having two valve elements 80 (e.g., a first valve element 180 and a second valve element 182) disposed in series with one another. Other embodiments of the mud saver valve assembly 60 may have other numbers (e.g., 3, 4, 5, or more) of valve elements 80. Additionally, the respective orientations of the valve elements 80 may vary. For example, one embodiment having two valve elements 80, the concave side 140 of one valve element 80 may face an upstream direction, and the concave side 140 of a second valve element 80 may face a downstream direction. For example, the concave side 140 of the first valve element 180 may face an upstream direction, and the concave side 140 of the second valve element 182 may face a downstream direction, or vice versa.
The illustrated mud saver valve assembly 60 includes the upper and lower sleeves 84 and 86 and also an intermediate sleeve 184. The first valve element 180 is axially captured by the upper sleeve 84 and the intermediate sleeve 184, and the second valve element 182 is axially captured by the intermediate sleeve 184 and the lower sleeve 86. As will be appreciated, the first and second valve elements 180 and 182 may have similar features as the valve element 80 described above. In certain embodiments, the first and second valve elements 180 and 182 may be designed to have the same threshold pressure, while in other embodiments the first and second valve elements 180 and 182 may be designed to have different threshold pressures. For example, in one embodiment, the first valve element 180 may have a first threshold pressure, and the second valve element 182 may have a second threshold pressure that is lower than the first threshold pressure of the first valve element 180. Additionally, the upper sleeve 84, lower sleeve 86, and intermediate sleeve 184 may have similar features as the upper and lower sleeves 84 and 86 described above.
As discussed in detail above, present embodiments include the mud saver valve assembly 60, which may be used with the casing running tool 40 or other component of the drilling rig 10. The mud saver valve assembly 60 is configured to automatically enable the flow of mud or other fluid through the casing running tool 40 when the casing running tool 40 is coupled to the casing element 38 and/or when the mud pump 48 is in a pumping mode (e.g., during a casing running operation). The mud saver valve assembly 60 is further configured to block the flow of mud or other fluid through the casing running tool 40 when the casing running tool 40 is decoupled from the casing element 38 or the casing string 28 and/or when the mud pump 48 is not in a pumping mode. The mud saver valve assembly 60 includes the valve element 80, which is configured to block mud or fluid flow when a pressure applied to the valve element 80 is below a threshold pressure, while automatically enabling mud or fluid flow when the pressure applied to the valve element 80 is above the threshold pressure. For example, the threshold pressure may be equal to or greater than a head pressure of mud or fluid that may be contained in the casing running tool tem 40 and/or a mud hose 50 when the mud pump 48 is not in a pumping mode. Thus, when the mud pump 48 is not pumping mud or other fluid (e.g., when the casing running tool 40 is not coupled to the casing element 38 to be added to the casing string 28), the valve element 80 may block flow of mud or fluid still contained in the casing running tool 40 and/or mud hose 50, thereby blocking inadvertent flow of mud from the casing running tool 40 and onto the rig floor 12. However, when the pressure applied to the valve element 80 is greater than the threshold pressure (e.g., when the mud pump 48 is in a pumping mode as the casing running tool 40 is coupling the casing element 38 to the casing string 28), the valve element 80 automatically enables flow of mud through the casing running tool 40 via deformation (e.g., bending or inverting) of the segments 120 of the valve element 80.
Embodiments of the valve element 80 described above provide additional improvements over exiting mud saver valves. For example, the valve element 80 may be formed from a durable, corrosion resistant, resilient, and wear resistant material, such as rubber, neoprene, or other elastomer. Thus, the valve element 80 may be less costly to produce, while also providing increased useful life. Moreover, the dome-shaped configuration of the valve element 80 enables the valve element to withstand a threshold pressure (e.g., head pressure of mud within the pipe drive system 40 and/or mud hose 50) in a first direction (e.g., direction of mud flow), while also enabling the valve element 80 to equalize pressure across the mud saver valve assembly 60 in a second direction (e.g., to accommodate backpressure within the casing string 28).
When things are running smoothly it’s easy to overlook common maintenance chores and rationalize that it’s not worth the time to regularly inspect and replace parts. But nothing could be farther from the truth. The reality is that most facilities have several pumps performing a variety of functions that are integral to the successful operation of the plant. If a pump malfunctions it can be the cause of an entire plant shut down.
Pumps are the cogs in the wheel that keep your facility functioning efficiently, whether they are used for manufacturing processes, HVAC, or water treatment. To keep pumps running properly, a regular maintenance schedule should be implemented and followed.
Consult the original manufacturer’s guidelines. Consider the timing to schedule your maintenance. Will lines or pumps have to be disabled? Select a time when the system is down and use common sense when deciding the time and frequency.
Get to know your system and make a point to observe your pump while it is still running. Make note of leaks, unusual sounds or vibrations and unusual odors.
Lubricate the motor and pump bearing per manufacturer’s guidelines. Be sure not to over lubricate. More bearing damage occurs as a result of over greasing than under greasing. If the bearing has a vent cap, remove the cap and run the pump for 30 minutes before reinstalling cap. This will allow excess grease to work its way out of the bearing.
Many pump manufacturers advise against the use of oil, petroleum jelly or other petroleum or silicon based products for elastomer seal lubrication. Using such products could cause seal failure due to swelling of the elastomer. P-80 rubber lubricants are temporary, once dry the lubrication ceases and parts stay in place. Additionally, these lubricants will not reactivate in the presence of water and they will not dry out rubber parts.
Keep your facilities running smoothly. Try P-80® temporary rubber assembly lubricants for your pump maintenance needs. Visit www.ipcol.com to speak with a specialist and request a sample for testing.
The Liberty Process LL8 Progressive Cavity Pump is ideal for abrasive pumping applications such as drilling fluids with sand and grit common in fracking operations. As a Mud Pump, the LL8 Series is a popular model on many mobile pumping rigs in use today. Replacement mud pump parts are available as well from our stock and work on other popular manufacturers models.
The Liberty LL8 is a standard flanged pump design manufactured with cast iron or 316 stainless steel pump casings designed in 1, 2, and 3 stages for 75, 150 and 225 psi discharge pressures and a flow rate of 18 up to 100 GPM.
The LL8 is a modular design with simple hardened pinned joint drive assembly. LL8 Rotors are typically hardened tool steel or 316 stainless steel with a hard chrome plating for long life in abrasive pumping applications.
All other wetted parts are either carbon steel or 316 stainless steel. Stators are available in many elastomer materials such as Buna Nitrile, Natural Rubber, EPDM and Viton. The standard seal design is a set of gland packing with a lantern ring set and flush connections. Mechanical seal options for this progressive cavity pump are readily available.
The LL8 represents one of the most popular progressive cavity pumps available for the transport of drilling mud with easily replaceable in-stock parts.
Drilling mud is most commonly used in the process of drilling boreholes for a variety of reasons such as oil and gas extraction as well as core sampling. The mud plays an important role in the drilling process by serving numerous functions. The main function it is utilized for is as a lubricating agent. A large amount of friction is generated as drilling occurs which has the potential to damage the drill or the formation being drilled. The mud aids in the decrease in friction as well as lowering the heat of the drilling. It also acts a carrier for the drilled material so it becomes suspended in the mud and carried to the surface.
Using a Moyno progressive cavity pump, the drilling mud with suspended material can be pumped through a process to remove the solids and reuse the cleaned mud for further drilling.
A mud pump (sometimes referred to as a mud drilling pump or drilling mud pump), is a reciprocating piston/plunger pump designed to circulate drilling fluid under high pressure (up to 7,500 psi or 52,000 kPa) down the drill string and back up the annulus. A mud pump is an important part of the equipment used for oil well drilling.
Mud pumps can be divided into single-acting pump and double-acting pump according to the completion times of the suction and drainage acting in one cycle of the piston"s reciprocating motion.
Mud pumps come in a variety of sizes and configurations but for the typical petroleum drilling rig, the triplex (three piston/plunger) mud pump is used. Duplex mud pumps (two piston/plungers) have generally been replaced by the triplex pump, but are still common in developing countries. Two later developments are the hex pump with six vertical pistons/plungers, and various quintuplexes with five horizontal piston/plungers. The advantages that these new pumps have over convention triplex pumps is a lower mud noise which assists with better measurement while drilling (MWD) and logging while drilling (LWD) decoding.
The fluid end produces the pumping process with valves, pistons, and liners. Because these components are high-wear items, modern pumps are designed to allow quick replacement of these parts.
To reduce severe vibration caused by the pumping process, these pumps incorporate both a suction and discharge pulsation dampener. These are connected to the inlet and outlet of the fluid end.
The pressure of the pump depends on the depth of the drilling hole, the resistance of flushing fluid (drilling fluid) through the channel, as well as the nature of the conveying drilling fluid. The deeper the drilling hole and the greater the pipeline resistance, the higher the pressure needed.
With the changes of drilling hole diameter and depth, the displacement of the pump can be adjusted accordingly. In the mud pump mechanism, the gearbox or hydraulic motor is equipped to adjust its speed and displacement. In order to accurately measure the changes in pressure and displacement, a flow meter and pressure gauge are installed in the mud pump.
The construction department should have a special maintenance worker that is responsible for the maintenance and repair of the machine. Mud pumps and other mechanical equipment should be inspected and maintained on a scheduled and timely basis to find and address problems ahead of time, in order to avoid unscheduled shutdown. The worker should attend to the size of the sediment particles; if large particles are found, the mud pump parts should be checked frequently for wear, to see if they need to be repaired or replaced. The wearing parts for mud pumps include pump casing, bearings, impeller, piston, liner, etc. Advanced anti-wear measures should be adopted to increase the service life of the wearing parts, which can reduce the investment cost of the project, and improve production efficiency. At the same time, wearing parts and other mud pump parts should be repaired rather than replaced when possible.