mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> adalah free sample

A mud pump (sometimes referred to as a mud drilling pump or drilling mud pump), is a reciprocating piston/plunger pump designed to circulate drilling fluid under high pressure (up to 7,500 psi or 52,000 kPa) down the drill string and back up the annulus. A mud pump is an important part of the equipment used for oil well drilling.

Mud pumps can be divided into single-acting pump and double-acting pump according to the completion times of the suction and drainage acting in one cycle of the piston"s reciprocating motion.

Mud pumps come in a variety of sizes and configurations but for the typical petroleum drilling rig, the triplex (three piston/plunger) mud pump is used. Duplex mud pumps (two piston/plungers) have generally been replaced by the triplex pump, but are still common in developing countries. Two later developments are the hex pump with six vertical pistons/plungers, and various quintuplexes with five horizontal piston/plungers. The advantages that these new pumps have over convention triplex pumps is a lower mud noise which assists with better measurement while drilling (MWD) and logging while drilling (LWD) decoding.

The fluid end produces the pumping process with valves, pistons, and liners. Because these components are high-wear items, modern pumps are designed to allow quick replacement of these parts.

To reduce severe vibration caused by the pumping process, these pumps incorporate both a suction and discharge pulsation dampener. These are connected to the inlet and outlet of the fluid end.

The pressure of the pump depends on the depth of the drilling hole, the resistance of flushing fluid (drilling fluid) through the channel, as well as the nature of the conveying drilling fluid. The deeper the drilling hole and the greater the pipeline resistance, the higher the pressure needed.

With the changes of drilling hole diameter and depth, the displacement of the pump can be adjusted accordingly. In the mud pump mechanism, the gearbox or hydraulic motor is equipped to adjust its speed and displacement. In order to accurately measure the changes in pressure and displacement, a flow meter and pressure gauge are installed in the mud pump.

The construction department should have a special maintenance worker that is responsible for the maintenance and repair of the machine. Mud pumps and other mechanical equipment should be inspected and maintained on a scheduled and timely basis to find and address problems ahead of time, in order to avoid unscheduled shutdown. The worker should attend to the size of the sediment particles; if large particles are found, the mud pump parts should be checked frequently for wear, to see if they need to be repaired or replaced. The wearing parts for mud pumps include pump casing, bearings, impeller, piston, liner, etc. Advanced anti-wear measures should be adopted to increase the service life of the wearing parts, which can reduce the investment cost of the project, and improve production efficiency. At the same time, wearing parts and other mud pump parts should be repaired rather than replaced when possible.

mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> adalah free sample

A mud motor (or drilling motor) is a progressive cavity positive displacement pump (PCPD) placed in the drill string to provide additional power to the bit while drilling. The PCPD pump uses drilling fluid (commonly referred to as drilling mud, or just mud) to create eccentric motion in the power section of the motor which is transferred as concentric power to the drill bit. The mud motor uses different rotor and stator configurations to provide optimum performance for the desired drilling operation, typically increasing the number of lobes and length of power assembly for greater horsepower. In certain applications, compressed air, or other gas, can be used for mud motor input power. Normal rotation of the bit while using a mud motor can be from 60 rpm to over 100 rpm.

Normal mud motor construction consists of a top sub, which connects the mud motor to the drill string; the power section, which consists of the rotor and stator; the transmission section, where the eccentric power from the rotor is transmitted as concentric power to the bit using a constant-velocity joint; the bearing assembly which protects the tool from off bottom and on bottom pressures; and the bottom sub which connects the mud motor to the bit.

A mud motor is described in terms of its number of stages, lobe ratio and external diameter. Stages are the number of full twists that the stator makes from one end to the other and the lobe ratio is the number of lobes on the stator, to the number of lobes on the rotor (the stator always has one more lobe than the rotor). A higher number of stages indicates a more powerful motor. A higher number of lobes indicates a higher torque output (for a given differential pressure), a lower number of lobes indicates a reduction in the torque produced but a faster bit rotation speed.

The use of mud motors is greatly dependent on financial efficiency. In straight vertical holes, the mud motor may be used solely for increased rate of penetration (ROP), or to minimize erosion and wear on the drill string, since the drill string does not need to be turned as fast.

The majority of mud motor use is in the drilling of directional holes. Although other methods may be used to steer the bit to the desired target zone, they are more time-consuming, which adds to the cost of the well. Mud motors can be configured to have a bend in them using different settings on the motor itself. Typical mud motors can be modified from 0 degrees to 4 degrees with approximately six increments in deviation per degree of bend. The amount of bend is determined by rate of climb needed to reach the target zone. By using a measurement while drilling (MWD) tool, a directional driller can steer the bit to the desired target zone.

The PCPD stator, which is a major component of the pump, is usually lined with an elastomer. Most of PCPD pump failures are due to this elastomer part. However, the operating conditions

The mud motor may be sensitive to fouling agents. This means that certain types of drilling fluids or additives may ruin the motor or lower its performance. One particular example, as mentioned above, would be the use of oil based mud with the mud motor. Over time the oil degrades the elastomers and the seals in the motor.

mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> adalah free sample

Kill Weight Mud or Kill Drilling Fluid Density is the mud weight required to balance formation pressure. The kill weight mud may be pumped into the well at different time depending on kill methods (Driller’s method, Wait and Weight, Bull head, etc).

When you take a kick (wellbore influx), the density of fluid in the annulus is very hard to predict because it is a mixture between drilling mud and influx. Therefore, you don’t know exactly what the density in the annulus is. Moreover if you take gas kick, shut in casing pressure will increase over time, and you will NOT be able to identify the right shut in pressureto determine formation pressure.

Looking at the drill pipe side, there isonly one pure fluid column so you know exactly its density. With the precise mud density, you can apply hydrostatic pressure concept in order to get the formation pressure and kill weight mud (the equation is showed at the beginning of the topic).

mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> adalah free sample

A properly serviced pulsation dampener is critical for your mud pumps’ efficiency, safety, and performance. Unfortunately, there aren’t many resources available to educate personnel on executing safe and effective servicing procedures. Please review the following steps with your personnel for safe pulsation dampener maintenance.

mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> adalah free sample

The 2,200-hp mud pump for offshore applications is a single-acting reciprocating triplex mud pump designed for high fluid flow rates, even at low operating speeds, and with a long stroke design. These features reduce the number of load reversals in critical components and increase the life of fluid end parts.

The pump’s critical components are strategically placed to make maintenance and inspection far easier and safer. The two-piece, quick-release piston rod lets you remove the piston without disturbing the liner, minimizing downtime when you’re replacing fluid parts.

mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> adalah free sample

A comprehensive range of mud pumping, mixing, and processing equipment is designed to streamline many essential but time-consuming operational and maintenance procedures, improve operator safety and productivity, and reduce costly system downtime.

mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> adalah free sample

A ship consists of various types of fluids moving inside different machinery and systems for the purpose of cooling, heating, lubrication, and as fuels. These liquids are circulated by different types of pumps, which can be independently driven by ship power supply or attached to the machinery itself. All the systems on board ship require proper operational and compatible pump and pumping system so that ship can run on its voyage smoothly.

The selection of a type of pump for a system depends on the characteristics of the fluid to be pumped or circulated. Characteristics such as viscosity, density, surface tension and compressibility, along with characteristics of the system such as require rate of fluid, head to which the fluid is to be pumped, temperature encountered in the system, and pressure tackled by the fluid in the system, are taken into account.

mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> adalah free sample

Mud pump is one type of pump is widely used in industry, mud pump included in the positive type pump. Components of these machines often damage by suddenly one of them is theliner. The purpose of this study is to identify the critical component liner, evaluate the damage cause liner by the method of fault tree analysis (FTA), determine the basic design of the treatment and determine the optimum schedule component replacement liner, analyze the value of reliability, availability, mean time between failure (MTBF), mean time to repaire (MTTR). The existence of the effort are intended to increase the reliability and availability that high to maximize the life of the equipment, as well as the maintenance of an effective. Conclusions obtained includes critical component is the liner 1, cause damage to the liner is scratch. The processing data using Minitab software 16 to determine distribution test, thevalue of MTTR, MTBF, reliability and availability. It is obtained the optimal schedule component liner replacements is done every 56 day with some advantages namely the frequency of replacement of the liner component decreased from an average of 11 times/year be 7 times/year and an increase in the value of reliability in the liner 2.

mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> adalah free sample

The Charge Free Stabilizer™ was designed to be installed directly before the suction manifold port between the mud pump and the charge pump. Maximizing mud pump performance by eliminating cavitation while isolating both the mud and charge pumps.

The Acoustic Assassin® was designed to be installed between the pump loop manifold and the production line. This fixture is a multi-chambered baffling system that will reduce damaging acoustic resonance generated by reciprocating pumps. The Acoustic Assassin® is an ideal addition to any pulsation control system.

The Charge Free Conversion Kit® is a high performance pulsation control kit that utilizes both compression and kinetic exchange for superior performance over traditional pulsation control methods of the past. With a gigantic increase in surface area, compression tuning, and a design to maximize energy exchange, the CFC Kits control pulsations from the pump while cleaning the signal for MWD tools.

mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> adalah free sample

FET manufactures a full range of valves and seats for every drilling and well-servicing application as part of our full line of Osprey® mud pump system solutions. All of our valves and seats can be used in water, water base, oil base and synthetic base mud applications. FET offers additional valves and seats not listed below, including drilling valves, frac valves and well service valves. FET’s QC standards for the dimensional and material specs are extremely rigid in comparison to other manufacturers. Contact your FET representative to learn more.