mud pump for 100 feet wells price
Typically, well pumps can be broken down into two categories: jet pumps and submersible pumps. Each design is built to fit the needs of various well sizes and conditions.
Most shallow well pumps are found in wells that are less than 25 feet deep and in areas with a high water table. These pumps have few running parts and require little maintenance.
This type of pump is located above the ground, typically just inside the well house, and generates high pressure to pull the water from the well and into the home using an inlet pipe. A tank or well booster pump is recommended to accompany this type of well pump to increase water pressure to the home.
Unlike its shallow counterpart, a deep well jet pump is located within the well, though its motor stays in the well house. This pump uses two pipes: one for drawing water out of the well and another for directing the water to the home. Deep well jet pumps are typically used in wells that are 110 feet deep.
A deep well submersible pump sits at the bottom of the well directly in the water. Using its motor, the pump draws water from the bottom and pushes it out of the well into your home’s water lines. These pumps can be used in wells up to 300 feet deep. The pumps work similar to sump pumps, which draw water and pump it out.
Although professional well pump replacement comes with high pump installation costs, you may have no choice but to call a professional depending on the well pump you have. Certain pumps, like deep well submersible pumps, require special equipment to get them out without damaging components or wiring. In addition to the fragility of the well’s components, removing a well pump can be very labor intensive, with some pumps weighing more than 100 pounds.
Even if you’re considering replacing your well pump on your own, call a plumber to confirm that the well pump is the issue with your system before removing it. This will prevent any unneeded work or unintentional damage to your well system.
Use the tool below to find a well service contractor who can diagnose your well pump problem and help you determine whether or not you can replace it yourself:
Pump body thick. The pump body is made of high quality pig iron, durable and equipped with a thickened base. Thickened impeller, wear-resistant and dry rotating.
(Place the vertical mud pump upright or tilted in the liquid. Make sure the pump case is completely submerged in water. In addition, the motor part can not be immersed in water.)
Rotational power is supplied to the mud pump through an external power source. The power end of the pump converts this rotational energy through a crankshaft to a reciprocating motion that moves the pistons.
The pistons move back and forth in their liners, exerting a force on the cylinder chamber. During the retraction of the piston, valves open to allow the fluid to be drawn into the cylinder. Once the piston has fully retracted, it is pushed back into the cylinder.
At this time the intake valves are closed and the exhaust valves open, allowing the piston to force the fluid out of the cylinder under pressure. Once the piston reaches its maximum depth into the cylinder, the exhaust valves close and the process repeats.
When choosing a size and type of mud pump for your drilling project, there are several factors to consider. These would include not only cost and size of pump that best fits your drilling rig, but also the diameter, depth and hole conditions you are drilling through. I know that this sounds like a lot to consider, but if you are set up the right way before the job starts, you will thank me later.
Recommended practice is to maintain a minimum of 100 to 150 feet per minute of uphole velocity for drill cuttings. Larger diameter wells for irrigation, agriculture or municipalities may violate this rule, because it may not be economically feasible to pump this much mud for the job. Uphole velocity is determined by the flow rate of the mud system, diameter of the borehole and the diameter of the drill pipe. There are many tools, including handbooks, rule of thumb, slide rule calculators and now apps on your handheld device, to calculate velocity. It is always good to remember the time it takes to get the cuttings off the bottom of the well. If you are drilling at 200 feet, then a 100-foot-per-minute velocity means that it would take two minutes to get the cuttings out of the hole. This is always a good reminder of what you are drilling through and how long ago it was that you drilled it. Ground conditions and rock formations are ever changing as you go deeper. Wouldn’t it be nice if they all remained the same?
Centrifugal-style mud pumps are very popular in our industry due to their size and weight, as well as flow rate capacity for an affordable price. There are many models and brands out there, and most of them are very good value. How does a centrifugal mud pump work? The rotation of the impeller accelerates the fluid into the volute or diffuser chamber. The added energy from the acceleration increases the velocity and pressure of the fluid. These pumps are known to be very inefficient. This means that it takes more energy to increase the flow and pressure of the fluid when compared to a piston-style pump. However, you have a significant advantage in flow rates from a centrifugal pump versus a piston pump. If you are drilling deeper wells with heavier cuttings, you will be forced at some point to use a piston-style mud pump. They have much higher efficiencies in transferring the input energy into flow and pressure, therefore resulting in much higher pressure capabilities.
Piston-style mud pumps utilize a piston or plunger that travels back and forth in a chamber known as a cylinder. These pumps are also called “positive displacement” pumps because they literally push the fluid forward. This fluid builds up pressure and forces a spring-loaded valve to open and allow the fluid to escape into the discharge piping of the pump and then down the borehole. Since the expansion process is much smaller (almost insignificant) compared to a centrifugal pump, there is much lower energy loss. Plunger-style pumps can develop upwards of 15,000 psi for well treatments and hydraulic fracturing. Centrifugal pumps, in comparison, usually operate below 300 psi. If you are comparing most drilling pumps, centrifugal pumps operate from 60 to 125 psi and piston pumps operate around 150 to 300 psi. There are many exceptions and special applications for drilling, but these numbers should cover 80 percent of all equipment operating out there.
The restriction of putting a piston-style mud pump onto drilling rigs has always been the physical size and weight to provide adequate flow and pressure to your drilling fluid. Because of this, the industry needed a new solution to this age-old issue.
Enter Cory Miller of Centerline Manufacturing, who I recently recommended for recognition by the National Ground Water Association (NGWA) for significant contributions to the industry.
As the senior design engineer for Ingersoll-Rand’s Deephole Drilling Business Unit, I had the distinct pleasure of working with him and incorporating his Centerline Mud Pump into our drilling rig platforms.
In the late ’90s — and perhaps even earlier — Ingersoll-Rand had tried several times to develop a hydraulic-driven mud pump that would last an acceptable life- and duty-cycle for a well drilling contractor. With all of our resources and design wisdom, we were unable to solve this problem. Not only did Miller provide a solution, thus saving the size and weight of a typical gear-driven mud pump, he also provided a new offering — a mono-cylinder mud pump. This double-acting piston pump provided as much mud flow and pressure as a standard 5 X 6 duplex pump with incredible size and weight savings.
The true innovation was providing the well driller a solution for their mud pump requirements that was the right size and weight to integrate into both existing and new drilling rigs. Regardless of drill rig manufacturer and hydraulic system design, Centerline has provided a mud pump integration on hundreds of customer’s drilling rigs. Both mono-cylinder and duplex-cylinder pumps can fit nicely on the deck, across the frame or even be configured for under-deck mounting. This would not be possible with conventional mud pump designs.
The second generation design for the Centerline Mud Pump is expected later this year, and I believe it will be a true game changer for this industry. It also will open up the application to many other industries that require a heavier-duty cycle for a piston pump application.
Greetings Tim & Charlott, below is a GPS link and information on the well we just installed in the honor of Tim & Charlott King! Your love and commitment has allowed our Clean Water 4 Life ministry to sink over 500 water wells for those in need here in the Solomon Islands! Here is a link to read my current newsletter with lots of pictures! http://www.rickrupp.com/newsletter.php
Togokoba SSEC Church & Community is approx 58 kilometers east of Honiara. It was a long bumpy drive to this village. I had to walk a long way to get to the place where they lived. They explained that their source of drinking water was the stream. They were so happy when I explained that our CW4L team was going to come sink a well right in their village. I tasted the well water several weeks later after our team had blessed them with a water well. It tasted so good! It was nice clean & cold water! It never ceases to amaze me that there is such a nice water table here in the rural areas of the Guadnacanal plains! I counted 10 houses in this community and the population is approx 80 people. Now they finally have a source of clean drinking water! These people have suffered for many years either drinking from an open hand dug well or from the stream. Togokoba SSEC Church & Community is very grateful to our CW4L sponsors.
Ok! This is not an easy task, and I recommend that anyone thinking about doing it AT LEAST consider having the well pump identified as the failed component by a professional prior to undertaking it. In my case, the water in my house stopped working (on a Friday night, of course). I know my system pretty well and was able to determine that the fault in my system COULD NOT BE ANYTHING BUT my well pump motor before I took any action. Guess what? I called the plumber anyway. If nothing else, you"ll pay $60 to have your diagnosis confirmed and maybe even get an estimate that will provide you with the motivation to do the job on your own. (My estimate to pull and replace the well was $2400... By following these steps I was able to do the job myself for less than $400!)
So this is what we start with. The drawing is not to scale, but essentially most wells look a bit like this. There are several different variations on what ends up being pretty much the same thing. In my case, the casing (which is the steel pipe that everything fits into and goes into the ground) has a 6" diameter. Some casings can be as narrow as 4". If you"re doing something like this on your own, wider is better! A 6" well casing gives you plenty of room to work on your own. Narrower casings can make things... complicated.
The well used in this example is relatively shallow. It only runs about 100"-120" deep. Some wells can run to depths of hundreds (or thousands!) of feet. In the case of anything deeper than about 250" I would recommend that you have it pulled by a pro. Why? Because it"s HEAVY! And there are special tools that contractors have to lift the pump from that kind of depth. Look at it this way: Even if you have someone else pull the well, you can do the repair/replace action on your own once it"s out of the ground, and still save money. ;)
My well was dug about 25 years ago. One of the things that happens with older wells is that, over a period of several years, silt from the aquifer can seep into the bottom of the casing. That"s a bad thing. Why? Because the silt builds up to a depth that"s too close to the pump, and the pump ends up sucking up the silt and muck from the bottom of the well, and then pushes it into your house! (You"ll see the result of this kind of thing in the following pictures.)
The weight of the whole pump assembly hangs on the water hose that the pump uses to push water into the house. Up near the top the water tube hits what"s called a "pitless connector," where it makes a hard right turn toward the house.
See how the pump looks a bit like a bottle made of two pieces? The bottom part is the motor. The top part is the impeller that sucks the water out of the well and sends it to the house.
When one turns on the sink to wash one"s hands or when we flush a toilet, we tend to think that we"re pulling water directly from the well to do it. In actuality, we"re not! In a properly outfitted house, you"re pulling water from a pressurized tank that acts as sort of a "middle man." (Some artesian wells don"t have this set up, but let"s pretend they do!)
When you turn on the water to wash your hands or flush your toilet, the amount of water stored in the pressure tank is reduced. Reduced water in the tank means reduced pressure. The pressure switch on the tank is set up so that it knows what point to turn ON the pump (pulling water up from the well to replace what you"ve used), and what point to turn OFF the pump (to keep your system from exploding). Having a pressure tank does two things for you:
Ideally, your well pump should be able to push more water than above-average household use will require. (Most houses are recommended to have a pump that will support 5 gallons per minute.) That way, more water per minute is pushed up from the well than you can (normally) expect to be able to get out of a sink, or a shower. By having a pump that exceeds your practical use, the pressure tank is able to maintain steady flow. There will always be more water available to the tank than you can pull from the tap. With the right pump, you can have two showers, a sink and a toilet all flowing at the same time without any discernible drop in pressure.
Once you"ve made your wrench, you just stick it down into the well, thread it into the connector and get ready to PULL. While you do that, make sure someone is holding onto the safety rope! If anything goes wrong, and your partner happens to NOT be holding the rope, the well pump will fall into the abyss... lost forever.
Once the cap is off, take a look down the well with a flashlight. You should see something that looks a little like this image (which I "borrowed" from a google search, because I forgot to take my own picture). You"ll see utter and complete darkness at the bottom of the well... maybe some water, if it"s shallow... and the pitless connector on the inside of the casing. You"ll also see your safety rope, and the electrical wires that power the motor.
As you can see, the pitless connector is where the water makes "a hard right turn" out of the well and toward your house. It"s a pressure fitting, and it"s usually made of brass. On most wells they"re about 4" down from the top of the well... which means they are usually BURIED... which is scary.
"Why are they buried?" You may be wondering. "It"s awfully inconvenient for them to be down so far in the well." Yes! It is... but that"s just the way it has to be. Pitless connectors have to be located BELOW the frost line for your area. If they aren"t, all it will take is one really cold night to freeze up. As I mentioned above, the connectors are usually brass. Brass is a soft metal. It doesn"t take much for it to split.
Seriously. Very gentle taps with a hammer as you turn the wrench should do the trick. It will allow for you to thread the pipe fully. It worked beautifully for me.
B) Try to pull it up without being 100% confident that it"s got a good connection. Nice and snug! If you don"t have a snug connection, you take the chance of dropping everything down to the bottom of the well. If that happens, get yourself a shovel and a checkbook.
It"s very important that you NOT get any kinks in the water line (the black tube). So, pulling the pump is definitely a two person job. As one person pulls it up out of the well, the other person walks it (in a straight line or in a curve) away from the well.
Dogs are really helpful to have around when doing a job like this. Moral support is important. Especially when, after a couple of minutes pulling up the well pump, you realize that you"ve been making some very poor decisions about exercise and eating habits.
Keep in mind, the well pump (itself) usually weighs about 50 lbs. The water trapped in the tube also holds significant weight. The deeper the well, the more weight you"re dealing with. Plus, there"s that whole "physics and leverage" thing to deal with.
Bottom line: I"m guessing that I had to pull a 70lb weight, nearly 100 vertical feet. It"s quite a job. Forearms, back, hips, biceps... all of them hurt the next day.
Furthermore, up until this point, I had no idea what kind of well pump was down there. They come in various configurations of power, voltage, number of wires, and number of gallons per minute. Normally, the Horsepower Rating is written (as a courtesy) on the underside of the well cap. No such luck here. I had to pull it up just to find out what it was. You may be in the same boat when it"s time to do yours.
Turns out that mine was a 3/4 HP Jacuzzi. They sold out to a company called Franklin Electric years ago. Since it was just the motor that fried, it might have been possible to order a replacement motor (which would generate significant savings), but that might have taken days or weeks to find/deliver. I didn"t want to measure the amount of time I was without water in terms of "days or weeks." Plus, this pump was so clogged with gunk that it wasn"t worth taking the chance on another failure. A whole new pump was definitely required.
Note: This is one of those moments where it"s good to get along with your neighbors. Thanks to mine, we were able to hose off the motor to find out exactly what the specs were. (See, the source of my water was sitting on the ground... Hence I had no water with which to hose off the pump!) The worn out pump ran on about 8 amps, and pushed about 6.8 gallons per minute. It"s a 220V, two-wire motor. That"s exactly the sort of thing you need to know when you"re buying a replacement. Make notes or take pictures of this information and take it with you to the store.
Let"s take a look at the cleaned-off pump. You"ll note the two pieces, (like in my drawing). The far left is the electric motor. The dirty clyinder in the middle-left is the impeller. The black stuff in the middle is a WHOLE LOT of electrical tape, covering the spliced electrical connections for the motor and the check valve that keeps water from flowing back into the well. The thing that looks like a bulb (toward the right) is called a "torque arrestor." Remember how I told you that my well casing is 6" wide? Well... the well pump is only 4" wide. The Torque Arrestor rubs up against the well casing and keeps the pump from spinning at the bottom of the well.
Also, did you notice that everything is resting on a couple of saw horses? Yet another application in which such a simple tool can be incredibly useful. If you don"t have a set I highly recommend picking a couple up for the purpose of doing this job. The ones I"m using are quite inexpensive, lightweight and strong.
In most cases there are going to be salvageable components. For mine, the torque arrestor was in pretty good shape, as were the hose clamps that held them onto the water line. Once you get them all off, set them in a safe place for later.
Since I knew that the well pump had been sitting in muck for who knows how long, it seemed like a good idea to shorten the length of the water tube. As you can see, I walked off about 10" of tube length from the well pump and prepared to make my cut. (By the way, I used a set of ratcheting pipe cutters. If you don"t have a set of these, they go for about $11 at home depot and they make life SO much easier when you"re doing plumbing.) Making the tube shorter would result in a shallower suspension and (hopefully) preserve the life of the new pump.
YUCK! That"s a 1" tube so full of compacted muck that it really restricted the flow of water to my house. NO WONDER THE PUMP FAILED! Keep in mind, we"ve done testing for harmful bacteria and a slew of other things on our well and it"s always come up clean... but still. Ew!
Before we head to the store to buy the replacement pump, we needed to make sure that the shopping list included EVERYTHING. We already knew we needed the well pump and the water line, but what kind of shape was the pitless adapter in? I know it looks rough, but it"s actually not that bad. I gave it a quick scrub under the garden hose, and inspected the O-Ring.
I genuinely recommend that you do a little searching around on the web for a replacement pump before jumping in your car and assuming that Home Depot or Lowes will have the one you need, in stock. I got extremely lucky. I didn"t search before I got in the car. The nearest store happened to have the pump I needed. I later learned it was the only one in stock within 30 miles of me! As luck would have it, it also turns out that this one produces TEN gallons per minute at a lower rated amperage than the original. (Hooray for improvements in technology!)
This Flotec pump had a sticker price of under $340. Since it was Memorial day, they gave me the 10% Veteran"s discount at Home Depot, (shameless plug for businesses that respect military service). In the end, it wound up costing me a little over $300. GOOD DEAL!
Note: This model did not come with the check valve, or the reducer needed to get down to the 1" spur I would need for the water line. Sadly, home depot didn"t carry the right check valve, or spur, for this pump. I had to go somewhere else for that.... a place that did NOT offer the Veteran"s discount and hence shall not be named in this instructable.
I got everything home and started throwing it together. Note that I DID NOT use pipe dope. I used Teflon tape. Pipe dope isn"t always safe for potable water, so it"s recommended that you just stick with Teflon.
Looking at the close-up picture of the assembly, there"s a 1 1/4" stainless nipple threaded into the top of the well pump, a 1 1/4" check valve (brass) and a stainless steel reducer (aka "spur") that goes into the hose line. I used my salvaged hose clamps to secure the new water line to the reducer.
Some people may read this and wonder, "What is a check valve?" It"s basically a valve that only allows fluids to move in one direction. Water can flow into your house when the pump pushes it, but it can"t drain back into the well when the pump stops. This is a vital component, because when your system gets pressurized the check valve keeps all the water in your house from dumping back down into the well. Kind of a big deal.
While you"re at the hardware store make sure to pick up a set of crimp connectors for the electrical connections. It should come with two connectors and some heat-shrink material. Strip a clean bit off of the wires coming from the house and crimp the connectors with a good pair of pliers. Slide the heat-shrink material over the connection and then heat it with a heat-gun, or a butane torch. (A lighter doesn"t get hot enough to do a good job.)
Once you get to this point, you"re ready to make sure the well pump is working. I forgot to take a picture of that part, but it goes like this: Get a BIG bucket (like a 10-20 gallon plastic tub) and use your awesome neighbor"s hose to fill it up with water. Then submerge the assembled well pump into the water, making sure water covers the impeller intakes.
Then put your cell phones to good use. Have your assistant go down into the basement and flip the breaker that will turn on the pump. You should immediately see it sucking water out of the tub at a rapid rate. If it does, the pump is ready to go back down in the hole!
Feed the pump back into the casing slowly, using the safety rope. Line up the pitless connector, using a flashlight. Slide it into place and then seat it fully by giving it a couple of downward whacks with a hammer until you feel it seated properly.
For the pressure tank to work correctly, the ambient pressure (while completely drained) has to be -2lbs from the pressure at which you want the well pump switch to kick on. I like my water pressure to be between 55 and 75 psi. That means, the ideal air pressure for the bladder in the tank was about 53 psi. I hooked up an air compressor and filled it until it reached that point.
Not performing this step will cause a variety of problems, not the least of which is "short cycling." If you have too little (or too much) air in the tank it can throw off the actual volume of water the tank will hold. That can lead to the pump constantly switching on/off... which eventually burns out the pump, or the pump switch. Not good.
What you"re looking at here is a well pump switch. They come pre-set for 30/50 and 40/60. The first number is the psi at which the switch will sense the pressure in the system is too low, and it will turn the pump on. The second number is the number at which the pressure in the system makes the switch say "Okay... that"s enough."
This well switch is brand new. I bought it the night before I replaced the well pump, hoping that it would fix my well problem. Obviously, it didn"t.
Anyway, I don"t like it when my water pressure is set for 40/60. I like it to be at about 55/75. This particular model of well switch is adjustable. With a few turns of this nut, I can raise the ratio to the place where I want it.
You have to be VERY careful when you do this, and I don"t recommend that anyone try it. The reason I do it, is that it lets me make my adjustments without constantly having to reset the breaker. I tweak it, and let the pressure tank fill up. I then use the valve underneath to release water pressure. As I release the pressure, I watch the gauge to see what point the switch kicked on. Once I adjusted it to the point where the pump flipped on at 55 psi, I was good to go.
First, you have to calculate the volume of water that"s in the well. In my case, I"m going to guess that it"s about 70" of total water space in a 6" tube. Using the formula πr²h (3.14159x9x840) you get a total volume of about 23,750 cubic inches. That"s about 102 gallons of water occupying the well at its fullest point.
Proper chlorination requires 3 pints of 5% chlorine bleach per 100 gallons of water in the well, PLUS 3 pints of the same to sanitize the plumbing inside the house. That"s a total of 6 pints of 5% chlorine bleach. A gallon is 8 pints, so a single gallon will be enough to do the job AND sanitize the well cap before I put it back on.
Here"s what you do: Dump about 3/4 of the gallon of bleach in the well (with the water pump still on, so you can still use your hose). Then run your hose down the well to circulate the bleach. This process WILL pull bleach water into your house, so don"t plan on using the water during this process. Run the hose for about an hour to get the water from the bottom all the way back up to the top, ensuring that the chlorine mixes with ALL the water in the well. Then use the remaining 1/4 of the bottle to sanitize the well cap. Put the cap back on and go inside.
Repeat the process using the HOT water. It"s going to take a little longer for the bleach smell to show up, because the water from the well is going to have to make it through your water heater, and then up through the hot water pipes.
Go to sleep. It has to sit for at least 12 hours, undisturbed. No sinks. No flushies. No washies. The next day, hook up your hoses and start purging. DON"T SUCK THE WELL DRY WHILE YOU DO IT. Also, DON"T DRAIN THE BLEACH WATER INTO THE LEECH FIELD FOR YOUR SEPTIC SYSTEM. Remember, there were about 100 gallons in the well, so figure out how many gallons per minute you push through the hoses and stop when you hit about 150 gallons through the system. In my case, that was about an hour and a half.
Make sure you dump the water someplace safe. Run each tap for a couple of minutes. Give the toilets a flush or two. Then test the water for chlorine content to make sure it"s safe to drink with a kit you can get from the hardware or pool supplies store. Keep running the water until the test comes back at safe levels to drink.
Thanks for reading! I really hope that this instructible is helpful for those of you that find yourself in a spot of trouble, and for anyone that"s just curious about how this process works. It was my first time going through it, and the main reason I put this together was that I couldn"t find a really good resource that guided me through the whole thing, step-by-step. This is my way of paying the world back for all of the little kindnesses I"ve experienced in life. If you ever find yourself in a similar position, regardless of the topic, I would ask that you consider doing the same. You never know who you might be helping!
I"ll spare you all the details of what I went through to figure out the problem. Bottom line: When I replaced the well pump, I probably should have replaced the electrical wiring going down to the pump. Two reasons for this:
1) The wire I inherited was some kind of specialized, 12 gauge, submersible pump wire. Old school. Prone to problems. It didn"t have a ground wire, which I thought was weird at the time but figured the previous pump had been working for years without it... so... made due with what I had.
2) That old school wire can go bad on you. Even with a torque arrestor in place the pumps can spin inside of the casing, which twist the power line. If given enough time, the wire will eventually break... which is what happened to me.
The moral of the story: Replacing your electrical wiring only costs about $150 (if you go with the high-end, 12 gauge, no-casing, submersible wiring you can get at places like Lowe"s). The good thing about the newer stuff is that it doesn"t tend to break when it gets twisted up. If you don"t want to have to pull your well pump up out of the casing again, just to change the wiring three years after you did the job, maybe take care of it while you have it out of the ground the first time.
Just looking at the pictures of the slimy red gunk in your pipe and around your pump makes me think you should do some googling on "Iron Bacteria". I can"t be certain but it could be a possible cause of your issues.
When selecting the replacement pump don"t just assume that the last guy chose the perfect pump for the job. After all there could be a reason the original pump failed. I would recommend going back to basics and select a pump based on:
Pump ends are made up of a stack of impellers. Each impeller increases the pressure developed by the impellers below it (without increasing flow). So a shallow well might need a six impeller pump, while a deep one will need more. Perhaps twenty or more. The upshot of this is that there are hundreds of motor/pump end combinations to choose from, and while it"s not a particularly exact science it"s important to choose one that will operate happily in your application. You should be able to find pressure/flow charts on pump company websites and catalogues.
Sorry, got a bit carried away there. My brother and I used to own a pump company (Pumpmaster Australia) so pumps have played an important role in my life.
Iron bacteria! Thank you for the tip. We"re in a situation here where the house had two owners before we bought it in 2011. The first owners were amazing. The second owners were really nice folks, but the word around the neighborhood (and the evidence we"ve seen around the house) is that they were not "maintenance people." We"ve gradually been replacing the big-ticket items as they fail from the years of neglect. I"ve already replaced most of the plumbing between the well pump switch and the house, including the water softener and neutralizer. They were both so clogged up with gunk that the valve systems failed. (Nothing like a mouth full of salt water after a regeneration!)
We"ve had the well checked for harmful bacteria a couple of times. It always comes up clean. I don"t know for sure if they test for stuff that isn"t particularly harmful. Now that you"ve mentioned it, it"s definitely on my radar. I had never considered that bacteria might be the cause of the sediment sticking to the plumbing.
Hi. I don"t have a solution for cleaning out your pipe, but I"m not a plumber. I"m sure there must be a way. Maybe you could put the question to the Instructables community via a forum topic.
I guess you live in a place with cold winters. I"ve never seen a pipe buried so deep. That must really complicate things. Bores in Australia just have the pipe coming straight out the top of the well. No need for that pitless connector.
I don"t need to fix a well nor do i own a house or a well but this was so well written and interesting I had to read the whole thing it"s interesting how these things work look forward to more instructabels from u in the future thanks for the great ible
2) This was my first "ible." It has been so well received that I think I am now hooked. You will definitely be seeing more from me, and I hope they are as entertaining and informative as it appears this one has been.
3) Service is as service does. I"m just glad to be useful. Whether it was in uniform, or in my own back yard, it"s all the same: A little bit of effort can make the world better, often in ways we did not anticipate.
Yep, works fine....Started out knowing jack shit about well pumps, about to call a pro for a emergency repair in a rural area...sent your instructable to my brother, mom, and dad...we all reviewed it, made notes, shopping list...printed/saved it to have on hand...got it done no problem....like seriously a life saverReplyUpvote
Side note for those reading this. Your probably passed this point and its a rare case but possibly note for the future. The other night we were struck by lightning. After a little over a $1000 of repairs to my electrical system ( not including labor, im an electrician) i got power restored but didnt think of testing my well pump. It was only running on one leg (120 v not the 240v its supposed to) . It was operating at a severely reduced rate and potentially energized my water. I dont think i need to get into why its bad and unsafe but if this happens make sure you mention to a qualified electrician doing the damage inspection that you have a well. There is alot of components to an electrical system and your well can be easily overlooked. Make sure you well pump gets megared ( insulation tested) before its put back into service. It also a good test for suspected pump failure aswell. Its a pass or fail test. If its within specs your safe if its not it needs to be replaced
You sir, are a scholar and a gentleman! Thanks to your amazing and detailed description, I felt confident enough to tackle this task, which I managed to do, start to finish. I’m now enjoying the amazing water pressure and volume of a brand new deep well pump! I owe you a big debt of gratitude.
Hey, my DIY husband is attempting this on a 95° day with high humidity. Just wanna thank you for the great instructions/images. He"s not in the mood to answer questions, yet I"m the one running to the hardware store. Especially helpful was the pictures of the gunk in the pipes. Instead of gagging and running away, I simply nodded my head and agreed to get more pipe. Another marriage saved!
I, for the first time, just completed this project too. I however had a bad tank that I replaced as well. The tank is likely what took the pump out. Anyway, between watching dozens of YouTube videos and a lot of reading, I was confident enough to tackle this. Just for those that are wondering, total cost was $950, and I got 2 different quotes of $2800 and another at $3100 to do this job! The whole project took about 12 hours total, 2 days off from work, and some help from my awesome brother! Lastly, and I should have led with this, but this instructable is seriously the absolute best one for this project out on the internet that I found. He really covers everything! Thanks for sharing. It truly helped to give me the confidence needed to tackle this. I saved $2,000! Full disclosure though, I am an extremely accomplished DIYer, I own many, many tools, and have a strong knowledge of plumbing, electrical, and carpentry. I occasionally help a good friend with his home improvement business.More CommentsPost Comment
This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.
We have a huge air compressor on the rig that blows air down the drill stem. The air comes back up the hole with enough force to move all cuttings up and out of the hole. If the well is producing water, the water will come too. Most of the time, we are actually pumping water into the air stream already, and we are really looking for an increase in the water. If we think we have hit water, we can turn off our water injection pump and check the flow of water with the air compressor alone.
There is no definite answer to this question. We are estimating the flow based on what we see flowing from the well. Sometimes, the air pressure in the well can “hold back” on the flow, causing us to underestimate the production capacity. To overcome this, we can release the air pressure for a few minutes, and then reapply it after the well has built up a large volume. We then would see the volume of water that the well produced after several minutes. Then with simple math, we can calculate the production capacity. But it is also important to understand that the well production can also vary over time. So the well may produce more or less water in the future than it does today.
We are not only looking for water. We are mainly looking for the rock that produces water. The depth of each layer of rock depends greatly on the location and elevation of the drill site. The formations are relatively flat below the surface. However, they may not be level. We use a gps to tell us the elevation of your drill site and we survey the area wells that we have drilled and compare their elevations. From this, we can estimate the depth that your well will need to be. However, we have found out on many occasions, that when God laid the foundations of the earth, He followed no rules. It is not uncommon to see formations rise or fall several hundred feet in a mile. For instance, we drill in one subdivision where the depth to the lower trinity is 760′ on one side of the road, and 840′ on the other. We can never be sure about the depth of your well until we actually drill.
However, the electrical and motor cooling requirements are certainly different with voltage drop to the motor and various other factors becoming much more important. In Part 2 of this three-part series on the design of a submersible pump we will design our pump end using the hydraulic design data to fit the same sample application we previously used for a vertical turbine pump.
Using our example installation in previous columns of The Water Works, we have successfully designed a sample water pumping installation for a vertical turbine pump with the following conditions:
Now that we have completed the determination of the required pump capacities and operating head, the first step in actually selecting a submersible pump end is to estimate the target horsepower required for the design conditions. From Part 1 (WWJ, January 2017):
From the above brake horsepower (BHP) estimates, it is apparent there will be a wide disparity of required horsepower (almost 30 BHP) between the two operating points. Generally, an application that requires two operating points so far apart requires strong consideration of either using a variable frequency drive (VFD) to use the affinity laws to lower the pump and motor speed for the alternate condition, an inline control valve to regulate outlet pressure and pump discharge, or a pump with an extremely flat head-capacity (H-Q) curve.
In our example, the use of a VFD has previously been determined to be the most cost effective solution, although an inline control valve could also have been used. However, it is highly unlikely the desired horsepower of 14.5 BHP at the alternate COS would have been met as the majority of submersible units have steep operating curves, owing to multiple stages plus the pump speed of 3450 RPM.
The final option, use of a flat curve pump, would also be unlikely as a preferred choice. Again, this is due to the pump’s rotation speed and number of pump stages required, except for the possible use of a 10-inch or 12-inch-diameter pump, which would require fewer stages than a smaller unit.
Although the hydraulic design is primarily vested in the pump’s capacity and head, the bowl diameter is also a critical factor. With a submersible pump, the bowl diameter is generally dictated by two primary conditions: the required pumping rate needed (in gallons per minute) and the limiting diameter of the well casing or wet well the bowl will be placed into (the maximum bowl outer diameter [O.D.]).
Table 1 cites the general maximum and minimum flow rates (including speed reduced minimum flows) for various bowl diameters at their respective best efficiency point (BEP) from various manufacturers for 3520/3450 RPM (3600 RPM synchronous speed) and 1760/1725 RPM (1800 RPM synchronous speed) rotational speeds.
The maximum rated capacity for each bowl diameter and speed are based on the typically highest BEP from various manufacturers, while the minimum flow for each bowl diameter and 3600 RPM speed represents an approximate maximum pump and motor speed reduction of 40% from the practical BEP at the lowest rated flow rate for each diameter and speed.
This would approximate correction of the performance of a submersible pump and motor when used on a VFD or when used with a control valve to maintain a minimum motor speed of 36 hertz (~2100 RPM) to maintain proper motor cooling and bearing lubrication, well above the manufacturer’s typical minimum of 30 hertz (~1750 RPM).
Vertical turbine pumps (VTPs) do not generally operate with the same flow range limitations as submersible pumps and motors. Therefore, the range of allowable flow rates with a VTP is often greater than that with a comparable submersible unit. The vast majority of 6-inch and most 8-inch-diameter submersible pump motors below 100 HP operate at a two-pole speed, or 3600 RPM. Therefore, this example pump selection should also be conducted using that same speed.
Given the knowledge of the primary and secondary (alternate) design capacities (500 GPM and 156 GPM) and the well diameter (12 inches) creates a fairly easy determination of the bowl diameter. From Table 1 it is apparent either a 6-, 7-, 8-, 9-, or even a 10-inch-diameter bowl assembly at 3450 RPM will likely work for this application with a 6-inch-diameter bowl at the extreme end of its practical and efficient flow range for 500 GPM.
The minimum recommended flow for a 10-inch-diameter bowl is also above the BEP for the low flow of 156 GPM and will most likely only require two or three stages to produce the needed head, which will result in a flatter total head curve. This is generally not as desirable for use with a VFD and compromises the pump efficiency and optimum clearance inside a 12-inch-diameter well by using a 10-inch-diameter bowl. This tends to limit the best overall selection to a 7-, 8-, or 9-inch-diameter bowl.
Building a unit through an analysis of a per-stage performance of individual stages (Figure 1), as with a VTP, and then dividing the total head required by the head per stage to determine the number of stages and horsepower needed to create an assembled pump.
Evaluating a manufacturer or supplier’s preselected and preassembled units and then selecting a pump that comes closest to the required flow and head (Figure 2).
When using a single-stage performance curve to evaluate a potential submersible pump, always be cognizant multi-stage pumps almost always display a higher efficiency at the same operating point, impeller trim, and capacity than a single-stage unit, so an efficiency correction may be needed.
For example, the single-stage bowl assembly shown in Figure 1 is the same bowl assembly with the same impeller trim (4.875 inches) and nominal speed (3600 RPM) as the 4-stage bowl assembly in Figure 2. However, the efficiency is three points higher (77.9% vs. 74.9%) for the 4-stage bowl. This relationship holds true for both VTPs and submersible pumps.
Usually, if any correction is required for multiple stages, this is generally indicated on the pump curve itself. In many cases this type of unit is further classified by the bowl’s BEP design flow and/or motor horsepower, especially when stainless steel impellers are used. Stainless steel impellers are not as easy to trim. Therefore, knowledge of the well diameter and the approximate required horsepower will often provide a shortcut to a pump selection.
For our example, 43.77 of estimated HP translates to the probable need for a 50 HP motor. This could provide the information required to select a preassembled submersible pump with a rating of 500 GPM and a 50 HP motor. This procedure is often shown on pump selection data sheets or curves with nomenclature to indicate the bowl diameter first, followed by the pump’s rated capacity or relative rating, the number of stages, or the motor horsepower.
For example, a specific manufacturer may use a model number such as 7TLC, 7CHE, 8RJO, or 8M23. The first number (7 or 8) usually signifies the bowl’s outer (nominal) diameter. The second and/or third letter (TL, CH, RJ, or M) may designate the manufacturer’s bowl capacity or head rating, such as L for low, M for medium, or H for high. The final letter or number often describes whether the impeller is an open (using an O) or enclosed (E or C) impeller. The use of a specific number (as in 23 for 230 GPM) may indicate the bowl’s rated capacity at its BEP. In some cases, “S” is inserted into the model number to signify the unit is a submersible pump.
Finally, the number of stages and the horsepower rating is often applied to the end or sometimes as part of the model number. A complete model number for an assembled submersible pump unit, for example, may be an 8SHHE-7-100, to signify an 8-inch nominal bowl diameter submersible pump, with a high capacity and head rated enclosed impeller, equipped with seven stages, and a 100 HP rated horsepower motor. In all cases, you should verify the breakdown of a specific model number with the manufacturer as many pumps do not follow these criteria.
Occasionally, I receive a request from someone to design a submersible pump using a semi-open impeller. Although I have used this type of impeller numerous times on VTPs, I do not routinely use them on subs for several reasons.
First, since they are locked onto the pump shaft and often situated several hundred feet down a well, they cannot be adjusted to regain performance or efficiency without pulling from the well. Secondly, although semi-open impellers are often a few points higher in efficiency, they usually display more axial and radial thrust than enclosed impellers, making them undesirable for use on the lower thrust rated submersible motor.
Finally, designing an application using semi-open impellers is at best an estimation since the pump’s performance and horsepower draw is primarily a factor of the impeller’s proper running clearance from the bowl. Any variation to this clearance from the manufacturer’s published curve data will adversely impact the performance by underperforming, overperforming, over possibly overloading the motor.
The seven submersible pump ends in Table 2 represent only a fraction of those available for the primary conditions of service. However, these potential selections nonetheless represent a cross-section of the typical bowl diameters and number of stages to consider for this application.
The final determination of the selected pump must weigh several factors. Some are universal while others may be site or locality specific. And since it is fairly obvious all the selected bowls will fit inside the 12-inch well casing, this initial factor can be ignored.
The next selection criteria I generally examine is the BHP requirement and pump efficiency at the specific operating condition that will be subject to the highest use. In our example, even though the bowl assembly has been designed for a primary design condition of 500 GPM, in actuality the pump will usually operate somewhere between the two design points with the alternate COS (156 GPM) in service much more than the primary COS. The three units with the lowest BHP requirement at the alternate design condition in the table are pumps R-1, F-1, and M-1.
My next criteria, particularly since the efficiency at the primary COS is close for all units, is to evaluate the operating speed at the alternate COS. This is more important to the success of the installation than one might imagine, particularly when a VFD will be used for motor control. Most motor (and some pump) manufacturers dictate the motor speed shall not fall below 50% speed (30 hertz, or ~1750 RPM). This is to provide adequate bearing lubrication in the motor as well as maintain enough velocity past the motor for cooling. As previously stated, when feasible, I prefer to design an installation so the pump and motor will not exhibit a minimum speed below 40% of the motor’s rated speed or about 2050-2100 RPM.
Tempered with this fact, however, is the knowledge the motor must be permitted to operate at a low enough speed to facilitate a reasonable VFD operating range and proper control settings. Experience has taught me this factor works best for a multi-stage submersible unit when using a shutdown speed between 70%-90% of full load (FL) speed—a range of 75%-85% of FL motor shutdown motor speed often works the best. Obviously, all these criteria must be ascertained after a full evaluation of the pump curve (flat vs. steep) and HP at the minimum speed.
From an examination of the pumps in Table 2, it is evident all the sample pumps fulfill these desires, with pumps G-1, R-1, L-1, G-2, and F-1 fitting the best at the reduced flow of 156 GPM along with a reduced speed range between 75%-85% of FL speed.
Finally, when cost is a factor, weighing the individual options for the lowest initial and operating cost is often conducted. For this final evaluation, pumps R-1 and F-1 were both good choices, although my ultimate selection was for pump R-1 as the runout capacity (Q = 575 GPM) was lower than F-1. The BEP for the R-1 pump was also slightly to the left of the primary design point which helps to retain higher operating efficiencies at lower speeds, plus the pump was represented locally and replacement parts were more readily available.
The runout capacity of ~575 GPM is an important selection criteria for this example to avoid excessive well overdraft, especially since flows above 500 GPM will be served from a supplementary source. See Figure 3 and Figure 4 for full speed and variable speed curves for pump R-1, a 7-inch × 3-stage bowl assembly.
Now that the pump end has been selected, we generally examine any special construction or metallurgy required for the pump end. If sand or abrasives were a concern, bowl wear rings might be warranted. If the bowl’s upper stages were exposed to excessive high pressures, O-rings or gaskets may be indicated to prevent inter-stage leakage. Since most 6- and 8-inch bowl assemblies are constructed using threaded construction between stages, this would usually not be a concern unless a 10-inch or larger diameter bowl was selected and only then with pressures in excess of the manufacturer’s pressure rating.
Next, static or dynamic balancing of the impellers should be considered. On one side, this pump uses a stock pump with only three stages and fairly small diameter (4.875 inches) impellers, plus we plan to use a 7-inch-diameter bowl inside a 12-inch well casing, so balancing of the impellers is probably not needed. However, the added cost for balancing just three impellers does not generally represent a huge added cost to the bowl assembly. So if there is any concern regarding the well’s alignment, this may be a desirable option.
Finally, many firms feel all larger capacity units should be factory tested to verify performance. Although I often require factory testing for expensive or large or deep well pumping units, submersible and vertical turbine, I rarely require or recommend factory testing on smaller (<10 inches) wet ends for various reasons.
Besides the added cost (which can actually cost more than the pump itself) and the associated time delay, experience has shown conducting factory testing on smaller diameter, multi-stage pumps does not generally result in any true power savings or added assurance to the owner, especially since the selection curves from the majority of pump manufacturers have repeatedly been shown to be accurate for capacity, head, and horsepower. Also note the majority of submersible pump models between 6 and 12 inches have been tested by their manufacturer during development.
Remember, any of the above concerns will usually result in not only added cost but a delay in constructing and shipping the unit, so consider these carefully. For our example, none of these concerns are present, so the final factor would be the pump setting and drop pipe size.
The riser drop pipe and check valve sizes depend on various factors: the desired minimum and maximum uphole velocities (critical when using a VFD); friction losses; pipe cost; well and drop cable clearance; and adequate space for any additional elements in the well/pipe annulus—sounding tubes, well or water level measurement devices, future chemical treatments. For our example installation, the pump will operate within a range of 156 GPM minimum, up to 500 GPM maximum.
Figure 5b shows flow ranges for various pipe sizes, and indicates a desired flow range of 160-700 GPM for 5-inch drop pipe. These values will maintain a minimum uphole velocity of ~2.5 feet per second (FPS) at 160 GPM to transfer any heavier solids from the well to prevent settlement onto the pump, with a maximum uphole velocity of 10 FPS at 700 GPM as an upper economic sizing. Figure 5b shows friction loss for new 5-inch steel drop pipe at 500 GPM is 4.16 feet per 100 feet of pipe with a velocity of 8.02 FPS.
Figure 6 and Figure 7 are included for those who use either PVC or flexible hose as drop pipe. We will finalize the friction loss calculation upon determining the pump setting.
The desired pump setting is truly a case-by-case determination that must be performed with full knowledge of the well casing diameter and depth, well screen upper termination depth, the reliable pumping water level (PWL), sand or abrasives pumping potential, and a reserve (safety) factor for unusual well drawdown or seasonal drafts.
Typically, I like to plan deep well installations to maintain a minimum of 10 feet of submergence over the top of the pump, not the suction or inlet, at the maximum projected pump capacity. For our example, this translates to a minimum pump setting of 110 feet (~100 feet PWL at 515 GPM + 10 feet of submergence).
In cases such as this example, when more depth is available I prefer to set the pump at least 20 feet deeper in the well to compensate for any future well decline or seasonal shifts. So, I will plan for 150 feet of drop pipe. This results in the use of seven lengths (147 feet at 21 feet per length) plus a 3-foot length for the upper well seal to provide an easy-to-remember figure for future reference.
The total friction loss would therefore be 4.16 feet/c × 1.5 (for 150 feet) = 6.24 feet + 1.60 feet for the riser check valve and miscellaneous loss = 7.84 feet total, well under our original estimate of 10 feet. The riser check valve should be placed between 5 to 20 feet above the pump, with 10 to 11 feet (the first full 21-foot joint above the pump cut and threaded in half), my usual location. This places the check valve at a sufficient distance above the pump to allow for the vertical movement of any entrapped air or vapor from the pump to the check valve and avoid air locking of the pump. It also provides two shorter pipe lengths to enable easy installation of the pump/motor and the well seal.
Also, remember in our example and any installation with a VFD, the riser check valve should be designed for continuous operation on a VFD to prevent possible valve chatter and premature failure. The proposed finished installation, along with alternate wellhead completion techniques, are shown in Figure 8.
This concludes Part 2 of the three-part series on sizing of submersible pumps for municipal, industrial, and commercial water supply. In Part 3, we will conclude with a detailed discussion of sizing and installing the submersible motor and drop cable, plus some of the pitfalls and issues associated with using this type of pump and motor.
To help meet your professional needs, this column covers skills and competencies found in DACUM charts for drillers and pump installers. PI refers to the pumps chart. The letter and number immediately following is the skill on the chart covered by the column. This column covers: PIC-5, PIC-6, PIC-10, PID-4, PIE-8, PIE-9, PIE-13, PIE-14 More information on DACUM and the charts are available at www.NGWA.org/Certification and click on “Exam Information.”
If you"ve chosen to move out to an undisturbed, rural location, or you"re concerned about the quality of your local municipal water and want a healthier alternative, you may be interested in digging a water well. How do you know where to get started or know what you need to do. To help you on this DIY journey, our well pump repair company in Raleigh is walking you through how to dig a well.
Prior permission must be obtained from your local public health department, or, if it"s a 100,000 gallon a day well or are to be dug in a protected geographical area, the Environmental Management Commission needs to issue the permit.
Many people who are researching how to dig a well don"t realize how deep groundwater generally is below the surface of the earth as well as how difficult it can be to get to it. In North Carolina, most wells extend well beyond 100 feet deep and, because groundwater is filtered through silt, stone, and layers of minerals, you have to dig through all of that in order to access the groundwater in the first place. To know what you"re getting in to, it"s important to know what"s lying below the surface.
While you"re getting information about digging conditions, this is also a good time to know exactly where your septic or sewer lines are located. Contaminated groundwater can make you and your family dangerously sick, so it"s important to know exactly where the lines are located so you can dig your well at least 50 feet away from them. If you don"t feel confident where you are digging, it"s important to reach out to well drilling specialist, to ensure you don"t damage underground pipes.
This is a physically demanding, near impossible task that may be actually impossible if the soil is clay-heavy or has shallow bedrock. It involves literally pounding a length of pipe with a post digger down through the earth until it reaches the groundwater, which could be as much as 300 feet deep.
Using a pneumatic drill and an air compressor, you can literally drill through the dirt, rock, and other barriers and run as much as two or three hundred feet of PVC water pipe into the earth. This is still a long setup, sometimes taking days or even a few weeks to complete.
Using an auger or post-hole digger, dig down about five feet and cut the 8" PVC pipe to fit the hole with four inches sticking up from the ground. Next drill a 2" hole into the side of the exposed pipe and insert the 2" PVC.
Dig a shallow settling pond 10 feet away from the well that"s at least four feet wide and run an eight inch ditch connecting the pond to your well and run the 2" PVC pipe into the ditch and cover with dirt. This pipe"s job is to transfer clean water from the pipe into the drill hole.
Attach PVC pipe to the drill and secure it to prevent leaks. and run the other end of the pipe into the 55 gallon drum. This creates a space where mud and water can empty out.
Fill your well hole with water and turn on the drill before placing it into the hole. Move the drill up, down, and horizontally to help break up the soil.
Once you get the appropriate depth, case off the well by lowering in SDR 35 pipe until it"s the full depth of the well plus 3 feet above ground. You"ll keep it in place with concrete and pea gravel to prevent runoff from contaminating your well water.
Drilling your own well can be done, but it"s a lengthy, exhaustive process that involves having to buy a large quantity of materials, and give up days or weeks of your time. Instead of doing this yourself, reach out to us for professional well drillingand well pump installation in Raleigh. With decades of experience and state-of-the-art equipment, we can tackle any well quickly and efficiently so you can enjoy clean, fresh water into your home effortlessly!