mud pump rpm calculator free sample
Rig pump output, normally in volume per stroke, of mud pumps on the rig is one of important figures that we really need to know because we will use pump out put figures to calculate many parameters such as bottom up strokes, wash out depth, tracking drilling fluid, etc. In this post, you will learn how to calculate pump out put for triplex pump and duplex pump in bothOilfield and Metric Unit.
The shaft power - the power required transferred from the motor to the shaft of the pump - depends on the efficiency of the pump and can be calculated as Ps(kW) = Ph(kW)/ η (3)
Pumps are an integral part of almost all industries today. From construction and mining to automotive and aerospace, pumps play a vital role in keeping these industries moving forward. While there are many essential parameters in pumps, one critical parameter is the pump flow rate which becomes a guiding factor for pump manufacturers.
The pump flow rate is one of the most important factors to consider when selecting a pump. It measures how much water the pump can move in a given period of time and is typically expressed in cubic meters/hour (m3/ h). If you’re looking for a pump to use in your home or business, it’s essential to know the flow rate needed to meet your needs. Otherwise, you may end up with a pump that isn’t powerful enough or one that uses more energy than necessary.
The first step is to determine what your needs are. For example, if you’re using the pump to provide water for irrigation, you’ll need to know the maximum flow rate that will be required. Once you know your needs, you can start looking for pumps that have the required flow rate, as you will now be able to give more precise directions to the pump manufacturers about your requirement.
To choose the right pump, it’s also important to consider other factors, such as pump size and efficiency. For instance, a large pump with a high flow rate may be more expensive to purchase and operate than a smaller pump with a lower flow rate. However, it may still be the better option if your water usage is consistently high or you have multiple zones in your irrigation system that need water simultaneously.
Overall, choosing the right pump for your home or business requires careful consideration of all aspects of pumping performance. With the right pump from reliable pump manufacturers, you can rest assured that you’ll always have an adequate supply of water on demand.
Pump flow rate simply refers to the volume of fluid that is moving through a pump in a given time period. There are various units through which it is measured, and they include cubic meter/hour (m3/h), litre/sec (l/s) or gallons per minute (GPM). Different pump manufacturers refer to different pump flow units.
The flow rate of a pump can be affected by several factors, including the size and type of pump, the speed at which it is operating, and the resistance of the system it is pumping into.
Pump Speed: This is the number of times the pump can complete an entire cycle in a minute and is measured in rotations per minute (rpm). The faster the pump speed, the higher the flow rate.
Pump Size: Larger pumps can move more liquid than smaller pumps. This is why it’s essential to choose an appropriately sized pump for your application.
Now that you know the basics of pump flow rate, you can begin to select a pump that is appropriate for your application. Keep in mind that the factors listed above will all affect pump flow rate, so it’s essential to consider each one when you give your requirements to the pump manufacturers.
Pump speed is measured in revolutions per minute (rpm). To convert from rpm to hertz, divide by 60. For example, if a pump operates at 1000 rpm, its frequency would be 16.67 Hz.
Let’s say you have a pump that is operating at 1000 rpm, has an impeller size of 6 inches, and is pumping water with a density of 62.4 lb/ft3. So the flow rate would be:
The good news is that there are many online flow rate calculators available for free, which you can consider using if you do want to get into too much mathematics.
There are a few key ways to increase the flow rate efficiency in pumps. One is to choose the right pump for the application. Another way is to ensure that the pump is sized correctly for the application. Additionally, regular maintenance can help keep a pump operating at peak efficiency.
When choosing a pump, it is vital to consider the application’s specific needs. For example, if a pump is handling a corrosive fluid, you should select stainless steel or other corrosion-resistant models. Similarly, if the fluid being pumped will be unusually viscous, then a positive displacement pump may be the best option.
Ensuring that a pump is appropriately sized for its application is also critical to maximizing flow rate efficiency. If a pump is too small for the task at hand, it will have to work much harder and will be less efficient. On the other hand, if a pump is too large for the application, it will not operate at peak efficiency.
Finally, regular maintenance is essential to keeping a pump operating at its best. This includes things like inspecting and cleaning the pump regularly and making sure that all of the moving parts are adequately lubricated. By taking these steps, it is possible to keep a pump running at peak efficiency for many years.
Pumps tend to be one of the biggest energy consumers in industrial operations. Pump motors, specifically, require a lot of energy. For instance, a 2500 HP triplex pump used for frac jobs can consume almost 2000 kW of power, meaning a full day of fracking can cost several thousand dollars in energy costs alone!
So, naturally, operators should want to maximize energy efficiency to get the most for their money. Even a 1% improvement in efficiency can decrease annual pumping costs by tens of thousands of dollars. The payoff is worth the effort. And if you want to remotely control your pumps, you want to keep efficiency in mind.
In this post, we’ll point you in the right direction and discuss all things related to pump efficiency. We’ll conclude with several tips for how you can maintain pumping efficiency and keep your energy costs down as much as possible.
In simple terms, pump efficiency refers to the ratio of power out to power in. It’s the mechanical power input at the pump shaft, measured in horsepower (HP), compared to the hydraulic power of the liquid output, also measured in HP. For instance, if a pump requires 1000 HP to operate and produces 800 HP of hydraulic power, it would have an efficiency of 80%.
Remember: pumps have to be driven by something, i.e., an electric or diesel motor. True pump system efficiency needs to factor in the efficiency of both the motor AND the pump.
Consequently, we need to think about how electrical power (when using electric motors) or heat power (when using combustion engines) converts into liquid power to really understand pump efficiency.
Good pump efficiency depends, of course, on pump type and size. High-quality pumps that are well-maintained can achieve efficiencies of 90% or higher, while smaller pumps tend to be less efficient. In general, if you take good care of your pumps, you should be able to achieve 70-90% pump efficiency.
Now that we have a better understanding of the pump efficiency metric, let’s talk about how to calculate it. The mechanical power of the pump, or the input power, is a property of the pump itself and will be documented during the pump setup. The output power, or hydraulic power, is calculated as the liquid flow rate multiplied by the "total head" of the system.
IMPORTANT: to calculate true head, you also need to factor in the work the pump does to move fluid from the source. For example, if the source water is below the pump, you need to account for the extra work the pump puts in to draw source water upwards.
*Note - this calculation assumes the pump inlet is not pressurized and that friction losses are minimal. If the pump experiences a non-zero suction pressure, or if there is significant friction caused by the distance or material of the pipe, these should be factored in as well.
You"ll notice that the elevation head is minimal compared to the discharge pressure, and has minimal effect on the efficiency of the pump. As the elevation change increases or the discharge pressure decreases, however, elevation change will have a greater impact on total head.
Obviously, that’s a fair amount of math to get at the pump efficiency, considering all of the units conversions that need to be done. To avoid doing these calculations manually, feel free to use our simple pump efficiency calculator.
Our calculations use static variables (pump-rated horsepower and water source elevation) and dynamic variables (discharge flow and pressure). To determine pump efficiency, we need to measure the static variables only once, unless they change.
If you want to measure the true efficiency of your pump, taking energy consumption into account, you could add an electrical meter. Your meter should consist of a current transducer and voltage monitor (if using DC) for electrical motors or a fuel gauge for combustion. This would give you a true understanding of how pump efficiency affects energy consumption, and ultimately your bank account.
Up until this point, we’ve covered the ins and outs of how to determine pump efficiency. We’re now ready for the exciting stuff - how to improve pump efficiency!
One of the easiest ways to improve pump efficiency is to actually monitor pumps for signs of efficiency loss! If you monitor flow rate and discharge (output power) along with motor current or fuel consumption, you’ll notice efficiency losses as soon as they occur. Simply having pump efficiency information on hand empowers you to take action.
Another way to increase efficiency is to keep pumps well-maintained. Efficiency losses mostly come from mechanical defects in pumps, e.g., friction, leakages, and component failures. You can mitigate these issues through regular maintenance that keeps parts in working order and reveals impending failures. Of course, if you are continuously monitoring your pumps for efficiency drops, you’ll know exactly when maintenance is due.
You can also improve pump efficiency by keeping pumps lubricated at all times. Lubrication is the enemy of friction, which is the enemy of efficiency (“the enemy of my enemy is my friend…”).
A fourth way to enhance pump efficiency is to ensure your pumps and piping are sized properly for your infrastructure. Although we’re bringing this up last, it’s really the first step in any pumping operation. If your pumps and piping don’t match, no amount of lubricant or maintenance will help.
In this post, we’ve given you the full rundown when it comes to calculating and improving pump efficiency. You can now calculate, measure, and improve pump efficiency, potentially saving your business thousands of dollars annually on energy costs.
For those just getting started with pump optimization, we offer purpose-built, prepackaged solutions that will have you monitoring pump efficiency in minutes, even in hazardous environments.
In this article discussed about pump basic formulas with examples likepump power calculation formula, specific speed of centrifugal pump and affinity laws for centrifugal and displacement pumps. Also provided online calculator for pump power calculation
The work performed by the pump is equal to the weight of liquid pumped in Unit time multiplied by total Head in meters. However the pump capacity in M3/hr and liquid specific gravity are used rather than weight of liquid pumped for work done by the pump.
The input power “P” of a pump is the mechanical power inkW or Watt taken by the shaft or coupling. So the input power of the pump also called Break Horse Power (BHP).
Pump output power is called as Water Horse Power (WHP ) or Hydraulic power and it is useful work delivered by the pump. and is usually expressed by the formula
The specific speed “Nq” is a parameter derived from a dimensional analysis which allows a comparison of impellers of various pump sizes even when their operating similar Q -H range. The specific speed can be used to classify the optimum impeller design.
Specific Speed of pump (Nq) is defined as the speed in RPM at which a geometrically similar impeller would run if it were reduced proportionately in size so as to delivered 75 kg of water per second to the height of 1 m.
Pump Efficiency is the most important factor while calculating power consumption. So while selection of the higher rating of pump always choose best efficiency pump set.
In this article provided pump related formulas like fluid flow rate and velocity, power calculation, Specific Speed of Pump (Nq), Total Head, Pump Torque and temperature rise, Net Positive Suction Head, Affinity laws for pump, Pump Efficiency & Overall Efficiency of the Pump
Specific Speed of pump (Nq) is identifies the geometrical similarity of pumps. It is useful to comparing different pump designs irrespective of pump size
Pressure head calculated as per pumping system source tank is under some gauge pressure or vacuum open or open toatmosphericthan pressure head is calculated in metres of water column (MWC) of Feet of water column of liquid.
The amount of NPSH the pump requires to avoid cavitation is called Net Positive Suction Head Required (NPSHr). This value of the pump is determined based on actual pump test by the vendor.
Whether you operate an industrial pump or looking to purchase the right pumps in India for your needs, the flow rate of the system is a crucial parameter. In this guide, Sintech, the no.1 industrial
Flow rate is the amount of fluid that the pump can transport within a given time. Knowing the flow rate of your pump can help you achieve two key things:
You can figure out if your system is working efficiently. If you know the expected flow rate and the current flow rate, then you can identify if your system is underperforming. This helps you make the right action to improve the pump’s performance.
Before you approach multistage centrifugal pump manufacturers in India for your purchase needs, having an idea of the desired flow rate will help you plan the system design perfectly. If you calculate the required flow rate wrong, then you would install an oversized/undersized pump, which is not a good investment in the long run. So, you need to have a clear idea of the desired flow rate before ordering the best pumps in India from your preferred manufacturer.
You need to calculate three factors before ordering the right pumps:The type of fluid you need to pump – is it viscous or clear? What’s the temperature of the pumped fluid? Etc.
The volume of fluid that needs to be transported in a specific timeAll these three factors will vary based on your industrial needs. The volume of fluid that you want to transport determines the flow rate of the pump. The type of fluid and the distance transported both play a huge role in impacting the flow rate that you can achieve. Hence, all these three factors play a crucial role in determining the size and type of pump needed.
We highly recommend that you contact a pump sizing expert to help you decide the correct equipment to buy. At Sintech, we offer free pump sizing guidance for all our clients, to help them find the best pumps in India for their requirements.
Once you have installed the pump, you need to monitor the flow rate periodically to determine if your pump is performing efficiently. You can check the pump’s performance by monitoring several factors. Right now, we’ll just calculate the flow rate.
You can measure the flow rate of an operating pump using either one of the following two methods:Use a flow meter – A flow meter is a simple device that does exactly what it means – it measures the amount of fluid passing through the system. Attach the flow meter to the discharge outlet. The reading on the meter gives you the flow rate of the system.
Calculate flow rate manually by collecting fluid – You can collect the fluid at the output of the pump system using a bucket or vat. Measure the collected fluid, the time taken to collect it, and reverse engineer to find the flow rate. The formula for calculating the flow rate: Flow rate = Volume of Liquid Collected / Time Taken
If there is a significant difference between desired flow rate and the actual flow rate, you can then carry on an inspection of the pump system to determine what’s wrong. Or if it’s time for a pump replacement, then Sintech Pumps, the no.1 multistage centrifugal pump manufacturers in India has an excellent range of industrial pumps for all needs. Get in touch with our team to find the right pumps for your specific needs.
In our important role as hydraulic pump manufacturers, we are aware of the large number of variables that need to be considered when choosing the right pump for the specific application. The purpose of this first article is to begin to shed light on the large number of technical indicators within the hydraulic pump universe, starting with the parameter “pump head”.
The head of a pump is a physical quantity that expresses the pump’s ability to lift a given volume of fluid, usually expressed in meters of water column, to a higher level from the point where the pump is positioned. In a nutshell, we can also define head as the maximum lifting height that the pump is able to transmit to the pumped fluid. The clearest example is that of a vertical pipe rising directly from the delivery outlet. Fluid will be pumped down the pipe 5 meters from the discharge outlet by a pump with a head of 5 meters. The head of a pump is inversely correlated with the flow rate. The higher the flow rate of the pump, the lower the head.
What is the head of a pump? As mentioned earlier, the head corresponds to the actual energy that the pump delivers to the fluid. The Bernoulli equation is applied between the pump’s inlet and outlet sections:
However, during the design stage, P1 and P2 are never known (as there is no physical element yet and therefore it is not possible to effectively measure the pump’s inlet and outlet pressure).
At this point we can easily calculate the head losses of the system, and therefore choose the correct size of the pump to achieve the desired flow rate at the resulting equivalent head.
The pump head indicator is present and can be found in the data sheets of all our main products. To obtain more information on the technical data of our pumps, please contact the technical and sales team.
Establishing an impeller’s “Tip Speed” is very useful when selecting the best pump for your application, but what exactly is tip speed and how do you calculate it?
Let’s use an example of a pump with a 24-inch impeller that was running at 800 rpm. First, convert the 24 inches to 2 ft by dividing by 12 inches per foot. Then multiply by 3.14159 to give you ft per revolution and then by a speed of 800 revolutions per minute.
How tip speed relates to wear is fairly obvious. The faster the tip of the impeller travels through a liquid or slurry, the greater the impact on the impeller and the faster it will wear. In short, when selecting a pump for longevity opt for a low tip speed.
The second item above is based on the premise that the strength of any given material can be exceeded if rotated too quickly. Just like a child may be thrown off a merry-go-round spinning too fast an impeller can suffer a similar fate. In the case of an impeller, if the strength of the material or coating is exceeded then the item thrown off may be an impeller vane, just as the impeller disintegrates. Below is a chart of suggested max tip speeds for some common materials used in pumps.
When comparing pumps for a particular application, tip speed is clearly not the only factor to consider. It is however an important factor, especially when dealing with slurry. For more information or help when selecting pumps, please feel free to contact Toyo’s application team at 604-298-1213 or email at solutions@hevvypumps.com.
The motor used to power a centrifugal pump needs to be able to produce enough torque to start the pump and bring it to an optimal operating speed. If a motor lacks enough torque to operate a pump, the pump may not start or may only operate at a reduced speed. The centrifugal pump suppliers at PumpWorks will guide you through the pump motor selection process.
A pump’s torque-speed curve is used to determine the appropriate motor to match with it. A pump’s torque-speed curve is produced by plotting the percentage of full load torque (FLT) vertically against the percentage of full load speed (FLS) plotted horizontally. An example is shown below.
The torque-speed curve is similar for all centrifugal pumps due to simple math: the pump torque varies as the square of its speed. However, when the pump is at rest—0% full load speed—the full load torque is never also 0%. Starting a rotating pump requires the motor to overcome the pump inertia and static friction.
To overcome pump inertia and static friction, approximately 20% of full load torque is required. As the pump’s speed increases, the required torque gradually declines. For example, at about 15% full load speed the required torque typically is around 5% or 10% full load torque. As shown below, the pump torque-speed curve follows the square law:
Like pumps, motors produce a torque-speed curve of their own. By overlaying the torque-speed curve of a pump and a motor, one can verify that the motor is producing enough accelerating torque to drive the pump to full speed, as shown below.
In this overlay the shaded area reflects the accelerating torque available from the motor to drive the pump. Where the two curves intersect is the point at which the motor’s torque is insufficient to drive the pump any faster. In other words, this is the point of maximum pump speed while powered by this motor.
A motor’s horsepower (HP) is used as a baseline measure of its capabilities in the field. HP is a combination of torque and speed (RPM), with 1 HP equal to 550 foot pounds per second, or 33,000 foot pounds per minute. A motor’s torque can be calculated using its horsepower using this formula, which is derived from an expression of HP as a function of torque:
Torque at zero flow is especially important for pumps with axial flow (or propeller) designs. The torque-speed curve of such pumps is such that the highest HP, and therefore the highest torque, is required at zero flow. An axial-flow pump must be paired with a motor with adequate HP to get the pump moving.
Another important factor in motor selection is the pump’s inertia value at the motor shaft. Inertia is a measure of an object’s resistance to movement change. The higher the pump inertia, the longer the motor will take to start the pump and bring it to full load speed.
This is significant because motors draw current to bring pumps up to speed. The longer a motor takes to overcome a pump’s inertia, the more heat it will generate. A motor must be sized to handle the pump’s inertia to avoid damaging the motor’s windings.
If a motor directly drives the pump, the values of the pump and pump-motor coupling inertias are the same regardless of pump speed. If the pump is driven by a gearbox and motor, however, the gearbox can have a major impact on inertia values. In this application inertia can be expressed as:
A gearbox’s effect on inertia can be understood by analogy to a bicycle. When a bicycle is ridden at high speeds, the rider may change to a higher gear ratio (one greater than 1.0) to go faster. Such a ratio also requires the rider to put in more effort. Likewise, if a gearbox shifts to a higher gear ratio, the motor will have a higher load. The same logic applies if the gearbox is reducing the motor speed to drive the pump slower. When the gearbox ratio is less than 1.0, it will reduce the load requirements on the motor.
Selecting the right pump and motor for a specific application can be a complex job. The team at PumpWorks is dedicated to finding pump solutions that meet the exact needs of each customer.
In order to make the most common pump calculations, we have created an overview of pump formulas with a brief explanation on each. All mentioned formulas are based on theoretical pumping technology and are given as a simple aid for making pump calculations. In practice, additional factors can have an influence and may lead to deviations from theoretical values. If you have any questions or are unable to solve your issue, please contact us for personal pump advice.
The pump power is shown in the pump curve or in the specifications of the pump. The absorbed pump power, also called shaft power, is given in kW and can be easily calculated using the following formula:
The affinity laws for pumps express the relationship between the several variables involved in pump performance. The below calculation applies to centrifugal pumps and gives a good indication of the differences in pump capacity, pump head and absorbed pump power when changing the pump speed but with the impeller diameter remaining unchanged.
Hydraulic pump efficiency ηh. Is the ratio between the manometric head and the theoretical head of the pump caused by internal frictional and vortex losses.
Volumetric pump efficiency ηv. The actual volume flow of the pump is lower than the theoretical volume flow because a small part of the liquid returns internally to the suction side.
Mechanical pump efficiency ηm. Is the ratio between the theoretical and the actual absorbed pump power due to friction losses in the bearings and wheel friction (impeller resistance in the surrounding fluid).
Motor efficiency, losses occur in all drives and motors. To calculate the total efficiency of a pumpset, the motor efficiency factor must also be included in the calculation.
When calculating the fuel consumption of diesel driven pumps, we assume that the specific weight of a liter of diesel is 835 grams (measured at 15°C). The formula to calculate the fuel consumption on a duty point of the pump: L/h = Px BSFC÷835
Engine consumers, the diesel engine itself also has a few additional consumers of fuel, such as the alternator and the cooling fan. In order to accurately calculate the fuel consumption of diesel driven pumps, we recommend that you add an extra 5-6% for these components.
Particularly when working with mobile pumps it is useful to know how to easily calculate the maximum suction height of the pump. For this you need the following information:
Actual air pressure P(h), also known as the atmospheric pressure, which is an average of 1000 hPa = 1.0 bar = 10 mwc in the Netherlands. In the mountains the atmospheric pressure is reduced and depends on the difference in height compared to sea level. The current air pressure also determines the theoretical maximum achievable suction height of a pump.
The NPSHr value can be found in the performance curves of the pump. Here you can read the internal suction losses of the pump in order to be able to run without cavitation. The value depends on the capacity to be pumped.
With the maximum suction height L, we refer to the vertical height difference between the liquid to be drawn and the center line of the centrifugal pump.
There are a number of factors influencing the maximum suction height of the pump that are not included in the calculation. For example, the temperature of the liquid plays a role, when the liquid temperature rises above 20°C the available suction height starts to decrease rapidly.
Many electric pumps are controlled by a frequency inverter, also called variable fequency drive. Mobile electric pumps often require a (standby) power generator to be installed. How much kVA power should the power generator have available? That all depends on the type of frequency inverter.
In order to make the optimal calculation of the size of the pump requires extensive knowledge about liquids and pump technology. Please contact us and let our experienced pump experts advise you on the best pump for your application. Our experience can save you money and its given free of charge.