texture mud pump manufacturer
{"links":[{"url":"https://www.graco.com/us/en/contractor/solutions/articles/how-to-mix-drywall-mud-for-texture-spraying.html", "anchor_text":"How to Mix Drywall Mud for Texture Spraying"},{"url":"https://www.graco.com/us/en/contractor/products/drywall-finishing-interior-texture/interior-texture-sprayers.html", "anchor_text":"Interior Texture Sprayers"},{"url":"https://www.graco.com/us/en/contractor/products/drywall-finishing-interior-texture/drywall-finishing-tools-accessories.html", "anchor_text":"Drywall Finishing Tools & Accessories"}]}
{"links":[{"url":"https://www.graco.com/us/en/contractor/solutions/articles/airless-texture-vs-airless-paint-sprayers.html", "anchor_text":"Airless Texture vs Airless Paint Sprayers"},{"url":"https://www.graco.com/us/en/contractor/products/drywall-finishing-interior-texture/drywall-mud-pumps/powerfill.html", "anchor_text":"PowerFill"},{"url":"https://www.graco.com/us/en/contractor/products/drywall-finishing-interior-texture/drywall-mud-pumps/powerfill-accessories.html", "anchor_text":"PowerFill Accessories"}]}
The contractor-proven pump technology and cordless power capability found on Graco automatic drywall mud pumps helps reduce fatigue while maximize efficiencies on interior drywall or texture jobs. Finish every drywall job faster and never hand pump again with Graco PowerFill 3.5 Cordless Loading Drywall Pumps.
Introducing the industry’s first cordless powered loading pump for drywall mud. Designed to fill all automatic taping and finishing tools. PowerFill totally eliminates the need to manually pump. Now you can quickly fill with just the push of a button.
The contractor-proven pump technology and cordless power capability found on Graco automatic drywall mud pumps helps reduce fatigue while maximize efficiencies on interior drywall or texture jobs. Pumps up to 3.5 gpm for lightning-fast filling and up to 55 gallons on a single battery charge for all-day filling.
The Columbia Quick Clean Mud Pump fills your favorite automatic tools with compound while reducing work fatigue. This mud pump features a smooth solid leg for easy cleaning, a 20-degree angled handle for enhanced leverage, and an increased gooseneck diameter for faster filling. Use the Gooseneck attachment for filling automatic tapers. Use the standard box filler for Flat Boxes, Corner Finisher Boxes, Nail Spotters.Columbia offers standard and hot-mud pumps. Both are built to air-tight standards, making them the easiest pump to prime. They"re fabricated with an anodized aluminum cylinder, durable stainless-steel shaft, a precision machined cast aluminum head, and a tough, smooth solid aluminum leg. Whether you are using quick-set mud or any other type of joint compound, we have the pump for your bucket.
Continental Emsco Drilling Products, Inc., which consisted of Emsco drilling machinery and Wilson mobile rigs, was purchased by National-Oilwell, Inc on July 7, 1999. To our knowledge, no pumps have been manufactured and sold under the Emsco brand name since National-Oilwell acquired them.
Fairbanks Morse pumps are currently manufactured in Kansas City, Kansas. Fairbanks Morse is a division of Pentair ever since August, 1997 when Pentair purchased the General Signal Pump Group.
Gaso pumps are manufactured by National Oilwell Varco. Gaso was acquired as "Wheatley Gaso" by National-Oilwell in the year 2000. At the time, Wheatley Gaso was owned by Halliburton.
Skytop Brewster pumps are no longer available as new pumps. Skytop Brewster(Cnsld Gold), a unit of Hansen PLC"s Consolidated Gold Fields subsidiary, was acquired while in bankruptcy by National-Oilwell, Inc. in November, 1999.
This Invention relates to tools used to install and finish drywall in buildings and to hand pumps for pumping viscous fluids. BACKGROUND OF THE INVENTION
The joints between drywall sheets are typically filled and sealed with strips of paper or fiberglass mat and drywall joint compound, also called “joint compound”, “drywall mud”, or just “mud”. Joint compound may be made, for example, of water, limestone, expanded perlite, ethylene-vinyl acetate polymer and attapulgite. Joint compound is applied as a viscous fluid that is thick enough to maintain its shape while it hardens. In addition to forming joints, drywall mud is used to cover nail or screw heads, form a smooth or flat surface, and provide a texture over the surface. Paint or wall paper is typically applied over the drywall and joint compound.
Workers often specialize in the installation of drywall, and in large projects different crews install the drywall panels (drywall hangers) from those who finish the joints and apply the joint compound (tapers or mudmen). Workers who specialize in drywall installation often use specialized tools to increase their productivity including flat boxes that are tools used to hold joint compound and apply it to drywall joints. Joint compound is often mixed (e.g., with water) or stored in buckets, and drywall mud pumps have been used to pump the mud from the buckets into flat boxes or other tools or containers.
U.S. patent application Ser. No. 11/292,238, publication 2007/0122301 (also by Werner Schlecht) describes a drywall mud pump. However, it was found that in operation pumping drywall joint compound that friction developed within the pump making it difficult to use. Thus, needs or potential for benefit exist for drywall mud pumps that have less internal friction. In addition, needs and potential for benefit exist for drywall mud pumps that are inexpensive to manufacture, reliable, easy to use, that have a long life, that are easy to service and clean, and that are simple in operation so that typical operators can effectively maintain them. Room for improvement exists over the prior art in these and other areas that may be apparent to a person of ordinary skill in the art having studied this document. Summary of Particular Embodiments of the Invention
This invention provides, among other things, certain drywall mud (drywall joint compound) pumps with particular features or capabilities. Various embodiments provide, as objects or benefits, for example, that they have less internal friction than certain prior art pumps. In addition, particular embodiments provide, for instance, as objects or benefits, drywall mud pumps that are inexpensive to manufacture, reliable, easy to use, that have a long life, that are easy to service and clean, that are simple in operation, or a combination thereof. Other benefits of certain embodiments may be apparent to a person of ordinary skill in the art.
In specific embodiments, this invention provides certain drywall mud pumps that include a main cylinder and a rod having two ends, a first end and a second end. In many embodiments, when the drywall mud pump is assembled, the second end of the rod is located within the main cylinder, for example. Various embodiments also include a piston which, when the drywall mud pump is assembled, is also located within the main cylinder and is attached to the second end of the rod. In some embodiments, there is a connection structure between the piston and the second end of the rod, which is configured to allow the second end of the rod to move relative to the piston in a direction that is substantially perpendicular to the axis of the rod. A number of embodiments include a means for allowing the second end of the rod to move laterally relative to the piston within the main cylinder. Further, in some embodiments the piston specifically includes an elongated hole that receives the second end of the rod, and the elongated hole allows the second end of the rod to move laterally relative to the piston.
Various such embodiments further include a pump head, which may have an output aperture, and when the drywall mud pump is assembled, the pump head may be connected to the main cylinder and the rod may pass through the pump head. In some embodiments, the drywall mud pump further includes a handle and a linkage, and when the drywall mud pump is assembled, the handle may be pivotably connected to the first end of the rod, and the linkage may be pivotably connected to the pump head and pivotably connected to the handle, as examples. Moreover, some embodiments may include (e.g., in the pump head) a means for guiding the rod, a means for allowing the rod to pivot as the second end of the rod moves laterally relative to the piston, or both. Further, particular embodiments include a guide having a hole through which the rod slidably passes. Some embodiments include just one guide in the pump head, which may serve as both a guide and as a pivot point for the rod, and in some embodiments, the guide may be shortened to provide for pivoting.
In a number of embodiments, the piston includes an elastomeric piston cup having a first hole, which may be elongated, a top rigid support having a second elongated hole, a bottom rigid support having a third elongated hole, and a flapper having a fourth elongated hole. In some embodiments, when the drywall mud pump is assembled, the second end of the rod passes through each of the first, second, third, and fourth holes, for example. Further, certain embodiments include a means for preventing the piston from rotating about the rod. In some embodiments, as an example, the second end of the rod has a flattened portion, at least the second and third elongated holes are substantially the same size and have substantially the same shape, and, when the drywall mud pump is assembled, are held in a particular orientation by the flattened portion of the second end of the rod.
Even further, in some embodiments, when the drywall mud pump is assembled, the second end of the rod is attached to the piston with a nut (e.g., a lock nut), an elongated washer, or both. Moreover, in some embodiments, the piston cup, the top rigid support, and the bottom rigid support each have at least one passageway therethrough for passage of the drywall mud, and when the drywall mud pump is assembled, the flapper covers the (at least one) passageway substantially blocking passage of the drywall mud when the piston is moving in the main cylinder toward the pump head.
In various embodiments, the piston cup, the top rigid support, and the bottom rigid support each have multiple passageways therethrough for passage of the drywall mud, and the multiple passageways substantially surround the first, second, and third elongated holes. In addition, in some such embodiments, a plurality of the multiple passageways for passage of the drywall mud have at least one curved side and at least one straight side. Additionally, in particular embodiments wherein an elongated washer is provided, when the drywall mud pump is assembled, the washer substantially blocks the elongated hole in the piston to prevent drywall mud from passing through the elongated hole in the piston. In a number of such embodiments, the drywall mud pump may also include a means for controlling the rotational position of the washer.
Further, in some embodiments, the second end of the rod includes a first reduced diameter flattened section and a second reduced diameter flattened section. In some such embodiments, for example, the second reduced diameter flattened section has a smaller diameter, thickness between flats, or both, than the first reduced diameter flattened section. Further, in some embodiments, the second end of the rod also includes a threaded section. Further still, in some embodiments, when the drywall mud pump is assembled, the second end of the rod passes through each of the first, second, third, and fourth elongated holes such that the fourth elongated hole is located at the first reduced diameter flattened section, and the first, second and third elongated holes are located at the second reduced diameter flattened section. In addition, various other embodiments of the invention are also described herein. BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 7 is an isometric exploded view of the piston, rod, and pump head of the example of a mud pump of the previous figures, except that the piston in FIG. 7 is not shown exploded;
FIG. 1 illustrates an example of an assembled drywall mud pump, pump 10. Parts and features that are visible from the outside in this view include output aperture 11 in pump head 14 where drywall mud emerges from pump 10 when handle 12 is moved, for example, by an operator of drywall mud pump 10. In some embodiments, a detachable high filler (not shown) may attach to aperture 11 (e.g., with the nuts 11 nshown) and may extend the location where the mud emerges to a higher elevation to enhance ergonomics. FIG. 2 is an exploded view of the same embodiment of drywall mud pump 10 shown in FIG. 1.
In the embodiment illustrated, rod 13 passes through pump head 14 (visible in FIG. 1 through aperture 11) into main cylinder 15. Pump head 14 is mounted on or connected to main cylinder 15, in this embodiment, with clips 25. Also in this embodiment, handle 12 is pivotably connected to the top or first end 21 of rod 13 with pin 23, and linkage 16 is pivotably connected at the top (of linkage 16) to handle 12 and at the bottom (of handle 16) to pump head 14 with bolts 26.
Other visible parts of pump 10 include foot plate 18, which is connected to pump head 14 with bolts 28, in this embodiment, and foot valve 19, which is connected to the bottom end of cylinder 15 with pin 29.
When in use, main cylinder 15 may extend into a bucket of drywall joint compound or mud while foot plate 18 may extend outside of the bucket to the floor. The operator may place his foot on foot plate 18 to steady pump 10 while moving handle 12. Foot valve 19, in the bottom of the bucket, may form or include a check valve that may allow mud to flow upward into cylinder 15, but may substantially prevent mud from flowing downward out of cylinder 15 through foot valve 19. Rod 13 also passes through shortened guide 17, in this embodiment, and guide 17 is attached to pump head 14 with bolts 27. Thus, guide 17 is easily removable and replaceable.
FIG. 2 also introduces piston 20, which, in this embodiment, includes several different components that will be discussed in more detail with reference to other figures. In this embodiment, when drywall mud pump 10 is assembled, piston 20 is located within main cylinder 15 and is attached to the bottom or second end 22 of rod 13. In addition, when drywall mud pump 10 is assembled, second end 22 of rod 13 is also located within main cylinder 15. When an operator pushes handle 12 down, piston 20 goes up toward pump head 14, pushing drywall mud that is in cylinder 15 out through aperture 11. During this process, a vacuum is created below piston 20, which draws more drywall mud into cylinder 15 through foot valve 19. When the operator pulls handle 12 up, piston 20 goes down, away from pump head 14, foot valve 19 prevents the drywall mud below piston 20 from exiting cylinder 15 through the bottom, and drywall mud flows through piston 20, as will be described in more detail below.
During the operation of mud pump 10, horizontal or lateral forces are exerted on rod 13. Even if the operator only exerts vertical forces on handle 12, since linkage 16 is not vertical during most of the stroke of piston 20, linkage 16 exerts lateral forces on handle 12, which are carried by handle 12 to rod 13. These horizontal or lateral forces on rod 13 are believed to cause increased friction or binding within prior art drywall mud pumps. In a number of embodiments, drywall mud pump 10, and various other drywall mud pumps in accordance with this invention, allow rod 13 to move laterally without binding (or with reduced binding) and in a manner that reduces friction (e.g., within mud pump 10). In different embodiments, such a reduction in friction makes the drywall mud pump (e.g., 10) easier to use. In addition, in many embodiments, reduced friction reduces wear, thus increasing pump life, maintaining a level of pump performance for a longer time, reducing the need for replacement of parts, reducing the need for servicing of the pump, or the like.
In a number of embodiments, piston cup 44 may be an elastomeric material such as rubber or a synthetic equivalent thereof. Other components shown in FIGS. 3 and 4 may be metal, such as steel, stainless steel, brass, bronze, aluminum, or the like, or may be made of a plastic, a polymer, or nylon, for example. In the embodiment illustrated, piston cup 44 has an outside diameter that is slightly larger than the inside diameter of main cylinder 15. Thus, an interference fit may exist between piston cup 44 and main cylinder 15, and when piston 20 is inside main cylinder 15 (e.g., when drywall mud pump 10 is assembled), the outside diameter of piston cup 44 may contact the inside surface of main cylinder 15.
Flapper 46, in this embodiment, has an outside diameter that is less than the outside diameter of piston cup 44, less than the inside diameter of main cylinder 15, and may be less than the outside diameter of bottom wiper support 43, top wiper support 45, or both. In this embodiment, Flapper 46 has a diameter that is sufficiently small to allow drywall mud to flow between flapper 46 and the inside surface of main cylinder 15, for example, when piston 20 is traveling downward (e.g., away from pump head 14). In the embodiment illustrated, flapper 46 is rigid. In other embodiments, flapper 46 may be flexible. In some embodiments, flapper 46 (or an alternative flapper) may bend or pivot out of the way of the flow of drywall mud when piston 20 is traveling downward, for example. In some embodiments, a flapper or component analogous to flapper 46 may be made of two or more pieces, which may be different materials and may have different stiffnesses.
In the embodiment illustrated, piston cup 44 of piston 20 has a first elongated hole 44 h, top support 45 has a second elongated hole 45 h, bottom support 43 has a third elongated hole 43 h, and flapper 46 has a fourth elongated hole 46 h. In the embodiment shown, when drywall mud pump 10 is assembled, second end 22 of rod 13 passes through each of the first, second, third, and fourth elongated holes (i.e., 43 h, 44 h, 45 h, and 46 h). Further, the embodiment illustrated includes a means for preventing piston 20 from rotating about rod 13. Specifically, in the embodiment illustrated, second end 22 of rod 13 has first and second flattened portions 49 and 48, which, in this embodiment, each have a reduced diameter from the remainder of rod 13. In this embodiment, the second and third elongated holes (i.e., holes 45 hand 43 hin top and bottom supports 45 and 43) are substantially the same size and have substantially same shape, and, when drywall mud pump 10 is assembled, are held in a particular orientation by second flattened portion 48 of second end 22 of rod 13.
In the embodiment illustrated, second reduced diameter flattened section 48 has a smaller diameter and thickness between flats than first reduced diameter flattened section 49. Other embodiments may have different sections that just have different diameters or different thicknesses between flats. Further, in the embodiment shown, second end 22 of rod 13 also includes threaded section 47, which in this embodiment, receives nut 41. Further still, when drywall mud pump 10 is assembled, second end 22 of rod 13 passes through each of first, second, third, and fourth elongated holes 43 h-46 hsuch that fourth elongated hole 46 his located at first reduced diameter flattened section 49, and first, second and third elongated holes 43 h-45 hare located at second reduced diameter flattened section 48.
In the embodiment shown, flattened portion 49 has a sufficient dimension in the axial direction (i.e., of the longitudinal axis of rod 13) to allow flapper 46 to move away from top support 45 when piston 20 is traveling downward away from pump head 14. This allows room for the drywall mud to flow outward between flapper 46 and top support 45 before flowing around the outside of flapper 46. When piston 20 travels in upward, toward pump head 14, flapper 46 moves in the axial direction to the other end of flattened portion 49 until flapper 46 makes contact with top support 45.
As used herein, a means for allowing an end of a rod to move laterally relative to a piston does not include motion resulting from prior art magnitude clearance between the rod and the piston in a drywall mud pump, movement resulting from deformation of an elastomeric piston cup, or deformation of the rod or other components resulting from stress imposed thereon. Rather, a means for allowing an end of a rod to move laterally relative to a piston requires a structure that provides for substantially more lateral movement of the rod under substantially less force than prior art mud pump technology provided. In this context, as used herein, “substantially” means by a factor of at least two.
In different embodiments, the second end 22 of rod 13 may be able to move laterally relative to piston 20 by at least or about 1/16, ⅛, 3/16, ¼, 5/16, ⅜, 7/16, ½, 9/16, ⅝, ¼, ⅞, 1, 1 ⅛, 1 ¼, or 1 ½, inch, or 2 inches, for example, under lateral forces normally present within such a drywall mud pump. In the embodiment illustrated, the elongated hole (e.g., 43 h) in piston 20 is centered within piston 20. But in other embodiments, the elongated hole may extend from the center of piston 20 in one direction, or may extend farther on one side of center than the other, as examples.
Bottom support 43 also includes multiple passageways 53, 54, 55, and 56 therethrough for passage of drywall mud. These passageways 53, 54, 55, and 56 substantially surround (third) elongated hole 43 h. As shown in FIG. 4, in the embodiment illustrated, corresponding passageways having substantially the same shape extend through piston cup 44 and top support 45 and substantially surround (first and second) holes 44 hand 45 h, as well. Drywall mud flows through these passageways (e.g., 53-56), between top support 45 and flapper 46, and around the outside of flapper 46 (i.e., between flapper 46 and the inside of main cylinder 15) when piston 20 is moving downward (i.e., away from pump head 14).
Still referring to FIG. 5, in the embodiment illustrated, all four of the multiple passageways 53, 54, 55, and 56 for passage of drywall mud have at least one curved side 57 and at least one straight side 58, as labeled, for example, for passageway 56. In the embodiment illustrated, the shape of passageways 53, 54, 55, and 56 provides for essentially as much area for the flow of drywall mud therethrough as possible, while maintaining adequate structural strength of the components (e.g., bottom support 43, piston cup 44, etc.).
As mentioned, when piston 20 is traveling upward (i.e., toward pump head 14) in cylinder 15, flapper 46 makes contact with top support 45, blocking or substantially blocking passageways 53, 54, 55, and 56, thus preventing significant quantities of the drywall mud from flowing back through passageways 53, 54, 55, and 56. As used herein, in the context of blocking the flow of drywall mud, “substantially blocking” means blocking more than 90 percent of the cross sectional area (e.g., of passageways 53, 54, 55, and 56), and “blocking” (i.e., without being preceded by “substantially”) means blocking more than 99 percent of the cross sectional area (e.g., of passageways 53, 54, 55, and 56). Blocking or substantially blocking of passageways 53, 54, 55, and 56, in the embodiment illustrated, causes the drywall mud within cylinder 15 to exit through pump head 14 and orifice 11 when piston 20 travels upward (i.e., toward pump head 14).
Further, as shown for example in FIG. 3, in the embodiment illustrated, when drywall mud pump 10 is assembled, washer 42 blocks or substantially blocks the elongated hole (e.g., 43 h, 44 h, 45 h, and 46 h) in piston 20 to prevent drywall mud from passing through the elongated hole in piston 20 (e.g., when piston 20 is moving upward toward pump head 14). In a number of such embodiments, the drywall mud pump (e.g., 10), piston (e.g., 20), or rod (e.g., 13) may also include a means for controlling the orientation or rotational position (i.e., about the longitudinal axis of rod 13) of the washer (e.g., 42). This may facilitate washer 42 blocking or substantially blocking the elongated hole (e.g., 43 h).
FIG. 6 illustrates piston 20, rod 13, pump head 14, and shortened guide 17, all assembled. In this view, flapper 46 is shown against upper guide 45 (not visible) blocking or substantially blocking passageways 53, 54, 55, and 56, as would be the case when piston 20 is moving toward pump head 14. FIG. 7 shows these same components of drywall mud pump 10 in an exploded view, except that piston 20 is not separated into components or separated from rod 13. FIG. 7 shows, among other things, that below guide 17 is a wiper or rod seal 77, which may be made of an elastomeric material or synthetic rubber, for example, and may serve to prevent or substantially prevent drywall mud from within main cylinder or pump head 14 from traveling up along rod 13 through guide 17. Rod seal 77 may have a U-shaped cross section, for example, with the opening of the U pointed downward (i.e., toward piston 20). In other embodiments, rod seal 77 may have a cross section that is square, rectangular, triangular, trapezoidal, a parallelogram, or round, as examples, and may be solid or hollow.
FIGS. 8 and 9 illustrate more detail of the example of guide 17 of the embodiment illustrated. Guide 17, in this embodiment, includes hole 80h through which rod 13 passes when drywall mud pump 10 is assembled. Some embodiments may include (e.g., in pump head 14) a means for guiding rod 13, a means for allowing rod 13 to pivot (e.g., without binding) as second end 22 of rod 13 moves laterally relative to piston 20, or both. In the embodiment illustrated, guide 17 is a shortened guide, and rod 13 slidably passes through hole 80 hwhen pump 10 is assembled. Prior art guides for drywall mud pumps typically have a gland nut with a dimension 90 t(shown in FIG. 9) in the direction of the longitudinal axis of rod 13 that is ¾ inch or more. In the embodiment illustrated, guide 17 has a dimension 90 tof 0.300 inches. Other embodiments may have a dimension 90 tthat is more than ⅛, 3/16, or ¼ inch, and less than ½, ⅜ or 5/16 inch, or the like, as examples. As used herein, a “shortened guide” has a dimension 90 tthat is less than ½ inch.
In some embodiments, guide 17 serves both as a guide and as a pivot point for rod 13. In some such embodiments, the outside diameter of rod 13 and the inside diameter of hole 80 hare selected to provide sufficient clearance between rod 13 and hole 80 hto allow second end 22 of rod 13 to move laterally over, for instance, the full range of the elongated hole (e.g., 43 h, 44 h, 45 h, 46 h, or a combination thereof) in piston 20 without causing binding between rod 13 and hole 80 h, for example, within guide 17. Further, in the prior art, upper and lower guides were used at the top and bottom of the pump head (e.g., otherwise similar to pump head 14). This provided little opportunity for the rod (e.g., similar to rod 13) to pivot in the pump head, and (as used herein) no means for allowing the rod to pivot as the second end of the rod moves laterally relative to the piston. In the embodiment shown, only one (i.e., a single) guide (17) is provided, and guide 17 is shortened, which (as used herein), if sized or shaped in certain ways, may provide a means for allowing rod 13 to pivot without binding as second end 22 of rod 13 moves laterally relative to piston 20.
In some embodiments, hole 80 his manufactured as a right circular cylinder (e.g., a drilled hole), but quickly “wears in” when in use, to a shape that is elongated, for instance, with the most pronounced elongation at the top or bottom surface (or both) of guide 17. In some such embodiments, guide 17 is made of a relatively soft material, such as brass, and rod 13 is made of a harder material, such as stainless steel, which may be grade 420 stainless steel, and may be hardened to 35 Rockwell C (HRC), for example. In particular embodiments, rod 13 has an outside diameter of 0.626±0.005 inches, and hole 80 hin guide 17 has an inside diameter of 0.640±0.003 inches, for instance. In various such embodiments, friction in the operation of pump 10 may be greater when pump 10 is new, but may decrease once guide 17 wears in and binding between guide 17 and rod 13 declines or ceases. Such a shortened guide 17 that is configured to “wear in” to a shape that does not bind against rod 13, as used herein, is another example of a means for allowing rod 13 to pivot as second end 22 of rod 13 moves laterally relative to piston 20.
In the embodiment illustrated, once guide 17 wears in, and binding between guide 17 and rod 13 declines or ceases, the rate at which guide 17 wears may decrease substantially. However, in cases of frequent use of pump 10, guide 17 may continue to wear over time with continued use. At some point, guide 17 may be replaced. In the embodiment shown, guide 17 and seal 77 are easily replaceable by removing pin 23 and bolts 27.
This application claims the benefit of U.S. Provisional Application 060/052,261 entitled “Mud Pump and Drywall Tape and Texture System,” filed Jul. 11, 1997.
Traditionally, in gypsum wallboard or “drywall” panel installation, sheets of drywall are nailed or screwed in place. Seams between the drywall sheets must be taped over, and the nail or screw heads must be coated with paper tape and mastic material to form a continuous wall surface. Tape and mastic material must also be applied to inside corners to form a complete wall system. The task of applying drywall tape and mastic drywall mud is generally laborious, tedious, and messy. Although inventions have made the task easier, improvement is still needed. One currently available drywall taping tool is the pedestrian mud pan and drywall knife.
With a mud pan and drywall knife, a workman manually applies drywall tape and mud. First, the workman removes a scoop of mud from a bulk container in a mud supply area and places it in the mud pan. This action is repeated until the pan is full. The workman then walks from the mud supply area to the seam that he wishes to tape. The workman then scoops a quantity of mud onto the knife, turns the knife blade towards the wall, and with a series of wiping motions, coats the seam with mud more or less uniformly. After precutting the seam, the workman lays paper tape over the seam and presses it into the mud to achieve tape attachment. He then glides the knife over the tape, forcing mud and air out from behind the tape, and begins to smooth the surface. A first coat of mud is applied to the drywall tape either at the time that the tape is applied or later, depending on the workman"s technique.
After a period of drying, another coat of mud is applied to the tape and dressed with a drywall knife, thus covering the seam with a wider coat of mud. The same steps of walking to the mud supply area, scooping out mud until the pan is full, and then walking back to the work area are repeated.
After a second period of drying, most inexperienced workmen sand the seams before applying a final coat of mud. The final coat of mud requires further walking between the mud supply and the work areas and further scooping and filling of the mud pan as before.
To overcome the drawbacks of manual drywall tape application and finishing tools such as the mud pan and drywall knife, a drywall taping system has been developed by Ames Tool Company (Ames), for example, that includes a manual, lever action, fluid mud pump that fills assorted mud applicator tools. A hand lever on the manual pump is pumped up and down to transfer drywall mud out of a bucket directly into a mud applicator tool. The mud is squirted into a slot in some tools and into other tools though a special fitting.
However, this system still requires walking between the mud supply and work areas, thus wasting time and energy. Only about ninety feet of tape can be applied with the Ames taper tool before a mud refilling is required, while each roll of paper tape is about 500 feet. Only about three to four vertical seams, where each seam is about eight feet long, can be filled with the Ames box tools before more mud is required. Thus, a day"s work requires hundreds of trips between the mud supply and work areas for mud refills with the Ames drywall taping system.
Additionally, each of the tools in the Ames system takes some toll upon the user"s energy. The Ames taper tool is powered by the user forcing a wheel to turn as it contacts the wall at the end of the tool. The Ames box tool requires the operator to forcefully wipe a box of mud on an extended handle. Each of the Ames tools mechanically disgorge drywall mud as the result of human labor. Many tasks in drywall taping are thus prone to repetitive stress injury.
Furthermore, Ames tools require both a reservoir that holds one shot of mud and a device to manually exude the mud on each tool. The Ames system is expensive, heavy, and manually actuated.
The stators tube pump is well known to the drywall industry. This pump has a hollow threaded internal rubber sleeve encompassing a threaded rod. As the rod is turned, fluid drywall material is forced to exit the pump. However, the stators pump requires an electric motor or gas engine to operate and is thus expensive to build. The stators pump is also very inefficient due to friction, so a large power source is required. Therefore, fluid material delivery systems using a stators pump for drywall work are expensive.
It is an object of an embodiment of the present invention to provide an improved drywall taping and texture system using a pump, which obviates for practical purposes, the above mentioned limitations.
According to an embodiment of the present invention, a drywall taping and texture system for pumping drywall mastic material from a container filled with the drywall mastic material to a work surface includes a pump housing, an air compressor, a tool for applying the drywall mastic material to the work surface, material and control lines, an inflatable bladder, an air release mechanism, and an airway. The pump housing is immersed in the container filled with the drywall mastic material, and the air compressor is connected to the pump housing. The material and control lines are connected between the pump housing and the tool such that there is material and air flow communication, respectively, therebetween. The bladder is mounted within the pump housing between upper and lower valves for controlling the flow of the drywall mastic material. The airway connects the air compressor, the control line, the bladder, and the air release mechanism, such that there is air flow communication therebetween. When the air release mechanism closes, the bladder inflates such that drywall mastic material in the pump housing is pumped through the upper valve, the material line, and the tool to the work surface. When the air release mechanism opens, the bladder deflates such that drywall mastic material in the container is pumped through the lower valve into the pump housing.
In particular embodiments of the present invention, the tool further includes a button for remotely controlling the air release mechanism. In other embodiments of the present invention, each of the upper and lower valves for controlling the flow of the drywall mastic material includes a seat having an orifice through which the drywall mastic material flows and a member for controlling the flow of the drywall mastic material through the orifice. When the member mates with the seat, a seal is formed to block the flow of the drywall mastic material through the orifice. When the member moves in a direction transverse to the seat, flow of the drywall mastic material through the orifice is allowed. In yet other embodiments of the present invention, the pump housing further includes a screen mounted at the bottom thereof for filtering particles out of the drywall mastic material.
A set of drywall mud, tape, and texture application and finishing tools may be attached to and used with the drywall taping and texture system. Such tools include: a tape applicator tool and pneumatic tape cutter attachment for applying muddy drywall tape; a wand tool and a corner tool attachment for placing a bead of mud upon a seam; a mud knife tool for dispensing and dressing coats of mud; a metering mud bead tool; a wall texture spray tool; and an acoustic texture spray tool. A set of adapter parts that allow use of the pump with Ames tools may also be attached to and used with the pump.
In another embodiment of the present invention, a drywall taping and texture system for pumping drywall mastic material from a container filled with the drywall mastic material to a work surface includes a pump housing, a tool for applying the drywall mastic material to the work surface, material and control lines, an inflatable bladder, an inflation sensor, and an air compressor. The pump housing is immersed in the container filled with the drywall mastic material. The material and control lines are connected between the pump housing and the tool such that there is material and air flow communication, respectively, therebetween. The bladder is mounted within the pump housing between upper and lower valves for controlling the flow of the drywall mastic material. The inflation sensor is coupled to the bladder for determining when the bladder is inflated and when the bladder is deflated. The air compressor is mounted within the pump housing and connected to the control line and the bladder such that there is flow communication therebetween. When the inflation sensor determines that the bladder is deflated, the air compressor is activated and the bladder inflates such that drywall mastic material in the pump housing is pumped through the upper valve, the material line, and the tool to the work surface. When the inflation sensor determines that the bladder is inflated, the air compressor is deactivated and the bladder deflates such that drywall mastic material in the container flows through the lower valve into the pump housing.
In another embodiment of the present invention, an apparatus for pumping a fluid includes a housing, an inflatable bladder, and a means for inflating and deflating the bladder. The bladder is mounted within the housing between upper and lower valves for controlling the flow of the fluid. When the bladder is inflated, the fluid in the housing is pumped through the upper valve and out of the apparatus. When the bladder deflates, the fluid is pumped through the lower valve into the housing.
FIG. 3ais a perspective view of the interior parts of the pump shown in FIG. 1. FIG. 3bis a partial cross-sectional view of the interior of the pump shown in FIG. 1.
FIGS. 4aand 4 bare partial cross-sectional views of the interior of the pump illustrating the pump in action. FIG. 4ashows the pump during intake of drywall material, and FIG. 4bshows the pump during exhaust of drywall material.
FIG. 5ais a side, cross-sectional view of a pump cap in accordance with an embodiment of the present invention. FIG. 5bis a top plan view of the pump cap, and FIG. 5cis a perspective view of the pump cap.
FIGS. 9a-9 care views of an electrical version of the pump in accordance with an alternative embodiment of the present invention. FIG. 9ais a partial cross-sectional view of the interior of the pump. FIG. 9bis an exploded perspective view of a solenoid module for controlling the electrical version of the pump. FIG. 9cis an exploded, partial cross-sectional view of an inflation sensor for electronically sensing the condition of the bladder.
FIGS. 18a-18 care views of adapter parts that allow use of the pump with Ames Tool Company"s tools in accordance with an embodiment of the present invention. FIG. 18ashows perspective and top plan views of an Ames adapter button. FIG. 18bis a perspective view of an Ames adapter gooseneck. FIG. 18cshows perspective and top plan views of an Ames adapter box filler.
As shown in the drawings for purposes of illustration, the invention is embodied in a drywall taping and texture system and a pump. In preferred embodiments of the present invention, the drywall taping and texture system utilizes the pump and various tools connected to the pump for applying drywall tape, as well as mastic or fluid drywall mud and texture, to wall surfaces. However, it will be recognized that the pump may be used in other systems and with other fluids, such as oil, gas, or the like.
FIG. 1 shows a perspective view of a drywall taping and texture system using a pump in accordance with an embodiment of the present invention. The drywall taping and texture system includes a pump 1 immersed in a container of mastic or fluid drywall material 32. The pump 1 is supported in the container by a clip 22. Referring to FIGS. 1 and 2, the pump 1 is formed from a generally cylindrical housing 29. The housing 29 is a solid shell with strength to withstand changes in pressure within the pump 1 and to support various parts of the pump 1. The housing 29 may be manufactured from simple drain pipe, which is cut to an appropriate length and then drilled to hold fasteners, such as screws or the like, that penetrate into various parts of the pump 1. The pump 1 has a cap 10, which is attached to the housing 29 using fasteners, such as screws, nails, bolts, or the like. The pump cap 10 has an air stem fitting 13 for connecting to an air compressor 28. The pump cap 10 also has a material line fitting 26 and a control line fitting 27 for connecting a preferably plastic material line or hose 14 and a preferably plastic control line or hose 15, respectively, to the pump 1. The material line 14 and the control line 15 attach at their respective distal ends through another material line fitting 26 and another control line fitting 27, respectively, to a variety of tools, such as a tape applicator tool 200, a wand tool 300, a mud knife tool 400, a mud bead tool 500, a wall texture spray tool 600, and an acoustic texture spray tool 700. The pump 1 can also be attached to a variety of tools manufactured by Ames Tool Company through adapter parts 800, 801, and 802.
In the embodiment illustrated in FIGS. 1 and 2, the pump 1 has an air gauge 24 and a pressure relief valve 25. The pressure relief valve 25 is one type of air release valve or mechanism for releasing air from the drywall taping and texture system, as will be discussed below. In alternative embodiments, the air gauge 24 and the pressure relief valve 25 may be omitted.
As shown in FIGS. 3aand 3 b, the bottom of the pump 1 has an intake orifice 8 covered with a screen 9. The screen 9 is a barrier to particulate matter that might ruin the drywall finish or plug the tool attached to the pump 10. The mesh size of the screen 9 is large enough to allow passage of acoustic ceiling grains, but small enough to stop larger particles. An user may change the screen 9 to screen mud or to spray acoustic. The screen 9 is positioned over the intake orifice 8 so that all drywall material 32 passes through the screen 9 prior to entering the pump 1.
In preferred embodiments, the pump 1 has upper and lower valves for controlling the flow of the drywall material 32. In preferred embodiments, the valves are check valves that create a one-way flow of the drywall material 32 upward through the pump 1. In the embodiment illustrated in FIGS. 3a-4 b, each valve includes a seat 3 or 7 having a orifice 8 through which the drywall material 32 flows and a member 2 or 6 for controlling the flow of the drywall material 32 through the orifice 8. However, in alternative embodiments, the valves may include other components, such as flappers or the like. The lower valve is formed from a lower seat 7 and a lower member or ball 6. The upper valve is formed from an upper seat 3 and an upper member or ball 2.
In the illustrated embodiment, the lower seat 7 holds the screen 9. The intake orifice 8 in the lower seat 7 has lateral vents so that the pump 1 will not be closed off by contact with the bottom of the container of drywall material 32.
The upper and lower balls 2 and 6 are generally similar. The ball 2 or 6 is preferably made from a heavyweight material, such as iron, lead, or the like, and is covered with a soft rubber or rubber-like material, such as elastomeric material or the like. The rubber or rubber-like material helps the ball 2 or 6 to seal with the seat 3 or 7 when stopping the backwards flow of the drywall material 32. By way of example, the ball 2 or 6 may be a solid material ball with a rubber coating, a rubber ball with a lead shot filling, or a spring-loaded ball. The ball 2 or 6 plugs the seat 3 or 7, respectively, when the drywall material 32 flows backwards, but does not stick in the orifice 8 of the seat 3 or 7. The upper and lower valves thus create a one-way flow of the drywall material 32 upward through the pump 1.
The pump 1 has a bladder 5 mounted within the housing 29 between the upper and lower valves. Referring to FIGS. 3a-4 band 7, the bladder 5 is made from a resilient, rubber or rubber-like material, such as elastomeric material or the like, and has a diameter smaller than the diameter of a material chamber 4 of the pump 1. When inflated, the bladder 5 could be larger than the material chamber 4, but is restrained by the cylinder body pump housing 29. The pump housing 29 allows drywall material 32 to flow around the bladder 5, but restrains the bladder 5 when it reaches the maximum allowable size of the interior of the housing 29. The rubber-like material of the bladder 5 has a plastic memory and will resiliently seek to return to its “normal size” (uninflated).
Each tool has a control mechanism, such as a button, that allows the user to remotely control the pump 1, via the control line 15. In particular, the user utilizes the mechanism to deliver drywall material 32 to the work surface as needed and to control an air release valve or mechanism directly connected to the tool or remotely located on the pump 1. FIGS. 8a-8 eillustrate several types of such air release mechanisms.
Referring to FIGS. 4aand 4 b, when the pump 1 is placed in the container filled with mastic or fluid drywall material 32, drywall material 32 wants to flow into the pump 1 due to gravity. The lower ball 6 is lifted out of the lower seat 7 due to greater pressure outside the pump 1 and lower pressure inside the pump 1. Resistance to the flow of the drywall material 32 from the container into the pump 1 is minor because the lower valve resists flow in the opposite direction. Once the pump 1 is filled with drywall material 32, the bladder 5 is inflated, resulting in positive pressure within the pump 1. This pressure closes the lower valve and also lifts the upper ball 2 out of the upper seat 3, thus forcing drywall material 32 through the material line 14 and the attached tool, and onto the work surface.
Each tool has a button for remotely controlling the pump 1 via the control line 15. When the user presses the button, the release of air at the tool or at the pump 1 is stopped. Pressure builds up in the control line 15 and causes the bladder 5 to inflate, thus forcing drywall material 32 through the upper valve and out of the pump 1, through the material line 14 and the tool, and onto the work surface. After a surge of a certain volume of drywall material 32, the user reduces the air pressure by releasing air at the tool or at the pump 1. The bladder 5 quickly deflates and reduces the volume of the bladder within the pump 1. The resulting partial vacuum formed by the shrinking bladder 5 refills the material chamber 4 of the pump 1 with drywall material 32 through the lower valve. Subsequent inflation of the bladder 5 forces drywall material 32 through the upper valve because space within the material chamber 4 is reduced as the bladder 5 inflates. A surge of drywall material 32 is thus created, which flows out of the pump 1, through the material hose 14 and attached tool, and onto the work surface. When a more continuous flow of drywall material 32 is needed, the user simply needs to continuously hold down the remote control button on the tool, which causes the pressure within the bladder 5 to rise to a preset maximum level.
FIGS. 9a-9 cillustrate an electrical version of the pump 1 in accordance with an alternative embodiment of the present invention. The air compressor 28 is mounted within the pump housing 29 and is connected to the bladder 5. An inflation sensor, which includes a magnet 41 attached to the bladder 5 and a reed switch 42 attached to the housing 29, determines the inflation state of the bladder 5. When the inflation sensor determines that the bladder 5 is deflated, the air compressor 28 is turned on to inflate the bladder 5. When the inflation sensor determines that the bladder 5 is inflated, the air compressor 28 is turned off. The air compressor 28 may be pneumatically controlled with a solenoid module 40 or electrically controlled.
As shown in FIG. 9a, the pump 1 has a secondary exhaust valve at a material exhaust orifice 16, which is connected to the material line fitting 26 and the material line 14. The secondary exhaust valve includes a secondary check ball 19, seat 20, and chamber 21, which support the material line fitting 26. This secondary valve is optional and is only required for some fluid materials.
The set of tools that may be used with the pump 1 includes drywall mud, tape, and texture application and finishing devices. Each tool connects to the material line 14 and the control line 15. Referring to FIGS. 19a-19 e, an universal tool fitting part 900 is provided for use with the tools. This part 900 allows for convenient mass production of the drywall taping and texture system. The universal fitting part 900 is preferably made using an injection molding process. The universal fitting part 900 forms the handle, the material line fitting 901, the control line fitting 902, and the control button 903 on the wand tool 300, the mud knife tool 400, the mud bead tool 500, the wall texture spray tool 600, and the acoustic texture spray tool 700.
Referring to FIGS. 20a-20 c, an universal spray head part 1000 is used with the two spray tools, the wall texture spray tool 600 and the acoustic texture spray tool 700. The universal spray head part 1000, in conjunction with an universal tool fitting part 900 and a short section of PVC pipe, produces the wall texture spray tool 600. The universal spray head part 1000, in conjunction with an universal tool fitting part 900 and a longer section of PVC pipe, produces the acoustic texture spray tool 700.
As shown in FIGS. 10aand 10 b, the tape applicator tool 200 is used to hold, cut, and apply drywall tape and mud. The tool 200 connects to the material line 14 and control line 15 via fittings 201 and 202. The tape applicator tool 200 has a cavity that holds a supply of drywall tape 206 and an area to advance and cut off the tape 204. The tool 200 also has a material line that feeds the drywall material 32 into a wetting chamber as it flows out of the tool 200 onto the work surface. The tool 200 further has a base plate 203 to enclose the tool and a set of tape rollers 207. The tape applicator tool 200 may have a metering wheel to retrieve drywall material 32 from the pump 1 according to the distance that the tool 200 is moved along the work surface. As illustrated in FIGS. 11athrough 11 c, a pneumatic tape cutter 220 may also be added to the tape applicator tool 200 for cutting the drywall tape 206.
Referring to FIGS. 12aand 12 b, the wand tool 300 is used to apply drywall mud to seams. The tool 300 is a hollow, elongated tool with threads 301 on the distal end, material and control line fittings 307 and 308, and a control button 306. When the user covers an air release hole on the button 306, the bladder 5 in the pump 1 inflates and forces drywall material 32 out of the pump 1, through the material line 14 and the tool 300, and onto the work surface. Referring to FIG. 13, a corner tool 320 may be attached to the threaded end 301 of the wand tool 300 via a threaded end 311 of the corner tool 320. The corner tool 320 delivers drywall material 32 into corners through a hole 310. The corner-shaped blades 309 finish the corners as the tool 320 is slid back and forth over the corner seam.
Referring to FIGS. 14 and 14b, the mud knife tool 400 is used for dispensing and dressing coats of mud. The tool 400 consists of a broad knife blade 401 and a smaller knife blade 402 mounted next to the broad knife blade 401. The tool also has a handle 404, material and control line fittings 406 and 407, and a control button 405. When the user covers an air release hole on the button 405, the bladder 5 inflates and forces drywall material 32 out of the pump 1, through the material line 14, and to the mud knife tool 400, where the mud valve 403 is activated when the blades 402 and 401 are flexed against the work surface.
As illustrated in FIGS. 15aand 15 b, the mud bead tool 500 is used to measure a distance rolled and to apply a bead of mud for other tools. The tool 500 consists of an elongated hollow body 506, material and control line fittings 501 and 502, a control button 507, and a wheel 503 on the distal end of the tool 500 that is rolled upon the work surface. As the wheel 503 is rolled upon the work surface and the control button 507 is depressed, drywall material 32 flows out of the distal end of the mud bead tool 500. When a radial hole in the wheel 503 is momentarily aligned with a radial hole in a hollow axle 504, air is released, causing the bladder to deflate and drywall material 32 to flow into the pump 1 from the container. The resulting effect is periods of pressurization and quick periods of depressurization. A tape roll holder 506 that supports a roll of drywall tape 206 may be attached to the mud bead tool 500 to form a tape applicator tool. A pneumatic cutter 320 may also be attached to the mud bead tool 500.
In addition to the tools described above, the pump 1 may be used with tools manufactured by the Ames Tool Company. A set of three parts is required to convert the pump 1 to this use. The control line 15 is replaced with an adapter button 800, and the material line 14 is replaced with an adapter gooseneck 801 and an adapter box filler part 802. These parts make the drywall taping and texture system backwards compatible with the Ames Tool Company"s tools.
All-Wall offers the largest selection of Drywall Taping & Finishing Tools. Whether you"re a drywall professional, remodeler, or DIY, achieve better results in half the time. All-Wall is the leading supplier in the drywall industry and is proud to carry major tool brands such as Laco Drywall Texture Guns.
Power Spray Guns can be used for many applications. They are designed to attach directly to hoses, so the user does not have messy overspray or have to carry around extra equipment. We have different types of wholesale drywall mud pump that can be used to paint, varnish, and seal a wide variety of surfaces.
Airless spray guns are great for projects that require more than just painting rolls of paper or applying concrete sealants to make it waterproof. A power spray gun can be also used to apply pesticides and herbicides using of a spray (compressed gas such as nitrogen, carbon dioxide, etc.). An electric paint spray gun is a tool that can be used to apply paint, plaster, or adhesive with minimal effort. They are also ideal for crafts and hobbies, allowing to create artistic finishes on small items or surfaces that are not possible by hand. Power washer guns are tools used to spray water at high pressure on machinery, buildings, pavements, and other construction materials for cleaning purposes. A power washer gun has a long metal tube attached to a pump that supplies pressurized water.
Other types of drywall mud pump include battery-powered paint sprayers that use either liquid paint or liquid sealer. They are particularly useful for spot repainting, priming, and base coating. Our online collection includes different other power spray guns such as pressure washer spray guns, car electric spray guns, battery-operated paint sprayers, and power paint sprayers.