where do yoh put hoses on mud pump price
You’re researching foundation repair options and have come across the term “mud-pumping” and you want to know what it means. Or maybe you are thinking about when a foundation is lifted, what happens with the space underneath your home? There’s a void there now and does it get filled in or what?
Mud-pumping is a finishing step of foundation repair, but not every foundation repair contractor adds this final step. It’s not automatically done so you might be wondering why some companies would use this technique or what its advantages and disadvantages are.
At Anchor Foundation Repair, we have been repairing foundations since 1985 and began adding mud-pumping to all slab-on-grade foundation repairs in 1998. We decided to take every reasonable step to provide the most security and stability in foundation repairs to Brazos Valley homeowners and bought our first hydraulic mud pump at that time.
We know mud-pumping has great value and importance in a foundation repair project, it’s a standard part of our slab foundation repairs. But we can tell you about it in an objective way so that you can decide if it’s as important to you as it is to us.
We know that not everyone is trying to meet the same goals in selecting a foundation repair method or provider. We just want to give you all the information and options so that you can choose what works best for you and your home.
In a nutshell, foundation settlement coupled with foundation repair creates voids. Here’s why: a home with a slab foundation is built on the ground. Homes are heavy. Over time, the weight of the home will compress and compact the soil below it.
This initial compression causes the home to sink into the ground a bit. This is called settlement, and it’s not a bad thing unless it causesfoundation problemsfor your home.
Settlement can also occur because of the expansive clay soil we have in this area. Expansive clay expands when wet and contracts when dry. The drier the soil gets, the more it can contract, also causing a home to sink. It might not all sink evenly. This is how slab foundations can crack and possibly need repair.
During the repair process, the home is raised back up to its original elevation. So imagine that the home is lifted, but since the soil was compacted below it, now there is space between the ground and the bottom of the slab. This is also called a “void” which is a fancy word for empty space. I mean, technically there’s air in the space so it’s not totally empty but . . .
Now, you could just scream into the void underneath your home. But more productively, you can consider filling it with mud-pumping material so that there is not a bunch of empty space between the bottom of your home and the earth. Mud-pumping helps lessen the opportunity for more foundation settlement or problems to arise.
Mud-pumping is not typically needed for pier and beam foundations, but for slab-on-grade foundation repair, it is an option. While mud-pumping is not *required* in foundation repair, it has many benefits for the homeowner.
So no, mud-pumping is not necessary to complete a foundation repair project, and manyfoundation repair companiesdon’t do it. Even though foundation repair contractors often skip this final step, you may want to seriously consider it. All the “whys” are in the next section.
Nature doesn’t like empty things, nature wants to fill them up. This is that “nature abhors a vacuum” thing. If the void under your home doesn’t get filled with mud-pumping material. It will very likely get filled with something else, like:
PRO #1: So one of the pros of filling voids with mud-pumping is that it takes up that empty space and prevents those areas from getting filled with something less desirable. The slurry material flows and fills every little space, permeating even the smallest pockets of air. But there are a couple more compelling reasons for you too . . .
PRO #2: Empty space creates weaker points and added stress to the foundation where it is not directly supported. Mud-pumping provides extra stability and holding power to your foundation without empty spaces under it. Having something solid underneath your whole slab is more supportive than drilled piers or pressed piles alone.
PRO #3: Mud-pumping the voids under your foundation also minimizes the risk of further movement and settling. When things are all snug and surrounded by other material, it’s less likely for them to wiggle and move around. It’s kinda like tucking your kid in at night. You burrito that little one in good with the hopes that they will stop moving and fall asleep, right?
Side Effect Bonus PRO #4: The step before mud-pumping is testing your under-slab plumbing to make sure there are no leaks. If leaks are found, they need to be fixed first. So if mud-pumping is used on your foundation repair, you will have the added comfort of knowing that there are no leaks or that they have been repaired. This is another way to make sure that further problems don’t come up later for your foundation or underneath it.
Like anything else, there are a few cons to mud-pumping as part of your foundation repair. Even though we are a fan of mud-pumping, it does have some risks and downsides that we want you to be aware of.
CON #1: Mud-pumping costs more. This is an additional step that takes added time and more materials, SO there will be extra cost to you. Mud-pumping adds between $2,000 and $4,000 to the price of your average-sized foundation repair.
CON #2 (minor): There is a small risk of over-pumping the mud and adding too much material under the home. This can cause a hump in your floor. But with an experienced team working on your foundation repair project, this has a low chance of happening. Just want you to know this is a potential problem that could happen with an inexperienced or less careful contractor.
CON #3: Just like that kid that you tucked into bed with a burrito blanket, there’s no guarantee that no more movement will take place. Mud-pumping is a safeguard, an insurance policy, a risk minimizer, but it’s not an absolute settlement solution with no potential for failure.
Like many forms of insurance or safeguards, you don’t really know if you’re going to need it or not. You might only know the value of mud-pumping afterward in hindsight since we can’t predict what will happen later with your home.
As mentioned, mud-pumping is a final step in a foundation repair project, but it has a few steps of its own to complete the process. Here’s a breakdown of how it works:Raise the foundation and secure it in place with shims
The mud-pumping process takes about half a day or small projects and several delays for larger jobs at the end of a foundation repair project. So it doesn’t add a lot of time to the job but it can add some peace of mind.
What’s the worst-case scenario if you don’t do mud-pumping? Well, you could spend thousands of dollars on a foundation repair only to have it settle all over again due to missing that final step and leaving voids under your foundation.
On the flip side, your home can still settle no matter what you do (or it might not, there’s no way to know for sure) but the risk is minimized as much as humanly possible if you add mud-pumping to the repair. This seems like a tricky decision, so let’s try and make it a little easier with some “if-then” statements.If you love your home and plan to be in it for the long haul and want the very best, get the mud-pumping.
If you are selling your home and won’t be living in it any longer, then you’re not worried about the longevity of the repair and could skip the mud-pumping.
Here’s one more “if-then” statement for you: if you want to use Anchor Foundation Repair for your slab-on-grade foundation repair project, then mud-pumping is part of the deal. We don’t leave repair projects without the last step because we also have a lifetime warranty and service agreement.
At Anchor Foundation Repair, we have seen firsthand the consequences of not filling voids after repairs in our 35 years in business. We have inspected and repaired dozens of homes that had previous foundation repairs (by other companies) without mud-pumping. We have felt the hollow-sounding floors and seen homeowners having to go through the repair process again to get it right the second time.
To get it right the first time, Anchor employs more than one “risk-minimizing” tactic to provide the longest-lasting foundation repair possible. Check out our article highlighting4 service features that set us apartfrom other foundation repair contractors.
This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.
There are three types of mud pumps, depending on the type of client and the size they want. For general, mud pumps, there are three basic types of mud pumps, depending on the type of client and budget. The piston pump is another compressed mud pump, which is a pushed electric compressor mud pumps and by compressed air.@@@@@
Electric mud pumps are largely divided into three categories, among them the electric mud pumps and the semi-trash mud pumps. The piston inflated mud pumps are also classified in terms of the type of mud pumps, among them are electric mud pumps and semi-trash mud pumps. In addition, the piston inflates mud and mud pumps will be inflated by the piston, which is inflated mud pumps.
A mud pump is a reciprocating piston/plunger pump designed to circulate drilling fluid under high pressure (up to 7,500 psi (52,000 kPa)) down the drill string and back up the annulus. A duplex mud pump is an important part of the equipment used for oil well drilling.
Duplex mud pumps (two piston/plungers) have generally been replaced by the triplex pump, but are still common in developing countries. Two later developments are the hex pump with six vertical pistons/plungers, and various quintuplex’s with five horizontal piston/plungers. The advantages that Duplex mud pumps have over convention triplex pumps is a lower mud noise which assists with better Measurement while drilling and Logging while drilling decoding.
Use duplex mud pumps to make sure that the circulation of the mud being drilled or the supply of liquid reaches the bottom of the well from the mud cleaning system. Despite being older technology than the triplex mud pump, the duplex mud pumps can use either electricity or diesel, and maintenance is easy due to their binocular floating seals and safety valves.
A mud pump is composed of many parts including mud pump liner, mud pump piston, modules, hydraulic seat pullers, and other parts. Parts of a mud pump:housing itself
Duplex pumps are used to provide a secondary means of fuel transfer in the event of a failure of the primary pump. Each pump in a duplex set is sized to meet the full flow requirements of the system. Pump controllers can be set for any of the following common operating modes:Lead / Lag (Primary / Secondary): The lead (primary) pump is selected by the user and the lag (secondary pump operates when a failure of the primary pump is detected.
Alternating: Operates per Lead / Lag (Primary / Secondary) except that the operating pump and lead / lag status alternate on consecutive starts. A variation is to alternate the pumps based on the operating time (hour meter) of the lead pump.
This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.
Mud pump is one of the most critical equipment on the rig; therefore personnel on the rig must have good understanding about it. We’ve tried to find the good training about it but it is very difficult to find until we’ve seen this VDO training and it is a fantastic VDO training about the basic of mud pumps used in the oilfield. Total length of this VDO is about thirteen minutes and it is worth to watch it. You will learn about it so quickly. Additionally, we also add the full detailed transcripts which will acceleate the learning curve of learners.
Powerful mud pumps pick up mud from the suction tank and circulate the mud down hole, out the bit and back to the surface. Although rigs usually have two mud pumps and sometimes three or four, normally they use only one at a time. The others are mainly used as backup just in case one fails. Sometimes however the rig crew may compound the pumps, that is, they may use three or four pumps at the same time to move large volumes of mud when required.
Rigs use one of two types of mud pumps, Triplex pumps or Duplex pumps. Triplex pumps have three pistons that move back-and-forth in liners. Duplex pumps have two pistons move back and forth in liners.
Triplex pumps have many advantages they weight 30% less than a duplex of equal horsepower or kilowatts. The lighter weight parts are easier to handle and therefore easier to maintain. The other advantages include;
• One of the more important advantages of triplex over duplex pumps, is that they can move large volumes of mud at the higher pressure is required for modern deep hole drilling.
Triplex pumps are gradually phasing out duplex units. In a triplex pump, the pistons discharge mud only when they move forward in the liner. Then, when they moved back they draw in mud on the same side of the piston. Because of this, they are also called “single acting.” Single acting triplex pumps, pump mud at a relatively high speeds. Input horsepower ranges from 220 to 2200 or 164 to 1641 kW. Large pumps can pump over 1100 gallons per minute, over 4000 L per minute. Some big pumps have a maximum rated pressure of over 7000 psi over 50,000 kPa with 5 inch/127 mm liners.
Here is a schematic of a triplex pump. It has three pistons each moving in its own liner. It also has three intake valves and three discharge valves. It also has a pulsation dampener in the discharge line.
Look at the piston at left, it has just completed pushing mud out of the liner through the open discharge valve. The piston is at its maximum point of forward travel. The other two pistons are at other positions in their travel and are also pumping mud. But for now, concentrate on the left one to understand how the pump works. The left piston has completed its backstroke drawing in mud through the open intake valve. As the piston moved back it instead of the intake valve off its seat and drew mud in. A strong spring holds the discharge above closed. The left piston has moved forward pushing mud through the now open discharge valve. A strong spring holds the intake valve closed. They left piston has completed its forward stroke they form the length of the liner completely discharging the mud from it. All three pistons work together to keep a continuous flow of mud coming into and out of the pump.
Crewmembers can change the liners and pistons. Not only can they replace worn out ones, they can also install different sizes. Generally they use large liners and pistons when the pump needs to move large volumes of mud at relatively low pressure. They use a small liners and pistons when the pump needs to move smaller volumes of mud at a relatively high pressure.
In a duplex pump, pistons discharge mud on one side of the piston and at the same time, take in mud on the other side. Notice the top piston and the liner. As the piston moves forward, it discharges mud on one side as it draws in mud on the other then as it moves back, it discharges mud on the other side and draws in mud on the side it at had earlier discharge it. Duplex pumps are therefore double acting.
Double acting pumps move more mud on a single stroke than a triplex. However, because of they are double acting they have a seal around the piston rod. This seal keeps them from moving as fast as a triplex. Input horsepower ranges from 190 to 1790 hp or from 142 to 1335 kW. The largest pumps maximum rated working pressure is about 5000 psi, almost 35,000 kPa with 6 inch/152 mm linings.
A mud pump has a fluid end, our end and intake and the discharge valves. The fluid end of the pump contains the pistons with liners which take in or discharge the fluid or mud. The pump pistons draw in mud through the intake valves and push mud out through the discharge valves.
The power end houses the large crankshaft and gear assembly that moves the piston assemblies on the fluid end. Pumps are powered by a pump motor. Large modern diesel/electric rigs use powerful electric motors to drive the pump. Mechanical rigs use chain drives or power bands (belts) from the rig’s engines and compounds to drive the pump.
A pulsation dampener connected to the pump’s discharge line smooths out surges created by the pistons as they discharge mud. This is a standard bladder type dampener. The bladder and the dampener body, separates pressurized nitrogen gas above from mud below. The bladder is made from synthetic rubber and is flexible. When mud discharge pressure presses against the bottom of the bladder, nitrogen pressure above the bladder resists it. This resistance smoothes out the surges of mud leaving the pump.
Here is the latest type of pulsation dampener, it does not have a bladder. It is a sphere about 4 feet or 1.2 m in diameter. It is built into the mud pump’s discharge line. The large chamber is form of mud. It has no moving parts so it does not need maintenance. The mud in the large volume sphere, absorbs this surges of mud leaving the pump.
A suction dampener smooths out the flow of mud entering into the pump. Crewmembers mount it on the triplex mud pump’s suction line. Inside the steel chamber is a air charged rubber bladder or diaphragm. The crew charges of the bladder about 10 to 15 psi/50 to 100 kPa. The suction dampener absorbs surges in the mud pump’s suction line caused by the fast-moving pump pistons. The pistons, constantly starts and stops the mud’s flow through the pump. At the other end of the charging line a suction pumps sends a smooth flow of mud to the pump’s intake. When the smooth flow meets the surging flow, the impact is absorbed by the dampener.
Workers always install a discharge pressure relief valve. They install it on the pump’s discharge side in or near the discharge line. If for some reason too much pressure builds up in the discharge line, perhaps the drill bit or annulus gets plugged, the relief valve opens. That opened above protects the mud pump and system damage from over pressure.
Some rig owners install a suction line relief valve. They install it on top of the suction line near the suction dampener. They mount it on top so that it won’t clog up with mud when the system is shut down. A suction relief valve protects the charging pump and the suction line dampener. A suction relief valve usually has a 2 inch or 50 mm seat opening. The installer normally adjusts it to 70 psi or 500 kPa relieving pressure. If both the suction and the discharged valves failed on the same side of the pump, high back flow or a pressure surge would occur. The high backflow could damage the charging pump or the suction line dampener. The discharge line is a high-pressure line through which the pump moves mud. From the discharge line, the mud goes through the stand pipe and rotary hose to the drill string equipment.
Lake Petro provides high quality Mud Pump Parts including Mud Pump Liners, Mud Pump Fluid End Module, piston, Valve and Seat etc. With more than 10 years of experience in the oil and gas industry, we are dedicated to help and support our loyal clients with the most cost-effective and quality Liners and Pistons. We also provide mud pump price and mud pump for sale.
We offer Liners with Ceramic (Zirconia and Aluminium oxide) and Steel (Metal and Bi-metal) materials for all common brands of the mud pump and triplex mud pump.
Bi-metal liners (double metal liners) are made of forged steel shell and wear-resistant sleeve of high chromium iron. In the production process, the size accuracy should be strictly controlled, which can ensure that they can be easily and stably installed. The inner sleeve with high finish and hardness is wear-resistant, corrosion-resistant and has a long service life. The bi-metal liners are suitable for a lot of bad working conditions. Its service life is more than 800 hours.
Ceramic Liners are made of a ceramic inner sleeve and a forged steel outer shell. The service life of ceramic liners is about 4000 to 10000 hours, the minimum time is at least 2000 hours, which is a lot more than bi-metal liners. Because of the phase transformation toughen technology, the ceramic liners have the features of wear-resistance, erosion-resistance, high-pressure-resistance, high hardness and strength. Zirconia type and Alumina type are common type of ceramic sleeve. Compared with Alumina type, Zirconia type liners have better toughness properties and a much longer service life. Piston wear and water consumption for lubrication can be reduced as well.
All Lake Petro liner products are interchangeable with O.E.M. products. Meanwhile, we provide customized Liners according to drawings. Our liners, also with our other mud pump spares, are supplied for use in Honghua, F-Series, Bomco, Emsco and National lines of triplex drilling pumps. Let Lake Petro be your one-stop shop for your whole fleet of pumps. Please refer to “Suitable Pump Models” Lable for more details.
This website requires cookies to provide all of its features. For more information on what data is contained in the cookies, please see our Privacy Policy page. To accept cookies from this site, please click the Allow button.
GDEP is the original creator of the drilling pump and continues to set the standard for durable, high-quality drilling pumps that can withstand the world’s toughest drilling environments. Starting with our PZ7 and rounding out with the market"s most popular pump, the PZ1600, our PZ Series of pumps are the perfect choice for today"s high-pressure drilling applications.
Mud pump is one of the most critical equipment on the rig; therefore personnel on the rig must have good understanding about it. We’ve tried to find the good training about it but it is very difficult to find until we’ve seen this VDO training and it is a fantastic VDO training about the basic of mud pumps used in the oilfield. Total length of this VDO is about thirteen minutes and it is worth to watch it. You will learn about it so quickly. Additionally, we also add the full detailed transcripts which will acceleate the learning curve of learners.
Powerful mud pumps pick up mud from the suction tank and circulate the mud down hole, out the bit and back to the surface. Although rigs usually have two mud pumps and sometimes three or four, normally they use only one at a time. The others are mainly used as backup just in case one fails. Sometimes however the rig crew may compound the pumps, that is, they may use three or four pumps at the same time to move large volumes of mud when required.
Rigs use one of two types of mud pumps, Triplex pumps or Duplex pumps. Triplex pumps have three pistons that move back-and-forth in liners. Duplex pumps have two pistons move back and forth in liners.
Triplex pumps have many advantages they weight 30% less than a duplex of equal horsepower or kilowatts. The lighter weight parts are easier to handle and therefore easier to maintain. The other advantages include;
• One of the more important advantages of triplex over duplex pumps, is that they can move large volumes of mud at the higher pressure is required for modern deep hole drilling.
Triplex pumps are gradually phasing out duplex units. In a triplex pump, the pistons discharge mud only when they move forward in the liner. Then, when they moved back they draw in mud on the same side of the piston. Because of this, they are also called “single acting.” Single acting triplex pumps, pump mud at a relatively high speeds. Input horsepower ranges from 220 to 2200 or 164 to 1641 kW. Large pumps can pump over 1100 gallons per minute, over 4000 L per minute. Some big pumps have a maximum rated pressure of over 7000 psi over 50,000 kPa with 5 inch/127 mm liners.
Here is a schematic of a triplex pump. It has three pistons each moving in its own liner. It also has three intake valves and three discharge valves. It also has a pulsation dampener in the discharge line.
Look at the piston at left, it has just completed pushing mud out of the liner through the open discharge valve. The piston is at its maximum point of forward travel. The other two pistons are at other positions in their travel and are also pumping mud. But for now, concentrate on the left one to understand how the pump works. The left piston has completed its backstroke drawing in mud through the open intake valve. As the piston moved back it instead of the intake valve off its seat and drew mud in. A strong spring holds the discharge above closed. The left piston has moved forward pushing mud through the now open discharge valve. A strong spring holds the intake valve closed. They left piston has completed its forward stroke they form the length of the liner completely discharging the mud from it. All three pistons work together to keep a continuous flow of mud coming into and out of the pump.
Crewmembers can change the liners and pistons. Not only can they replace worn out ones, they can also install different sizes. Generally they use large liners and pistons when the pump needs to move large volumes of mud at relatively low pressure. They use a small liners and pistons when the pump needs to move smaller volumes of mud at a relatively high pressure.
In a duplex pump, pistons discharge mud on one side of the piston and at the same time, take in mud on the other side. Notice the top piston and the liner. As the piston moves forward, it discharges mud on one side as it draws in mud on the other then as it moves back, it discharges mud on the other side and draws in mud on the side it at had earlier discharge it. Duplex pumps are therefore double acting.
Double acting pumps move more mud on a single stroke than a triplex. However, because of they are double acting they have a seal around the piston rod. This seal keeps them from moving as fast as a triplex. Input horsepower ranges from 190 to 1790 hp or from 142 to 1335 kW. The largest pumps maximum rated working pressure is about 5000 psi, almost 35,000 kPa with 6 inch/152 mm linings.
A mud pump has a fluid end, our end and intake and the discharge valves. The fluid end of the pump contains the pistons with liners which take in or discharge the fluid or mud. The pump pistons draw in mud through the intake valves and push mud out through the discharge valves.
The power end houses the large crankshaft and gear assembly that moves the piston assemblies on the fluid end. Pumps are powered by a pump motor. Large modern diesel/electric rigs use powerful electric motors to drive the pump. Mechanical rigs use chain drives or power bands (belts) from the rig’s engines and compounds to drive the pump.
A pulsation dampener connected to the pump’s discharge line smooths out surges created by the pistons as they discharge mud. This is a standard bladder type dampener. The bladder and the dampener body, separates pressurized nitrogen gas above from mud below. The bladder is made from synthetic rubber and is flexible. When mud discharge pressure presses against the bottom of the bladder, nitrogen pressure above the bladder resists it. This resistance smoothes out the surges of mud leaving the pump.
Here is the latest type of pulsation dampener, it does not have a bladder. It is a sphere about 4 feet or 1.2 m in diameter. It is built into the mud pump’s discharge line. The large chamber is form of mud. It has no moving parts so it does not need maintenance. The mud in the large volume sphere, absorbs this surges of mud leaving the pump.
A suction dampener smooths out the flow of mud entering into the pump. Crewmembers mount it on the triplex mud pump’s suction line. Inside the steel chamber is a air charged rubber bladder or diaphragm. The crew charges of the bladder about 10 to 15 psi/50 to 100 kPa. The suction dampener absorbs surges in the mud pump’s suction line caused by the fast-moving pump pistons. The pistons, constantly starts and stops the mud’s flow through the pump. At the other end of the charging line a suction pumps sends a smooth flow of mud to the pump’s intake. When the smooth flow meets the surging flow, the impact is absorbed by the dampener.
Workers always install a discharge pressure relief valve. They install it on the pump’s discharge side in or near the discharge line. If for some reason too much pressure builds up in the discharge line, perhaps the drill bit or annulus gets plugged, the relief valve opens. That opened above protects the mud pump and system damage from over pressure.
Some rig owners install a suction line relief valve. They install it on top of the suction line near the suction dampener. They mount it on top so that it won’t clog up with mud when the system is shut down. A suction relief valve protects the charging pump and the suction line dampener. A suction relief valve usually has a 2 inch or 50 mm seat opening. The installer normally adjusts it to 70 psi or 500 kPa relieving pressure. If both the suction and the discharged valves failed on the same side of the pump, high back flow or a pressure surge would occur. The high backflow could damage the charging pump or the suction line dampener. The discharge line is a high-pressure line through which the pump moves mud. From the discharge line, the mud goes through the stand pipe and rotary hose to the drill string equipment.
When drilling with two hoses, the weakest part of our human powered “drilling rig” is not the human motor or even the plastic drill bit. It is thelack of sufficient water flow. Water flow is the most critical part of drilling a well from a DIY standpoint.
If you have washed down a few wells using two hoses for water flow you probably have thought you could have gone much deeper if the pipe had not begun to stick. In the area I live, frequently down around the 30 foot level, drilling actually gets easier. The problem is when I have to stop to add a piece of PVC, sand down in the hole collapses on the pipe and the pipe gets stuck. With two hoses I dont’ have enough water flow to wash the hole out enough to get the pipe free.
A 30 foot well is plenty for many folks. A little deeper would frequently be better. To do that, you need more drilling fluid (water) flow pushing those cuttings back up to the top of the hole.
Enter the lowly mud pump. This machine can make a huge difference in your drilling. If you can buy or borrow one to drill with, do it. I’m not so keen on renting them because first time drilling projects tend to not finish on time and by the time you pay four or five days rental on a mud pump, you could have nearly bought one. If you only want to use a mud pump for one well, consider buying one and selling it when you are finished. Better yet, buy a used one and sell it when you are finished.
Two hoses put out about eight gallons per minute (GPM). I have a minimal mud pump that pumps about 100 GPM (it is routine for mud pumps to put out 200 to 500 GPM). In the video below I measure a single household hose at 4.25 GPM. Then I measure my mud pump at 107 GPM. That calculates to the mud pump putting out 12.5 times as much water as two hoses. But the advantage of a mud pump does not end there.
A mud pump permits us to set up a re-circulating drilling fluid (water) system and add bentonite to our drilling fluid. Bentonite hardens the sandy walls of our well as we drill. The hardened walls do not collapse when we stop drilling. You usually can take 30 minutes to add a piece of PVC and the drilling pipe will still be free! Several folks have reported stopping for the day and finding the hole still open the next morning. And the advantage does not end there.
Because the sandy hole will stay open on its own, we are no longer restricted to open drill bits. As you know, we have been using drill bits that are simply pieces of PVC or metal pipe with teeth cut in the edges. This is so when we drill down to depth, we can insert a smaller well screen pipe down through our drill pipe. This technique gets the well screen down there before the hole can collapse.
Obviously it would be useful to have a cutting edge or edges in the middle of the drill bit. With a mud pump system we can use these more efficient drill bits. We can drill the hole, remove the drillpipe, and then insert the well screen because the hole will stay open long enough to do it.
To demonstrate the dramatic difference between the GPM output of a mud pump vs. two hoses, I have made somewhat of a silly video that appears below. I know it is like racing a bicycle against a Ferrari but take a look anyway if you will.
Drilling consumables such as mud pump systems and their components can drastically increase your uptime while reducing costs and health/safety/environmental (HSE) risks. To support your drilling needs, Forum’s patented P-Quip® mud pump system offers a single-source solution that integrates high-quality fluid end components for maximum longevity and performance.
With more than 20 years of successful operation in severe environments, P-Quip offers a proven track record for the lowest cost of ownership in the industry. As part of our commitment to quality, our mud pump parts use patented Banded Bore™ technology that significantly reduces stress concentrations and leads to longer module life.
One of Forum’s most committed core values is that “no one gets hurt,” and the P-Quip system is designed to support that principle. Streamlined and easy to use, it reduces or eliminates the need for manual force during maintenance, shrinking the time needed to replace high-use components and minimizing safety risks.
Greetings Tim & Charlott, below is a GPS link and information on the well we just installed in the honor of Tim & Charlott King! Your love and commitment has allowed our Clean Water 4 Life ministry to sink over 500 water wells for those in need here in the Solomon Islands! Here is a link to read my current newsletter with lots of pictures! http://www.rickrupp.com/newsletter.php
Togokoba SSEC Church & Community is approx 58 kilometers east of Honiara. It was a long bumpy drive to this village. I had to walk a long way to get to the place where they lived. They explained that their source of drinking water was the stream. They were so happy when I explained that our CW4L team was going to come sink a well right in their village. I tasted the well water several weeks later after our team had blessed them with a water well. It tasted so good! It was nice clean & cold water! It never ceases to amaze me that there is such a nice water table here in the rural areas of the Guadnacanal plains! I counted 10 houses in this community and the population is approx 80 people. Now they finally have a source of clean drinking water! These people have suffered for many years either drinking from an open hand dug well or from the stream. Togokoba SSEC Church & Community is very grateful to our CW4L sponsors.
Lake Petro provides high quality Mud Pump Parts including Mud Pump Liners, Mud Pump Fluid End Module, piston, Valve and Seat etc. With more than 10 years of experience in the oil and gas industry, we are dedicated to help and support our loyal clients with the most cost-effective and quality Liners and Pistons. We also provide mud pump price and mud pump for sale.
We offer Liners with Ceramic (Zirconia and Aluminium oxide) and Steel (Metal and Bi-metal) materials for all common brands of the mud pump and triplex mud pump.
Bi-metal liners (double metal liners) are made of forged steel shell and wear-resistant sleeve of high chromium iron. In the production process, the size accuracy should be strictly controlled, which can ensure that they can be easily and stably installed. The inner sleeve with high finish and hardness is wear-resistant, corrosion-resistant and has a long service life. The bi-metal liners are suitable for a lot of bad working conditions. Its service life is more than 800 hours.
Ceramic Liners are made of a ceramic inner sleeve and a forged steel outer shell. The service life of ceramic liners is about 4000 to 10000 hours, the minimum time is at least 2000 hours, which is a lot more than bi-metal liners. Because of the phase transformation toughen technology, the ceramic liners have the features of wear-resistance, erosion-resistance, high-pressure-resistance, high hardness and strength. Zirconia type and Alumina type are common type of ceramic sleeve. Compared with Alumina type, Zirconia type liners have better toughness properties and a much longer service life. Piston wear and water consumption for lubrication can be reduced as well.
All Lake Petro liner products are interchangeable with O.E.M. products. Meanwhile, we provide customized Liners according to drawings. Our liners, also with our other mud pump spares, are supplied for use in Honghua, F-Series, Bomco, Emsco and National lines of triplex drilling pumps. Let Lake Petro be your one-stop shop for your whole fleet of pumps. Please refer to “Suitable Pump Models” Lable for more details.