dc power tong llc supplier

DC Power Tong continues to set the standard in the casing and tubing service industry by offering superior service & innovative casing technology. To exceed our customersʼ expectations, DC Power Tong also provides hydro test trucks, pressure test units, and equipment and pipe wrangler rentals to ensure your project is completed safely and efficiently. At DC Power Tong, we treat your project as if it is our very own, and thatʼs what weʼre all about.

dc power tong llc supplier

US Power Tong’s 13-5/8” Standard Model Casing Tong (Pics below) is capable of biting pipe sizes 4-1/2” in diameter up to 13-5/8” in diameter. With its’ high torque capability rated at 45,000 lb./ft. as well as its’ lightweight and compact design, it makes this tong one of the most versatile and convenient models US Power Tong offers. This tong also offers a door interlocking system which helps reduce the chances of accidents. This tong operates from a hydraulic power unit that provides power to the tong. The biting system this tong uses is that of a cam style biting system.

US Power Hydraulic Casing Tong 13-5/8″ Light Duty Model Rated @ 30,000 lb/ft. w/Safety Interlock Door and Solid Hanger. (USPT-1619) or Hydraulic Casing Tong Standard Duty Model Rated @ 45,000 lb/ft. w/Safety Interlock Door, Solid Hanger, and High Torque Door. (USPT-1190)

Accessories and added options are also available with US Power Tong’s 13-5/8” Standard Hydraulic Casing Tong. Options that are available are listed below and the paragraphs following describe each item:

dc power tong llc supplier

Hydraulic Casing Power Tongs TQ series of casing tongs are widely used for making-up or breaking-out of casings or pipes. The casing tong features high-efficiency, safety, reliability, labor-saving, and can ensure connection quality. Tong head is designed as open and is fitted with two jaws which can ensure reliable...

Hydraulic Tubing Power Tong API 7K Hydraulic Tubing Power Tong with closed head and open head is used for make up and break out quickly in well service operation. The hydraulic tubing power tong is equipped with hydraulic backup tong and use inner curved cam to clamp. It is as per API 7K specification with oil pipe...

Hydraulic Drill Pipe Tong ZQ drill pipe power tong is ideal tool for oil & gas drilling, widely applied for makeup and breakout in offshore and onshore drilling operations and workover operations. Open head design of the ZQ series allows the tongs to disengage from drill string with high mobility. The tong is a...

Hydraulic Drill Pipe Power Tong After a quench and temper heat treat, the tool joints are cut into box (female) and pin (male) threads. Tool joints are commonly 120 ksi SMYS, rather than the 135 ksi of the tube. They generally are stiffer than the tube, increasing the likelihood of fatigue failure at the junction. The...

Hydraulic Casing Power Tongs TQ series of casing tongs are widely used for making-up or breaking-out of casings or pipes. The casing tong features high-efficiency, safety, reliability, labor-saving, and can ensure connection quality. Tong head is designed as open and is fitted with two jaws which can ensure reliable...

Manual Tong Manual tong is an essential tool in oil drilling operation to fasten or remove the screws of drill pipe and casing joint or coupling. The handling size of manual tong I can be adjusted by changing latch lug jaws and latch steps. Details • Manual tong is as per API7K standard • Manual tong is an essential...

Sticking to the principle of "Super Good quality, Satisfactory service" ,We are striving to become an excellent organization partner of you for Power Tong , Tubing Power Tong , Oil Pipe Power Tongs , for each new and outdated clients while using the most fantastic eco-friendly providers.

"We also offer product sourcing and flight consolidation services. We"ve got our personal factory and sourcing office. We can easily present you with almost every style of merchandise linked to our merchandise range for Power Tong , Tubing Power Tong , Oil Pipe Power Tongs , Our company warmly invites domestic and overseas customers to come and negotiate business with us. Allow us to join hands to create a brilliant tomorrow! We"ve been looking forward to cooperating with you sincerely to achieve a win-win situation. We promise to try our best to deliver you with high quality and efficient services.

dc power tong llc supplier

There is an increasing focus on achieving higher and consistent power conversion efficiencies at any load in high-voltage applications such as industrial/factory automation and other adjacent markets. As such applications are seeking a high level of performance in addition to an equal emphasis on carbon footprint reductions, future-ready power conversion topologies are fundamental to make such applications commercially viable and sustainable. As the industry leader in supplying integrated and discrete power conversion semiconductors, onsemi has always worked with its partners to address the principal challenge of achieving higher power efficiency and performance. We offer several topologies, including boost, fly-back, and quasi-resonant, with the choice of monolithic ICs or discrete implementation.

dc power tong llc supplier

FIRE TONGS AND FIRE POKER SET OUTDOOR GARDEN LAMP PATIO COVER COMPUTER DESK&GAMING DESK S TORAGE BOX WHEEL HUB BEARING CONTROL ARM STEERING SHAFT WATER PUMP TENSIONER POWER STEERING PUMP EGR VALVE MUD FLAPS FULL CAR COVERS TRUNK ORGANIZERS WOOD ORGANIZER

IB: POWER MOP SET 2023 HS:960 3.90 ADD NOTIFY 3 ALDI SOURC ING ASIA LIMITED 18/F, MILLEN NIUM CITY 6, 392 KWUN TONG R OAD, KWUN TONG, KOWLOON, HONG KONG -PHONE 718-425-1022 FAX 973-686-4192 IB: POWER MOP SET 2023 HS:960 3.90 ADD NOTIFY 3 ALDI SOURC ING

GREETING CARD VELVET BAG THREAD PROT ECTOR TILE LEVELER PRINTER DE HYDRATION EQUIPMENT BLANKET GLASS BOTTLES METAL PARTS PHOTO BOOTH WORKOVER POWER TONG LED PANEL LIGHT PLASTIC BAG

ICE MAKER WORKOVER POWER TONG BARBER CHAI R MEN S SHIRTS CARBON FISHING ROD WOR KOVER POWER TONG CONGAS SWEATER PHOTO BOOTH INFLATABLE BOUNCER COMPUTERIZED E MBROIDERY MACHINE PLASTIC BAG

CAR CUP HOLDER CARBON TUBE TAPE MEASURE INFLATABLE JUMP BED PLASTIC COMB COMPU TERIZED EMBROIDERY MACHINE COMPUTERIZED EM BROIDERY MACHINE WORKOVER POWER TONG SE AT COVER MEN S SHIRTS COMPUTERIZED EMBR OIDERY MACHINE CLEANING MACHINE RAKE HEAD HEAT PRESS

CUTTING BOARD 8.5X11 W GRIP MCCORMICK SALAD TONGS POWER CLPS NVLTY 3PK 2 ASTD CS SINK SPONGE HOLDER ASTD MCCORMICK KITCHN BRUSH SILICON MEASURING CUP&SPOON 8PC MCCORMICK SLOT SPOON NYLOON MCCORMICK MELAMINE TOOL ASTD MCCORMICK SLOTTED TURNER NYLON MCCORMI

INFLATABLE JUMP BED BALL VALVE INFLATABLE JUMP BED WORKOVER POWER TONG INFLATABLE JU MP BED PLASTIC BOTTLE SCARF COMPUTERIZE D EMBROIDERY MACHINE MEN S SHIRTS INFLATA BLE JUMP BED PILLOW INFLATABLE JUMP BED I NFLATABLE JUMP BED YOGA CLOTHES INFLATABLE JUM

FOOTBALL GATE WORKOVER POWER TONG WORKOV ER POWER TONG BELT MEN S SWEATER CANVA S BAG TROUSERS SEWING MACHINE TABLE EYE MODEL STAGE CABINET CARAVAN LOCK BLANK ET PLASTIC HOOK

LINEN INFLATABLE JUMP BED SUCKER ROD CENT RALIZER PLASTIC BOX WORKOVER POWER TONG OXFORD FABRIC INFLATABLE JUMP BED KNITTED WOMEN S OPEN CHEST SHIRT INFLATABLE JUMP B ED GLASS MOSAIC INFLATABLE JUMP BED DOO RMAT

LINEN INFLATABLE JUMP BED SUCKER ROD CENT RALIZER PLASTIC BOX WORKOVER POWER TONG OXFORD FABRIC INFLATABLE JUMP BED KNITTED WOMEN S OPEN CHEST SHIRT INFLATABLE JUMP B ED GLASS MOSAIC INFLATABLE JUMP BED DOO RMAT

ENVELOPE HTS: FIRE-TONGS HTS: FIREPLACE TOOLS SET HTS: FOLDABLE STEPLADDERS OF STEEL HTS: KRAFT BUBBLE MAILER HTS: LOG STORAGE RACK SET HTS: PE COURIER BAG HTS: PLASTIC STOOL HTS: POWER INVENTER HTS: TABLE MAT WOODEN HANGER KITCHEN UTENSILS HTS: CERAMIC T

dc power tong llc supplier

The 9-5/8” power tong with Rineer GA15-13 two-speed hydraulic motor, motor valve, lift cylinder valve, rigid sling, FARR® hydraulic backup, configured for compression load cell.

Power tongs are an essential tool in the drilling industry and are used to make up, break out, apply torque and to grip the tubular components. We are distributors for both Starr Power Tongs and McCoy Global hydraulic power tongs in multiple sizes and torque ranges from high torque to low torque that can be used to run both casing, drill pipe and tubing. When determining which power tong is best for your project, you will want to select the power tong that best fits your tubular size ranges and torque required.

All of our power tongs are available with either the McCoy\\\\\\\\\\\\\\\"s patented WinCatt data acquisition software recently updated to the MTT systems or AllTorque\\\\\\\\\\\\\\\"s computer monitoring system for all the torque and turn control system needed in today\\\\\\\\\\\\\\\"s market for the making of tubular connections. Discover our wide selection of McCoy and Starr casing tongs, tubing tongs and power tongs for sale below!

dc power tong llc supplier

This non-provisional patent application claims priority under 35 U.S.C. §119 to U.S. Provisional Patent Application No. 61/118,490, titled Method and System for Setting and Controlling Tongs Make-up Speed, filed Nov. 28, 2008. This provisional application is hereby fully incorporated herein by reference.

Since casings, tubing, and sucker rods often extend thousands of feet, so as to extend the full depth of the well, it is imperative that their respective coupling connections be properly tightened to avoid costly repair and downtime. Couplings for tubulars (i.e., couplings for tubing and casings), and couplings for sucker rods (referred to collectively herein as “rods” or “sucker rods” are usually tightened using a tool known as tongs. Tongs vary in design to suit particular purposes, i.e., tightening tubulars or rods, however, each variety of tongs shares a common purpose of torquing one threaded element relative to another. Tongs typically include a hydraulic motor that delivers a torque to a set of jaws that grip the element or elements being tightened.

But even within the same family of parts, numerous variations need to be taken into account. With sucker rods, for example, some have tapered threads, and some have straight threads. Some are made of fiberglass, and some are made of steel. Some are one-half inch in diameter, and some are over one inch in diameter. With tubing, some have shoulders, and some do not. Even supposedly identical tongs of the same make and model may have different operating characteristics, due to the tongs having varying degrees of wear on their bearings, gears, or seals. Also, the threads of some sucker rods may be more lubricated than others. Some threads may be new, and others may be worn. These are just a few of the many factors that need to be considered when tightening sucker rods and tubulars.

Furthermore, variations in the speed that the tongs generate on the sucker rods during each make-up and at different times during each portion of the make-up process can affect whether the make-up is successful and whether a proper torque is generated at the connection point. In addition, these variations in speed can affect the torque readings being received for evaluation and can result in inconclusive or incorrect analysis as to the quality of the rod, the threads on the rod or coupling, and/or the success of the make-up process for that rod.

Another problem with conventional tongs systems is that, while they provide some level of reference for how tight each connection is made up it is typically done by putting a pressure gauge or electronic pressure transducer on the hydraulic supply to the motor on the tongs. Monitoring this pressure gives an inferred reading of how much torque was applied to each rod connection. Substantial variation and error is introduced using this method due to variations in hydraulic performance (oil viscosity, contamination, flow rates, motor wear, cavitation, leakage) and drive train (friction, wear, lubrication, slip). For a given pressure reading of hydraulic supply to the motor, it cannot be definitive that the torque output was correct.

Consequently, a need exists in the art for a system and method for monitoring and controlling the speed generated by the tongs on a rod or other elongated member during a make-up process. In addition, a need exists in the art for a system and method that maximizes the efficiency of the make-up process while also controlling the speed of the tongs during key portions of the make-up process. Furthermore, a need exists in the art for a system and method for measuring the actual torque generated by tongs on sucker rods during the make-up and/or breakout process.

For one aspect of the present invention, a method for controlling the speed of a set of tongs during a make-up process can include accepting at a computer processor or other computing device a target speed for making-up the rod during the rod make-up process. The process further includes conducting the make-up of a rod and a coupling with a set of tongs. An actual tong speed can be received at the processor in the form of multiple outputs of actual speed data from a speed sensing device during the make-up process. The processor can determine if the actual tong speed is within a predetermined range of the target speed. The speed of the tongs can then be adjusted so that the actual speed will be within the predetermined range of the target speed if it is determined by the processor to not be so.

For another aspect of the present invention, a method for controlling the speed of a set of tongs during a make-up process can include accepting at a computer processor or other computing device a target speed for making-up the rod during the rod make-up process. The tongs can be started and the rod can be rotated at a first speed by the tongs. The processor can determine if the rod is within a predetermined distance of the shoulder as the make-up process is on-going. If it is determined that the rod is within the predetermined distance of the shoulder, the processor can automatically reduce the speed of the tongs drive to a second speed setting. The processor can receive actual tongs speed data and can determine if the speed data is within a predetermined range of the target speed. The tongs drive can be sped up or slowed down from the second speed setting if actual tongs speed data is not within a predetermined range of the target speed.

For yet another aspect of the present invention, a system for monitoring torque at a set of rod tongs can include rod tongs that have upper jaws and a back-up wrench. A load cell can be positioned adjacent to the back-up wrench and can sense torque from the rod connection being applied to the back-up wrench. A block member can be included, such that the block member can be in contact with the load cell, and rotatably coupled to the backup wrench so that the back-up wrench can transmit a force the load cell.

For still another aspect of the present invention, a method of evaluating and responding to torque signals generated at a set of tongs can include accepting separate high and low torque limits for a rod make-up or breakout process at a processor or other computer device. A value representing a predetermined amount of time can further be accepted at the processor. The make-up process of the rod and coupling can begin with the tongs by applying rotation with the upper jaws of the tongs. A torque signal representing an actual torque can be received from the load cell coupled to the tongs. The actual torque can be compared to the high torque limit to determine if any of the actual torque data is greater than the high torque limit. If some of the actual torque is greater than the high torque limit, the processor can evaluate if the actual torque is greater than the high torque limit for an amount of time that is greater than predetermined amount of time. The tong drive, and thus the make-up process, can be automatically stopped if the actual torque is greater than the high torque limit for an amount of time that is greater than predetermined amount of time. The peak level of torque measured during the rod connection make-up or breakout can also be compared by the processor to the high and low limits received, and signals generated which notify users of the system if acceptable levels have been achieved.

FIG. 1 is a schematic diagram of a system that monitors a set of tongs tightening a string of elongated members according to one exemplary embodiment of the present invention;

FIG. 1A is a side view of a set of tongs about to tighten two sucker rods into a coupling according to one exemplary embodiment of the present invention;

FIG. 2 is a flowchart of an exemplary process for controlling the speed of the tongs drive during the make-up process for a set of tongs connecting a rod to a rod string in accordance with one exemplary embodiment of the present invention;

FIG. 3 is a flowchart of another exemplary process for controlling the speed of the tongs drive with varying speeds based on the position of the rod in the make-up process in accordance with one exemplary embodiment of the present invention;

FIG. 4 is a flowchart of an alternative exemplary process for controlling the speed of the tongs drive with varying speeds by sensing the position of the shoulder to determine timing of speed reduction and controlled make-up speeds according to one exemplary embodiment of the present invention;

FIG. 5 is an exemplary representation of a cut-away schematic diagram of an alternative tongs system that includes a load cell for measuring torque in accordance with one exemplary embodiment of the present invention;

FIG. 6 is a flowchart of an exemplary process for receiving and evaluating a torque from a load cell on a set of tongs in accordance with one exemplary embodiment of the present invention;

The present invention supports a tongs-based system and methods for controlling the make-up and/or breakout speed for rods and other elongated members, such at tubulars and other oil well equipment having threaded connections. Exemplary embodiments of the present invention can be more readily understood by reference to the accompanying figures. The detailed description that follows is represented, in part, in terms of processes and symbolic representations of operations by conventional computing components, including processing units, memory storage devices, display devices, and input devices. These processes and operations may utilize conventional computer components in a distributed computing environment.

Referring now to the drawings, in which like numerals represent like elements throughout the several figures, aspects of the present invention will be described. FIGS. 1, 1A and 1B represent a schematic diagram and other views of a system that monitors a set of tongs tightening a string of elongated members according to one exemplary embodiment of the present invention. Turning now to FIGS. 1, 1A, and 1B, the exemplary system includes a set of tongs 12. The tongs 12 are schematically illustrated to represent various types of tongs including, but not limited to, those used for tightening sucker rods, tubing or casings. In FIG. 1, tongs 12 are shown being used in assembling a string of elongated members 14, which are schematically illustrated to represent any elongated member with threaded ends for interconnecting members 14 with themselves and/or a series of threaded couplings 16. Examples of elongated members 14 include, but are not limited to, sucker rods, tubing, and casings. For ease of reference, the elongated members 14 will be referred to hereinafter as rods; however, no limitation is intended by the use of the term rod.

Tongs 12 include at least one set of jaws 46 and a back-up wrench 48 for gripping and rotating one rod 14 relative to another, thereby screwing at least one rod 14 into an adjacent coupling 16. In one exemplary embodiment, the drive unit 18 is fluidicly coupled to a hydraulic motor and drives the rotation of the jaws 46 gripping the upper rod 40 while the back-up wrench 48 grips the lower rod 38. However, the drive unit 18 is schematically illustrated to represent various types of drive units including those that can move linearly (e.g., piston/cylinder) or rotationally and can be powered hydraulically, pneumatically, or electrically.

In the exemplary embodiment of FIG. 1, the tongs 12 are communicably coupled to an embedded control processor 20, which is communicably coupled to two outputs 21 and four inputs. However, it should be noted that the control processor 20 with fewer inputs/outputs or with inputs other than those used in this example are well within the scope and spirit of the invention. The embedded control processor 20 is schematically illustrated to represent any circuit adapted to receive a signal through an input and respond through an output. Examples of the control processor 20 include, but are not limited to, computers, programmable logic controllers, circuits comprising discrete electrical components, programmable automation controllers, circuits comprising integrated circuits, and various combinations thereof. The embedded control processor 20 can be embedded with the tongs 12 or electrically coupled to the tongs 12 and positioned adjacent to or away from it.

The inputs of the embedded control processor 20, according to some embodiments of the invention, include a first input 22 electrically coupled to a hydraulic pressure sensor 24, a second input 26 electrically coupled to an encoder 28, a third input 41 electrically coupled to the load cell sensor 505 (which is described in greater detail with reference to FIG. 5), a PC 11, and a timer 25. In response to the rotational action of the tongs 12, the encoder 28 provides the input signal 36 to the embedded control processor 20. The term, “rotational action” refers to any rotational movement of any element associated with a set of tongs 12. Examples of such an element include, but are not limited to, gears, jaws, sucker rods, couplings, and tubulars. The term, “tightening action” refers to an effort applied in tightening a threaded connection. In one exemplary embodiment, the encoder 28 is an incremental rotary encoder. This encoder sensor is mounted to the body of the tongs 12 and coupled to the drive mechanism 44 so that it senses rotation in both directions. More specifically, in certain exemplary embodiments, the encoder 28 is a BEI model H25E-F45-SS-2000-ABZC-5V/V-SM12-EX-S. The exemplary encoder 28 generates 2,000 pulses per revolution. The encoder 28 also has a quadrature output, which means 8,000 pulses per revolution can actually be measured. The encoder 28 is mounted in a location which has a drive ratio of 4.833 to the upper jaws 46 holding the sucker rod 14, so 38,666 pulses per rod revolution (or 107 pulses per degree of rod revolution) are generated by the encoder 28.

Since the encoder 28 is mounted directly on the tongs 12, it must have a hazardous area classification. Accordingly, the encoder 28 must be built as an intrinsically safe or explosion proof device to operate in the location of the tongs 12, and monitored through an electronic isolation barrier. The (isolated) encoder pulse signals are measured at the second input 26 by a digital input electronics module, electrically coupled to the embedded control processor 20. As rod speed varies from 0 to 150 revolutions per minute (RPMs), the pulse signals for the encoder 28 vary from 0 to approximately 100,000 pulses per second. To read these high speed pulses accurately, the embedded control processor 20 monitors the digital input signals at 40 MHz frequency. The above measurement using the encoder 28 allows for very precise monitoring of both the position and speed of the rod 14 at all times. In response to the fluid pressure generated by the hydraulic motor that is a part of the tongs drive 18, the hydraulic pressure sensor 24 provides the input signal 34 to the embedded control processor 20.

The system further includes a pulse width modulated (PWM) amplifier module 35 communicably coupled to the control processor 20. The PWM amplifier module 35 is also communicably coupled to an electrical control solenoid valve 37. In one exemplary embodiment, the PWM amplifier module 35 receives a speed set point value from the embedded control processor 20 and outputs a PWM control signal to the electrical coil solenoid valve 37 at 12 volts direct current (DC) and 20 KHz PWM frequency. The width of the pulses from the PWM amplifier module 35 to the solenoid valve 37 is modulated from 0-100% duty cycle. In one exemplary embodiment, the solenoid valve 37 has a resistance of approximately seven ohms, so the current varies from 0-170 milliamps (mA), corresponding to the 0-100% duty cycle. The electrical coil solenoid valve 37 is communicably connected to a hydraulic spool valve 39. The hydraulic spool valve 39 is fluidicly connected to the hydraulic motor 18. In one exemplary embodiment, the current to the solenoid valve 37 causes changes in the position of the proportional hydraulic spool valve 39. The spool valve 39 changing position varies the flow rate of the hydraulic fluid to the hydraulic motor 18 on the tongs 12.

For illustration, the system will be described with reference to a set of sucker rod tongs 12 used for screwing two sucker rods 38 and 40 into a coupling 42, as shown in FIGS. 1A and 1B. However, it should emphasized that inventive system and methods can be readily used with other types of tongs for tightening other types of elongated members, as discussed above. In this example, a hydraulic motor 18 is the drive unit of the tongs 12. Motor 18 drives the rotation of various gears of a drive train 44, which rotates an upper set of jaws 46 relative to the back-up wrench 48. Upper jaws 46 are adapted to engage flats 50 on sucker rod 40, and the back-up wrench 48 engages the flats 52 on rod 38. So, as the upper jaws 46 rotate relative to the back-up wrench 48, the upper sucker rod 40 rotates relative to lower sucker rod 38, which forces both rods 38 and 40 to tightly screw into the coupling 42.

As discussed above, in the example of FIGS. 1A and 1B, sensor 24 is a conventional hydraulic pressure sensor in fluid communication with motor 18 to sense the hydraulic pressure that drives the motor 18. Generally speaking, with reference to the limitations described above regarding the problems of inferring the relationship between pressure and torque, an increase in the hydraulic pressure from the motor 18 will typically increase the amount of torque exerted by the tongs 12 (all other variables being the same), so the load cell sensor 505 provides an input signal 41 corresponding to a torque level. In certain exemplary embodiments, the hydraulic supply to the motor 18 also includes a pressure relief valve 92. The pressure relief valve 92 limits the pressure that is applied across the motor 18, thus helping to limit the extent to which a connection is tightened. In one exemplary embodiment, the pressure relief valve 92 is adjustable by known adjustment means to be able to vary the amount of hydraulic pressure based on rods and tubes of varying diameters and grades.

Turning now to FIG. 2, an exemplary process 200 for controlling the make-up speed for a set of tongs 12 connecting a rod 40 to coupling 42 is shown and described within the exemplary operating environment of FIGS. 1, 1A, and 1B. Now referring to FIGS. 1, 1A, 1B, and 2, the exemplary method 200 begins at the START step and proceeds to step 205, where the rod characteristics are input into the input device 13 and received at the PC 11. In one exemplary embodiment, the rod characteristics include, but are not limited to, rod manufacturer, rod grade, rod size, single or double coupling, single, double, or triple rod string, number of threads on each rod end, and whether the rod is new or used. In step 210, the PC 11 determines the correct rod make-up speed set point (or “target speed”). In one exemplary embodiment, the PC 11 uses a software program and a database of information to determine this set point. In certain exemplary embodiments, the make-up speed set point is within a range of 1-150 RPMs and preferably between 20-40 RPMs. The PC 11 transfers the selected speed set point to the embedded control processor 20 in step 215.

In step 220, the selected speed set point is transferred by the embedded control processor 20 to the PWM amplifier module 35. The next sucker rod 40 is retrieved for coupling in step 225 using known methods and means. In step 230, the sucker rod 40 is positioned into the upper set of jaws 46 on the tongs 12. The rod make-up process begins in step 235 by attaching one rod 40 to another rod 38 with the use of a coupling 42.

In step 240, the encoder 28 receives speed data based on it sensing one or more components in the drive train 44 and/or the tongs drive unit 18. The encoder 28 sends the speed data to the control processor 20 in step 245. In step 250, an inquiry is conducted by the control processor 20 or the PC 11 to determine if the actual speed, as determined by the encoder 28, is within a predetermined range of the speed set point that was determined by the PC 11. In one exemplary embodiment, the predetermined range is a value either input into or previously stored into the control processor 20. In certain exemplary embodiments, the predetermined range can vary from 0-100 RPMs. For example, if the predetermined range is zero RPMs, then any speed received from the encoder 28 that differs from the speed set point would not be within the predetermined range.

If the actual speed is within a predetermined range of the speed set point, the YES branch is followed to step 255, where the control processor 20 transmits a signal to the PWM amplifier module 35 to maintain signal level to the electric coil solenoid valve 37 to maintain the position of the proportional hydraulic spool valve 39. In one exemplary embodiment, the PWM amplifier module outputs a PWM control signal to the electric coil solenoid valve 37 having 12 volts DC and 20 kHz PWM frequency. The width of the pulses is modulated from 0-100% duty cycle. Further, in this exemplary embodiment, the solenoid coil for the electric coil solenoid valve 37 has a resistance of approximately 7 ohms. So the current varies from 0-170 mA, corresponding to the 0-100% duty cycle. The process continues from step 255 to step 270.

Returning to step 250, if the actual speed is not within the predetermined range of the speed set point, the NO branch is followed to step 260, where the control processor 20 transmits a signal to the PWM amplifier module 35 to increase or decrease the signal level to the electrical coil solenoid valve 37 based on a determination that the actual speed is too high or too low. The position of the proportional hydraulic spool valve 39 is adjusted accordingly to increase or decrease the flow rate of the hydraulic motor to increase or decrease the speed of the tongs drive 18 in step 265.

Turning now to FIG. 3, an exemplary process 300 for controlling the speed of the tongs drive 18 with varying speeds based on the position of the rod 14 in the make-up process is shown and described within the exemplary operating environment of FIGS. 1, 1A, and 1B. Now referring to FIGS. 1, 1A, 1B, and 3, the exemplary method 300 begins at the START step and proceeds to step 305, where the rod characteristics are input into the input device 13 and received at the PC 11. In one exemplary embodiment, the rod characteristics include, but are not limited to, rod manufacturer, rod grade, rod size, single or double coupling, single, double, or triple rod string, number of threads on each rod end, and whether the rod is new or used. In the exemplary embodiment described below, the number of threads on each rod end is assumed to be ten threads, however, those of ordinary skill in the art will recognize that the number of threads for each rod end varies from 6-15 threads and the predetermined numbers of revolutions described below for each step are adjusted accordingly.

In step 320, the selected speed set point is transferred by the embedded control processor 20 to the PWM amplifier module 35. The next sucker rod 40 is retrieved for coupling in step 325 using known methods and means. In step 330, the sucker rod 40 is positioned into the upper set of jaws 46 on the tongs 12. The rod 40 is manually threaded into a coupling 42 a first predetermined number of revolutions by an operator in step 335. In one exemplary embodiment, the first predetermined number of revolutions of the rod 40 for manual thread-up completed by the operator is approximately one revolution of the rod 40. The high speed make-up process begins in step 340. In the exemplary process 300, after the manual thread-up is completed, the rod 40 is threaded at high speed (often called “spin-up”) until the shoulder position approaches. In one exemplary embodiment, spin-up occurs at a rate of between 40-200 RPMs and preferably reaches a speed of approximately 150 RPMs. Further, in this exemplary embodiment, the high speed spin-up occurs for approximately a second predetermined number of revolutions, approximately eight revolutions of the rod 40, based on a rod having ten threads, and based on position feedback data derived from the encoder signals. In alternative exemplary embodiments for rods having greater or fewer than ten threads, the second predetermined number of revolutions is approximately equal to the number of threads for the rod 40 minus the first predetermined number of revolutions and further minus one additional revolution. For example, if the rod 40 has fourteen threads and the manual make-up with the first predetermined number of revolutions was one revolution, then the second predetermined number of revolutions would be approximately twelve revolutions, since fourteen minus one minus one equals twelve.

The position of the rod 40 in the make-up process is determined in step 345. As stated above, the position is determined based on the data signals received from the encoder 28. In step 350, an inquiry is conducted to determine if the rod 40 has completed a third predetermined number of revolutions in the make-up process. In one exemplary embodiment, the third predetermined number of revolutions is equal to or substantially equal to the sum of the first and second predetermined number of revolutions. Alternatively, the third predetermined number of revolutions is equal to or substantially equal to the second predetermined number of revolutions. The third predetermined number of revolutions is determined by the control processor 20 based on data from the encoder 28, as an estimate of when the shoulder is approaching, at which time the speed of the tongs drive 18 will be slowed and a controlled speed make-up will be used to complete the make-up process, as shown in FIG. 8. In one exemplary embodiment, assuming the rod 40 has ten threads, the rod 40 is generally tightened approximately ten revolutions, of which approximately one revolution is completed manually by the operator, approximately eight revolutions are completed in the high speed spin-up process and about one revolution is completed using the controlled speed process. Thus, in the exemplary embodiment where ten revolutions completes the make-up process, the third predetermined number of revolutions is approximately nine revolutions (approximately one revolution completed by manual thread-up and approximately eight revolutions completed during spin-up). If the predetermined number of revolutions for make-up have not been completed, the NO branch is followed back to step 345 to received additional position data for the rod 40. Otherwise the YES branch is followed to step 355, where the control processor 20 transmits a signal to slow the tongs drive 18 to reduce the make-up speed.

In step 360, the encoder 28 receives speed data based on it sensing one or more components in the drive train 44 and/or the tongs drive 18. The encoder 28 sends the speed data to the control processor 20 in step 365. In step 370, an inquiry is conducted at the control processor 20 or the PC 11 to determine if the actual speed, as determined by the encoder 28, is within a predetermined range of the speed set point that was determined by the PC 11. As stated above, in one exemplary embodiment, the predetermined range is a value either input into or previously stored into the control processor 20. In certain exemplary embodiments, the predetermined range can vary from 0-100 RPMs. For example, if the predetermined range is zero RPMs, then any speed received from the encoder 28 that differs from the speed set point would not be within the predetermined range.

If the actual speed is within a predetermined range of the speed set point, the YES branch is followed to step 375, where the control processor 20 transmits a signal to the PWM amplifier module 35 to maintain signal level to the electric coil solenoid valve 37 to maintain the position of the proportional hydraulic spool valve 39. In one exemplary embodiment, the PWM amplifier module 35 outputs a PWM control signal to the electric coil solenoid valve 37 having 12 volts DC, 20 kHz PWM frequency. The width of the pulses is modulated from 0-100% duty cycle. Further, in this exemplary embodiment, the solenoid coil for the electric coil solenoid valve 37 has a resistance of approximately 7 ohms. So, the current varies from 0-170 mA, corresponding to the 0-100% duty cycle. The process continues from step 375 to step 390.

Returning to step 370, if the actual speed is not within the predetermined range of the speed set point, the NO branch is followed to step 380, where the control processor 20 transmits a signal to the PWM amplifier module 35 to increase or decrease the signal level to the electrical coil solenoid valve 37 based on a determination that the actual speed is too high or too low. The position of the proportional hydraulic spool valve 39 is adjusted accordingly to increase or decrease the flow rate of the hydraulic motor to increase or decrease the speed of the tongs drive 18 in step 385.

FIG. 4 is a flowchart of an alternative exemplary process 400 for controlling the speed of the tongs drive 18 with varying speeds by sensing the position of the shoulder to determine timing of speed reduction and controlled make-up speeds within the exemplary operating environment of FIGS. 1, 1A, and 1B. Now referring to FIGS. 1, 1A, 1B, and 4, the exemplary method 400 begins at the START step and proceeds to step 402, where the rod characteristics are input into the input device 13 and received at the PC 11. In one exemplary embodiment, the rod characteristics include, but are not limited to, rod manufacturer, rod grade, rod size, single or double coupling, single, double, or triple rod string, number of threads on each rod end, and whether the rod is new or used. In the exemplary embodiment described below, the number of threads on each rod end is assumed to be ten threads, however, those of ordinary skill in the art will recognize that the number of threads for each rod end varies from 4-17 threads and the predetermined numbers of revolutions described below for each step are adjusted accordingly. In step 404, the PC 11 determines the correct rod make-up speed set point. In one exemplary embodiment, the PC 11 uses a software program and a database of information to determine this set point. In certain exemplary embodiments, the make-up speed set point is within a range of 1-150 RPMs and preferably between 20-40 RPMs. The PC 11 transfers the selected speed set point to the embedded control processor 20 in step 406.

In step 408, the selected speed set point is transferred by the embedded control processor 20 to the PWM amplifier module 35. The next sucker rod 40 is retrieved for coupling in step 410 using known methods and means. In step 412, the sucker rod 40 is positioned into the upper set of jaws 46 on the tongs 12. The rod 40 is manually threaded into a coupling 42 a first predetermined number of revolutions by an operator in step 414. In one exemplary embodiment, the first predetermined number of revolutions of the rod 40 for manual thread-up completed by the operator is approximately one revolution of the rod 40. The high speed make-up process begins in step 416. In the exemplary process 400, after the manual thread-up is completed, the tongs drive 18 begins the high speed spin-up process on the rod 40 (often called “spin-up”) until the shoulder position approaches. In one exemplary embodiment, spin-up occurs at a rate of between 40-200 RPMs and preferably at about 150 RPMs. Further, in this exemplary embodiment, the high speed spin-up occurs for approximately a second predetermined number of revolutions, approximately eight revolutions of the rod 40 based on the exemplary rod having ten threads, and based on position feedback data derived from the encoder signals. In alternative exemplary embodiments for rods having greater or fewer than ten threads, the second predetermined number of revolutions is approximately equal to the number of threads for the rod 40 minus the first predetermined number of revolutions and further minus one additional revolution. For example, if the rod 40 has fourteen threads and the manual make-up with the first predetermined number of revolutions was one revolution, then the second predetermined number of revolutions would be approximately twelve revolutions, since fourteen minus one minus one equals twelve.

In step 418, an inquiry is conducted to determine if the shoulder area has been detected. In one exemplary embodiment, sensors (not shown), including optical, magnetic position and/or gap sensors are positioned on the tongs 12 or adjacent to the make-up area to monitor the make-up process and determine when the shoulder is approaching. This sensor could supplant or supplement the data being received from the encoder 28 at the control processor 20 to determine position or revolutions completed by the rod 40, thereby allowing for better accuracy in determining the location of the shoulder and reducing the amount of time and distance that the slow-down and controlled speed make-up occurs. Such a situation decreases the overall amount of time to complete each make-up while still providing for a consistent accurate make-up based on the controlled speed at the end of the make-up process.

In step 424, the control processor 20 or the PC 11 transmits a signal to the tongs drive 18 and the tongs drive 18 is slowed to reduce the rod make-up speed. In one exemplary embodiment, the reduced make-up speed is based on the particular rod characteristics and is in a range between 20-50 RPMs and preferably between 30-40 RPMs. In step 426, the encoder 28 receives speed data based on it sensing one or more components in the drive train 44 and/or the tongs drive 18. The encoder 28 sends the speed data to the control processor 20 in step 428. In step 430, an inquiry is conducted at the control processor 20 to determine if the actual speed, as determined by the encoder 28, is within a predetermined range of the speed set point that was determined by the PC 11. In one exemplary embodiment, the predetermined range is a value either input into or previously stored into the control processor 20. In certain exemplary embodiments, the predetermined range can vary from 0-100 RPMs and is preferably between 0-10 RPMs during the high speed spin-up and 0-5 RPMs during the reduced make-up speed. For example, if the predetermined range is zero RPMs, then any speed received from the encoder 28 that differs from the speed set point would not be within the predetermined range.

If the actual speed is within a predetermined range of the speed set point, the YES branch is followed to step 432, where the control processor 20 transmits a signal to the PWM amplifier module 35 to maintain signal level to the electric coil solenoid valve 37 to maintain the position of the proportional hydraulic spool valve 39. In one exemplary embodiment, the PWM amplifier module 35 outputs a PWM control signal to the electric coil solenoid valve 37 having 12 volts DC, 20 kHz PWM frequency. The width of the pulses is modulated from 0-100% duty cycle. Further, in this exemplary embodiment, the solenoid coil for the electric coil solenoid valve 37 has a resistance of approximately 7 ohms. So the current varies from 0-170 mA, corresponding to the 0-100% duty cycle. The process continues from step 432 to step 438.

Returning to step 430, if the actual speed is not within the predetermined range of the speed set point, the NO branch is followed to step 434, where the control processor 20 transmits a signal to the PWM amplifier module 35 to increase or decrease the signal level to the electrical coil solenoid valve 37 based on a determination that the actual speed is too high or too low. The position of the proportional hydraulic spool valve 39 is adjusted accordingly to increase or decrease the flow rate of the hydraulic motor to increase or decrease the speed of the tongs drive 18 in step 436.

FIG. 5 is an exemplary representation of a tongs system 500 that includes a load cell for measuring torque incorporated into the tongs 12 of FIG. 1B in accordance with one exemplary embodiment of the present invention. Referring now to FIGS. 1, 1A, 1B and 5, the exemplary system 500 includes a load cell 505 coupled along one end to a mounting block 510 using known coupling means 507 including, but not limited to, bolts and nuts. The load cell 505 is typically positioned adjacent the back-up wrench 48. The load cell 505 is coupled along an opposing end to a receiver block 525 using known coupling means 508 including, but not limited to, bolts and nuts. The receiver block 525 constrains the rear end of the back-up wrench so that force is transmitted into the load cell 505. In one exemplary embodiment, the load cell 505 is a SENSOTEC model 103 2000 kilogram load cell. However, other types of load sensors known to those of ordinary skill in the art could be used and are within the scope and spirit of this invention.

In practice, the tongs 12 has a rotating upper jaw 46, driven by the hydraulic motor 18 that turns the flats 50 on the upper rod 40. The flats 52 of the lower rod 38 in the connection are held in the back-up wrench 48. This back-up wrench 48 is held loosely in position using the retainer pin 513, so that it can easily be changed as required to fit differing size rods. When torque is applied to the rod connection, the resulting moment causes the back-up wrench 48 to turn slightly. In a conventional tongs the far end of the back-up wrench comes to rest against a stop which is built into the body of the tongs. This reaction point is what has been adapted to monitor the resulting force with the load cell 505. As the rod 38 receives torque during a make-up or breakout, the back-up wrench 48 is moved at its second end 48, causing an opposing movement in the first end 512 of the back-up wrench 48. Movement of the first end 512 causes a corresponding force in the receiver block 525. Since the load cell 505 is coupled to the receiver block 525 by way of the bolt 508, the corresponding force in the receiver block is sensed by the load cell 505. The control processor 20 is able to calculate the corresponding torque based on the input signal 41 from the load cell sensor 505. In one exemplary embodiment, the calculation is accomplished by previously placing a calibration sensor on the tongs and applying one or more known torques to the calibration sensor. The known torques are compared to the voltage signal outputs for the load cell 505 and scaling is applied to the load cell signal to covert voltage output into foot-pounds of torque.

FIG. 6 is a flowchart of an exemplary process 600 for receiving and evaluating a torque signal from a load cell 505 on a set of tongs 12 within the exemplary operating environment of FIGS. 1, 1A, 1B, and 5. Now referring to FIGS. 1, 1A, 1B, 5, 6, 9, and 10, the exemplary method 600 begins at the START step and proceeds to step 605, where the rod and/or tongs characteristics are input into the input device 13 and received at the PC 11. In one exemplary embodiment, the rod characteristics include, but are not limited to, rod manufacturer, rod grade, rod size, single or double coupling, single, double, or triple rod string, number of threads on each rod end, and whether the rod 14 is new or used. The high and low torque limits are determined in step 610. In one exemplary embodiment, the high and low torque limits are determined by software in the PC 11 based on the rod and tongs characteristics.

In step 615, the PC 11 transfers the high and low torque limit levels to the embedded control processor 20. The embedded control processor 20 sets the high torque limit on the hydraulic spool valve 39 in step 620. The next sucker rod 40 is retrieved for coupling in step 625 using known methods and means. In step 630, the sucker rod 40 is positioned into the upper set of jaws 46 on the tongs 12. The rod make-up process begins in step 635 by attaching one rod 40 to another rod 38 with the use of a coupling 42. In step 640, the rotating of the upper jaws 46 of the tongs 12 makes-up the rods 38, 40. A torque is applied to the rod connection adjacent the second end 48 of the pin 48 in step 645. A rotation is generated in the back-up wrench 48 of the tongs 12 in step 650.

FIG. 7 is a flowchart of an exemplary process for evaluating the torque level based on the torque signal within the exemplary process of FIG. 6. Referring now to FIGS. 1, 1A, 1B, and 5-7, the exemplary method 670 begins with an inquiry at the control processor 20 or PC 11 in step 705 to determine if there are any sharp spikes in the torque/load data. Sharp spikes indicate localized defects, such as nicks, burrs, or embedded dirt on the threads of the rods 38, 40 or couplings 42. In one exemplary embodiment, spikes can be determined based on an increased torque/load level that lasts less than a predetermined amount of time. In this exemplary embodiment, the predetermined amount of time is typically much less than one second. If there are sharp spikes in the torque/load data, the YES branch is followed to step 710, where a signal is generated that the threads contain nicks, burrs, embedded dirt, and/or other minor imperfections. In one exemplary embodiment, the signal is generated by the embedded processor 20 or the PC 11. In this exemplary embodiment, the signal can be an audio or visual signal and, if visual, is displayed on alarm panel lights 86,88 and/or one or both of the monitor 23 and at the tongs 12. In the exemplary embodiment wherein the signal is an audio signal, the audio signal is typically output at the speaker 90 or one of the PC 11 the tongs 12 or other places around the work area. The process then continues to step 715. If there are no sharp spikes, the NO branch is followed to step 715.

In step 715, an inquiry is conducted by the control processor 20 or PC 11 to determine if there are any waves in the torque/load data levels during the make-up process. Out-of-round or off center machining of the rods 38, 40 or coupling 42, typically show up as waves in the torque/load data readings. If waves are identified in the torque/load data, the YES branch is followed to step 720, where a signal is generated that the rod 38, 40 or coupling 42 may be off center or out of round along the threaded portion. In one exemplary embodiment, the signal is generated by the embedded processor 20 or the PC 11. In this exemplary embodiment, the signal can be an audio or visual signal and, if visual, is displayed on alarm panel lights 86,88 and/or one or both of the monitor 23 and at the tongs 12. In the exemplary embodiment wherein the signal is an audio signal, the audio signal is typically output at the speaker 90 or one of the PC 11 the tongs 12 or other places around the work area. The process then continues to step 725. If no waves are identified, the NO branch is followed to step 725.

In step 725, an inquiry is conducted by the control processor 20 or PC 11 to determine if there are any torque levels above the high torque limit. If not, the NO branch is followed to step 750. Otherwise, the YES branch is followed to step 730. In step 730, an inquiry is conducted by the control processor 20 or PC 11 to determine if the torque levels above the high torque limit last longer than a predetermined amount of time. The predetermined amount of time is selectable at the PC 11 by way of the input device 13 and can range from 0-5 seconds. Alternatively, the predetermined amount of time may be fixed within the system prior to deployment in the field and is not adjustable. In certain embodiments, it may be advantageous for the predetermined amount of time to be greater than a fraction more than zero seconds to prevent the system from shutting down based on a single or limited amount of nearly instantaneous and potentially erroneous torque/load signals that are above the high torque limit. If the high torque/load level does not last longer than the predetermined amount of time, the NO branch is followed to step 750. Otherwise, the YES branch is followed to step 735, where a signal is generated by the control processor 20 or the PC 11 that alerts the operator to a potential cross-threading of the rods and/or coupling. A signal is transmitted by the control processor 20 or the PC 11 to stall the tongs drive 18 in step 740. In step 745, the tongs drive 18 is stalled to protect it from further damage. In addition, in certain exemplary embodiments, an audible alarm is generated at the speaker 90 and/or a visual alarm is generated at the alarm panel lights 86,88 or the monitor 23. In one exemplary embodiment, the signals are generated by the embedded processor 20 or the PC 11. The process continues to step 750.