indexing head vs rotary table quotation

Dividing heads allow you to divide a circle into equal fractions conveniently. Anything that involves regular action around a circle is a candidate for a dividing head.

A rotary table has no stops so it is not convenient to do large numbers of things at equal intervals because you would have to painstakingly determine the interval. Also, the rotary table does not divide the circle. For example, if you were making 13 equally spaced operations using a rotary table you would have to calculate some wierd angle for each operation and dial it in--a tedious process. For example, here are the 13 angles for a circle division:

Do you want to manually set each of these values? Have fun doing that. Now, imagine doing it for 53 divisions. You will be there all night. Not only that, the error will be a lot more than a dividing head.

indexing head vs rotary table quotation

Rotary tables are mounted horizontally, and most can also be mounted vertically. In both cases only at 90° to the mill table. A Dividing Head is always vertical, but can be tilted through 90°.

Dividing heads are always fitted with "indexing plates" (holed wheels and clock hands), allowing a wide range of angles to be turned. The indexing mechanism can do intermediate angles. Rotary tables can be fitted with indexing plates as an accessory, but usually the number of angles supported is limited compared to a dividing head. (A generalisation. And, because rotary tables do all common angles, the limitation may not matter.)

Rotary tables are more convenient for general work because most jobs are mounted at 90° or 180° relative to the milling table. Possibly more robust than a dividing head for rough work. When close accuracy isn"t needed, jobs can be spun rapidly by the rotary table without cranking the handle - a time saver. When accuracy is needed the handle and worm are engaged. Usually there"s a vernier scale sufficiently accurate for most work. The handle is also relatively fast because most simple angles can be produced with it. For example, easy to crank from 0, 60, 120, 180, 240, 300, 0 to cut a hexagon head. Unfortunately not all angles are "simple"!

Indexing plates are useful for awkward angles. Cutting a 19 toothed gear requires 19 steps of 18.9474°, which is the hard to remember sequence 37.89, 56.84, 75.78, 94.74, 113.68, 132.63° etc. The Index plate and clock hand mechanism remove the need for the operator to track the sequence but they are still a pain to use in my opinion!

Indexing plates are so awkward that driving a Rotary Table with a stepper motor and microcontroller is popular. You simply tell the controller how many divisions are needed, press "Go", and the computer does the rest. Apart from reducing brain strain and automating a tedious task, the computer eliminates most mistakes. Computers don"t get sums wrong, have excellent memories, and are hard to distract! Also, a computer and stepper motor will do a good job of angles too complicated for the Indexing plates.

Generalising again, I suggest most people, most of the time, only need a rotary table. I see Dividing Heads as specialist tools and have never felt the need for one. For the same reason I drive an ordinary small car rather than a Land Rover. The closest I get to off-road driving is a supermarket car park! You might live on a farm...

Unless there"s a specific reason for needing a Dividing Head, I wouldn"t spend money on one. My rotary table is used a lot, in contrast a Dividing Head is only "nice to have".

indexing head vs rotary table quotation

A rotary table is similar to an indexer, but it is designed to hold objects to its surface with t-slot clamps. They are fairly inexpensive (check your MSC catalog), but the suckers can get heavy. An indexer generally uses a collet system to hold the material. It is mostly for drilling hole patterns in round materials, and they can be quite expensive. I have both, and I use my rotary table about 20 times more than my indexer. RE: Difference between rotary table and indexer

Something else to think about if you have a specific use in mind for either. You might be able to pick up a dividing attachment that installs on a rotary table allowing the user to select the number of stops in a revolution of the table. I used to work for a company that made it"s own dividing attachments for their line of rotary tables and they were quite reliable. It depends on your application. RE: Difference between rotary table and indexer

A table top, not necessarily circular in shape, is mounted on a rotating device. The table has fixtures mounted to it so that, as the table rotates, a fixture is presented to a machine of some sort. At the machine, the parts are operated on. Then they index to the next station.

The rotator can be (typically) a cam-operated gizmo with motor to rotate the table a certain number of degrees on each cycle. Sometimes I have seen the rotator device something like a big stepper motor, to achieve a much more flexible positioning.

Indexing tables are a type of rotary table. An indexing table has ability to index to differnt degrees of rotation via mechanical stops (or electro mechanical).

In the CNC world, it"s a matter of terminology were there are rotary tables and rotary indexers controlled by the machine. In a 4-axis CNC machine the 4th axis is the rotary table or indexer. Generally the main difference is that the indexer is programmed to lock into position before machining. Rotary tables are programmed to move simultaneously while the machine cuts. Most indexers can be used like a rotary table and visa versa. Also, small units like those who use 5C collets are sometimes referred to as indexers while larger units are called tables.

In the manual machine world, the operator controls the rotary table and indexer. There are many types of indexing devices like those already mentioned, such as dividing heads that use plates with holes for precise location. Rotary tables allow machining while tuning the table. Some rotary tables have a cross slide table mounted on top for positioning of the work piece.

Nice input, That is exactly what I was getting at. I have used small rotary tables with 5C collets and with chucks. The mount has little to do with it.

When you need to rotate a part when cutting, use a rotary table. Most of these either manual or CNC will have a worm gear drive. An indexing table or head is designed to move an accurate amount and be locked. In the manual world a spindle is positioning by hand or worm gear and a plate and pin are used to stop the rotation in a specific place. In the CNC world several different methods can be used to rotate the spindle and either a shot pin or a toothed coupling is used to lock the rotation. Most indexing devices do not allow for machining when rotating and will handle greater off axis torque from milling or drilling. RE: Difference between rotary table and indexer

A superspacer typically has a three-jaw chuck for holding the work and a spur gear with 48 teeth providing 7.5 degree increments and a spring loaded shot-pin tooth to engage the gear and lock it into rotary position. Also slotted plates can be attached to allow the shot-pin to only engage at specific rotation angles such as every 45 degrees or every 90 degrees.

indexing head vs rotary table quotation

Fig. 4—On this tilting rotary table, one servo controls rotation, another controls tilt. Both servocontrols are slaves to the CNC with RS-232 communication, providing five-axis capability from a standard three-axis CNC.

Fig. 1—Modern rotary tables such as this one from SMW Systems have large, widely spaced spindle bearings, large diameter wormwheels and built-in spindle brakes.

If you want to make parts similar to the complex valve body (upper left), an indexer using M-code, RS-232, or “full fourth axis” control is appropriate. Only positioning and rotary cutting moves are required. The center workpiece is a cam that requires simultaneous rotary and linear moves. You’ll need full four-axis control for such workpieces. If you want to do parts similar to the impeller on the right, the contour cutting will require simultaneous five-axis machining.

On complex workpieces that require machining on surfaces not 90 or 180 degrees from each other, indexing or fourth-axis rotation is almost essential to produce the piece. Even when rectangular workpieces with all surfaces 90 or 180 degrees from each other are put on a tombstone, the HMC’s built-in fourth axis of rotation creates a productivity advantage. This is true even if machining on more than one side of the part is not essential.

Earlier rotary tables and indexers didn’t have the accuracy, rigidity or control flexibility of today’s models. Many shops that tried using indexers in the past had been disappointed in the performance of the older models and abandoned their use in favor of multiple operations, multiple holding fixtures and multiple handlings of the workpiece. They decided that the manual, multiple-operation process was better than trying to use ineffective early model indexers and rotary tables. Today, the situation is different. Manufacturers now offer units that are very accurate, very rigid and have a variety of control and interface options.

Terminology in the area of indexers is not standard. Terms such as fourth axis, indexer, rotary table and so on are used interchangeably by different machine tool and accessory companies. So, when selecting and buying, you must ask a few questions before assuming you know what you’re going to get. Also, beware of terms such as “precision,” “high precision,” “accurate,” and “rigid.” Is the “brake torque” specification some absolute break away spec or the torque at which some “unacceptable” amount of rotary deflection occurs? Is the “ten arc seconds” accuracy specification certified every one degree, or is it inspected only every 15 degrees? There are no industry standards for specifications and testing. So ask questions and deal with a supplier in which you have confidence, or buy with a guarantee of performance to make your parts.

We’ll start with the mechanical hardware and discuss the electronic control options later. There are at least three common mechanical indexer/rotary table types.

These tables provide infinite positioning as well as the possibility of rotary cutting. A servomotor controlled directly either by the CNC or by a secondary servocontrol rotates a wormscrew, which drives a wormwheel on the rotary table spindle.

The absolute position accuracy of these systems is a function of the quality (precision and accuracy) of the wormgear set (wormscrew and wormwheel), the accuracy and resolution of the servosystem, and the means of servoposition feedback. Most of these servosystems utilize an encoder to monitor the position of the motor rather than the rotary spindle directly. To eliminate any inaccuracies in the wormgears and servo system, some high-end systems use a glass scale or other encoder directly on the rotary spindle to monitor actual rotary spindle position. Figure 1 (at right) shows a typical wormgear rotary table cross section.

If controlled directly by the machine tool’s CNC, they are most commonly referred to as a “full fourth axis.” A full fourth axis has the advantages of having only one CNC program, no programming required by the operator on the shop floor, minimum chance of a crash due to operator error, and the ability to make simultaneous rotary and X, Y or Z moves to do true helical milling operations as required by some more exotic workpieces.

Claims of position accuracy are often misleading since there are no industry standards. Although some manufacturers test and certify absolute position accuracy every one degree, most do not state exactly what their specification means.For all except those few expensive systems with glass scales directly on the rotary spindle, any accuracy specification is for a new table before it has been subjected to any “crashes,” which are not uncommon. Even seemingly small crashes can damage wormgear sets.

Typical infinite positioning wormgear systems utilize a friction brake to hold position against cutting forces. When cutting forces are applied directly on the rotary spindle centerline, friction brakes are generally adequate for most work. However, when cutting forces are applied to workpieces far off centerline, such as on the edge of a part on a tombstone fixture, the resulting torque on the rotary spindle can cause it to deflect. This result is especially likely when heavy cuts produce high thrust forces.

Assuming it’s a quality face gear set, absolute position accuracy is superb and is maintained for the life of the indexer almost in spite of any “crashes” that might occur. Units with true absolute angular position accuracy of 5 arc seconds or less are available. These units are ideal for the highest precision work such as line boring half way from one side, then indexing 180 degrees and line boring half way from the other side.

Whether you select an infinite positioning wormgear rotary system or a facegear system as the best mechanical design for your work, your next decision involves how you will control the rotary axis.

If you select a system with a servodrive, you have three choices: 1.) direct “full fourth axis” using only the machine’s CNC, 2.) an M-code command from the CNC to a separate rotary control, or 3.) RS-232 communication between the machine’s CNC and a separate rotary control. Each of these choices has advantages and disadvantages.

The single CNC constantly tracks all three linear axes (X,Y,Z) and the rotary axis. This provides the ability to do precise helical cutting with simultaneous rotary and X, Y or Z moves.

While a few machine builders offer a full four-axis control with rotary table for about 10 percent of the base price of the machine, most charge more than 20 percent.

Very few machine builders make it easy to retrofit a full four-axis rotary table. For most builders, retrofitting is a complicated process, and the cost typically exceeds 30 percent of a base machine price.

The motor for the rotary axis must be matched to the servodrive of the CNC. Because cable connections are not standard from one machine builder to another, rotary tables can not generally be used on more than one machine.

An M-code actuated system provides a fourth axis of motion by combining a standard three-axis CNC with a rotary table or face gear indexer that has its own separate rotary servocontrol. The rotary program is entered and stored in the separate rotary servocontrol. The CNC communicates with the rotary control via an M-code. When the rotary control receives the M-code signal, it executes the next rotary move stored in its memory, then sends a signal back to the CNC, telling it that the move has been completed.

Typically, the rotary program includes many separate rotary moves. One move might be a simple index to position at full rapid speed. Another might be a slower rotary move to machine a groove or other feature on the workpiece. Figure 3 (at right) shows a typical rotary servocontrol system.

High quality M-code controlled systems are available from several suppliers for a price of about 10 percent of a base machine price. (For example, a 5C rotary system at $6,000; a 6-inch faceplate system at $7,000; a 9-inch system at $10,000; and so on).

Systems can be moved from one machine to another as long as the next machine can issue M-codes. A shop with multiple machines and multiple rotary systems can select the best system for each job regardless of the machine. For example, a small indexer can be used for small parts to avoid cutting tool interference problems and to minimize indexing times. A big indexer can be used for big parts. A face gear indexer can be used when the maximum in accuracy and rigidity are needed and the work can be accommodated by multiples of 5 degrees of index.

The machine operator needs to enter the rotary program into the rotary servocontrol, or select the right program if it’s already stored in the rotary control’s memory. This takes some time, and there is the chance of an error.

If the machining cycle is ever interrupted in mid-cycle, such as to inspect a workpiece feature or replace a worn cutting tool, the operator must be sure to back up the rotary program and the CNC program to a point that keeps the two programs in sync. This step can be confusing, and any error can result in a “crash,” with a cutting tool coming down to a workpiece rotated to the wrong position.

Although it is possible to perform simultaneous rotary and X, Y or Z moves, they are not recommended. If you have patience and can afford to scrap a few parts, you can use trial and error to find the right rotary speed to match the linear move and determine starting points that match.

Recently developed, RS-232 communication between a three-axis CNC and a rotary servocontrol offers advantages of full four-axis and M-code operation. RS-232 is the commonly used, standard electrical interface for connecting peripheral devices to a computer. Personal computers often use the RS-232 communication protocol to send information to a printer. Another common use for RS-232 communications is connecting a PC to an external modem.

Nearly all CNC units have an RS-232 port, and it is commonly used to exchange CNC programs between a computer system and the CNC. More recently, RS-232 connections have been used by CNCs to communicate with robots and rotary tables. To communicate with the rotary table’s control, a special line of code is inserted into the CNC program. This line of code sends a string of numbers and letters through the RS-232 port to the rotary table control, which translates the string of code into rotary moves.

RS-232 communication between a three-axis CNC and a rotary servocontrol provides much of the best of both worlds of full four-axis and M-code operation. Both the linear and rotary moves are stored in the CNC as part of the workpiece program. When a rotary move is required, the CNC sends the commands for that one move (rotary speed and angle of rotation) through an RS-232 line to the rotary control.

The rotary control executes that one move and sends back a signal to the CNC, indicating that this move has been completed. The CNC then commands its next linear move. The separate rotary servocontrol simply works as a slave to the CNC. The machine operator turns the rotary control on in the morning and does not need to attend to it the rest of the day. Figure 4 (at right) shows a tilting rotary table system utilizing two rotary servocontrols with RS-232, providing five-axis capability from a standard three-axis CNC.

Crashes are nearly as unlikely as with a full four-axis control. The correct rotary program is always selected because it is part of the total workpiece program stored in the machine’s CNC. Note: Rotary moves should be programmed in “absolute position” so that if the machining cycle is interrupted, the operator can back up the CNC program to just in front of a rotary move, then safely resume the program.

With RS-232, two rotary controls can be operated by most three-axis CNCs with only one RS-232 port. Five-axis capability with a tilting rotary table setup can be retrofitted to a three-axis machine for about $25,000 (a new, full five-axis VMC option is typically priced at $95,000).

Both the work you need to do and the machines you own or intend to purchase will influence what you select for a rotary axis. These guidelines summarize what you should consider.

When buying a new machine, get prices on everything the builder offers, no matter what kind of workpieces you’ll be machining. If the builder offers a full four-axis system with a high-quality, infinite-positioning rotary table at a price of about 10 percent off the base machine, this system will probably be your best choice.

If you’re doing a variety of work that requires simultaneous rotary and linear helical moves, you’ll probably want a true four-axis system regardless of the cost. However, you should consider a more economically priced RS-232 or M-code system when you are retrofitting an existing machine and have only a couple of jobs requiring these moves, especially if these jobs are long run and you can afford some extra programming and setup time. These systems are worth considering if you simply can’t afford the price of a true fourth axis.

If you’re retrofitting existing machines, especially if you have several and want to do rotary work on more then one of them, check with the builder on the cost of upgrading to full four axis. You may conclude that the cost and flexibility advantages of RS-232 or M-code will make one of them the best choice.

Adding a rotary axis to a VMC is worthwhile whether you want to do full four-axis simultaneous machining of exotic workpieces, simple indexing of parts that need machining on surfaces not at 90 degrees from each other, or tombstone processing of rectangular parts that benefit from a longer unmanned machining cycle. Today, many good options exist. If you’re buying a new machine, have the builder quote the optional systems it offers. If you’re going to retrofit an existing machine, contact either the original supplier or the companies that offer complete indexer and rotary table systems. Retrofitting is highly affordable. (Systems from SMW Systems, for example, generally cost a little over $1,000 per inch of faceplate diameter, including installation and training.) MMS

indexing head vs rotary table quotation

These days it"s pretty trivial to create a spreadsheet to figure out the required degrees/minutes/seconds for some arbitrary number of divisions n, so it"s not all that big a deal to use a rotary table for dividing. A dividing head is, as others say, probably a bit more convenient both in ease of dividing oddball numbers of divisions and in less mass to get in the way of what you"re machining...but a rotary table will be more flexible. If you want to substitute for a dividing head, be sure to get a horizontal/vertical rotary table, as you"ll want "vertical" mode for dividing (and making gears).

If the rotary table has a Morse #3 center hole (or whatever), in vertical mode you could probably use Morse taper collets for workholding, which might be pretty handy. The only thing is, as hinted above, in vertical mode there may be a lot of rotary table in the way of what you"re trying to machine, if you need to get in close. It"s do-able, but you may to need to be a bit creative in workholding to arrange necessary clearance to get the tool where you need it.

indexing head vs rotary table quotation

An indexing head, also known as a dividing head or spiral head,indexed; that is, easily and precisely rotated to preset angles or circular divisions. Indexing heads are usually used on the tables of milling machines, but may be used on many other machine tools including drill presses, grinders, and boring machines. Common jobs for a dividing head include machining the flutes of a milling cutter, cutting the teeth of a gear, milling curved slots, or drilling a bolt hole circle around the circumference of a part.

The tool is similar to a rotary table except that it is designed to be tilted as well as rotated and often allows positive locking at finer gradations of rotation, including through differential indexing. Most adjustable designs allow the head to be tilted from 10° below horizontal to 90° vertical, at which point the head is parallel with the machine table.

The workpiece is held in the indexing head in the same manner as a metalworking lathe. This is most commonly a chuck but can include a collet fitted directly into the spindle on the indexing head, faceplate, or between centers. If the part is long then it may be supported with the help of an accompanying tailstock.

A dividing head mounted on the table of a small milling machine. The direct indexing plate and center are visible facing the camera. An interchangeable indexing plate is visible on the left side.

Indexing is an operation of dividing a periphery of a cylindrical workpiece into equal number of divisions by the help of index crank and index plate.

A manual indexing head includes a hand crank. Rotating the hand crank in turn rotates the spindle and therefore the workpiece. The hand crank uses a worm gear drive to provide precise control of the rotation of the work. The work may be rotated and then locked into place before the cutter is applied, or it may be rotated during cutting depending on the type of machining being done.

Most dividing heads operate at a 40:1 ratio; that is 40 turns of the hand crank generates 1 revolution of the spindle or workpiece. In other words, 1 turn of the hand crank rotates the spindle by 9 degrees. Because the operator of the machine may want to rotate the part to an arbitrary angle indexing plates are used to ensure the part is accurately positioned.

Direct indexing plate: Most dividing heads have an indexing plate permanently attached to the spindle. This plate is located at the end of the spindle, very close to where the work would be mounted. It is fixed to the spindle and rotates with it. This plate is usually equipped with a series of holes that enables rapid indexing to common angles, such as 30, 45, or 90 degrees. A pin in the base of the dividing head can be extended into the direct indexing plate to lock the head quickly into one of these angles.

Interchangeable indexing plates are used when the work must be rotated to an angle not available on the direct indexing plate. Because the hand crank is fixed to the spindle at a known ratio (commonly 40:1) the dividing plates mounted at the handwheel can be used to create finer divisions for precise orientation at irregular angles. These dividing plates are provided in sets of several plates. Each plate has rings of holes with different divisions. For example, an indexing plate might have three rows of holes with 24, 30, and 36 holes in each row. A pin on the hand crank engages these holes. Index plates with up to 400 holes are available.

For example, if a machinist wanted to index (rotate) his workpiece by 22.5 degrees then he would turn the hand crank two full revolutions plus one-half of a turn. Since each full revolution is 9 degrees and a half-revolution is 4.5 degrees, the total is 22.5 (9 + 9 + 4.5 = 22.5). The one-half turn can easily be done precisely using any indexing plate with an even number of holes and rotating to the halfway point (Hole #8 on the 16-hole ring).

Brown and Sharpe indexing heads include a set of 3 indexing plates. The plates are marked #1, #2 and #3, or "A", "B" and "C". Each plate contains 6 rows of holes. Plate #1 or "A" has 15, 16, 17, 18, 19, and 20 holes. Plate #2 or "B" has 21, 23, 27, 29, 31, and 33 holes. Plate #3 or "C" has 37, 39, 41, 43, 47, and 49 holes.

Universal Dividing heads: some manual indexing heads are equipped with a power drive provision. This allows the rotation of the dividing head to be connected to the table feed of the milling machine instead of using a hand crank. A set of change gears is provided to select the ratio between the table feed and rotation. This setup allows the machining of spiral or helical features such as spiral gears, worms, or screw type parts because the part is simultaneously rotated at the same time it is moved in the horizontal direction. This setup is called a "PTO dividing head".

CNC indexing heads are similar in design to the manual variety except that they have a servo motor coupled to the spindle instead of a hand crank and indexing plates. The servo motor is electronically controlled to index the work to the required position. The control can either be a simple keypad for the operator or it may be fully CNC controlled.

CNC indexing heads may be controlled in two different modes. The most basic method of operation uses simple control functions built into the dividing head. It does not require a CNC machine. The operator enters the desired angle into a control box attached to the indexing head and it automatically rotates to the desired position and locks into place for machining. Changing angles is as simple as typing a new angle value onto the control pad. This is simpler than setting up a manual indexing head because there is no need to interchange indexing plates or to calculate which hole positions to use. It is also faster for repetitive operations because the work can be indexed by simply pressing a button, eliminating the need to count rotations of the hand crank or specific hole positions on the indexing plate. A CNC dividing head may be used in this manner on either manual or CNC machinery.

Most CNC dividing heads are also able to function as a full CNC axis and may be wired into the control of a CNC machine. This enables the machine"s main CNC controller to control the indexing head just like it would control the other axes of the machine. This can be used to machine complex 3D shapes, helices with a non-constant pitch, and similar exotic parts. This mode of operation cannot be used on a manual machine tool because it requires a full CNC controller to operate.

indexing head vs rotary table quotation

The H7506 Horizontal/Vertical Rotary Indexing Table has an indexing head, a precision adjustable 3-jaw chuck, and can be used in the horizontal or vertical position for a variety of milling applications.

The 24-slot main indexing plate is drilled with eleven holes so the position of the spacer plates can be changed during machining operations for different setups.

The H7506 manual was written by our U.S. based Technical Documentation Department and is packed with useful information. The complete and easy-to-read manual makes it easier to assemble and maintain your rotary table.

The Grizzly Customer Service and Technical Support Teams are U.S. based. Parts for the rotary table may be available online and shipped from the Grizzly parts warehouse in Springfield, MO.

indexing head vs rotary table quotation

Explore rotary indexing head with simple designs on Alibaba.com for efficient metal cutting and strong support for the workpiece while cutting or grinding. The devices are vital components to various grinding equipment, and they are typically easy to mount. Standard machines that apply rotary indexing head as installable or built-in parts include milling machines, boring tools, and drill presses. Some device applications include gear cutting, devising milling cutter flutes, and making bolt hole circles.

The innovative indexing head features a sturdy head and footstock or indexing centers for steady and reliable operation. Alibaba.com delivers different types of rotary indexing head, including plain, optical, spiral, and universal spiral machines to cater to unique project requirements. The device components may operate as a unit or with extra attachments for enhanced accuracy and precision levels. Explore various direct index heads for fluting taps, milling squares, octagons, and many more.

Shoppers can use rotary indexing head to verify precision angles, proportions and measures up to seconds of a degree using optical lenses for sensitive projects. Universal designs are well-suited for all forms of head indexing since they are configurable at any angle. Make indexing work more comfortable and enjoyable by having these machines in the workshop.

Compare mind-blowing rotary indexing head options and exclusive deals on machinery on Alibaba.com. The quality-assured products come with sustainable warranties and are easy to operate and maintain. Customization for orders and aftersales support is also available from trusted dealers and distributors.

indexing head vs rotary table quotation

Technitron has been integrating rotary tables and accessories on machine tools since 1992. Over the past 30 years Technitron has pioneered new technology and techniques to allow us to set the industry standard for rotary table and accessory integrations. By utilizing our vast experience, we have been able to meet and exceed our customers’ expectations. No other company has our experience on a variety of machines and controls.

Technitron is dedicated to supplying high quality Integration Services to the Machine Tool Industry. Our Turn-Key Integration Services are designed to enhance the productivity from both new and existing machine tools. We have installed more than 3500 rotary tables to date.

indexing head vs rotary table quotation

This is an accurate designed table for milling, boring and other machine tools. This table allows indexing, facing and other work to be carried out rapidly with extreme precision. Tiliting range 0-90 degrees fromread more...

indexing head vs rotary table quotation

I have used it in the vertical position to cut a 107 tooth gear which isn"t covered by any of the dividing head wheels I"ve got. I set up an excel spreadsheet with the angle required for each tooth which isn"t as easy as it sounds as the rotary table is calibrated in degrees/minutes/seconds rather than decimal degrees so it took a bit of figuring out how to do it.