steel wire rope manufacturing process brands
Wire rope manufacturers produce their products in order to provide a high load capacity, versatile alternative to weaker ropes like manila rope or hemp rope. Wire rope products are used for a wide variety of motion transmission applications, among them: lifting, baling, tie down, hoisting, hauling, towing, mooring, anchoring, rigging, cargo control, guidance and counterbalance. They can also be used as railing, fencing and guardrailing.
Wire rope is a must-have for many heavy duty industrial applications. From mining to forestry to marine and beyond, there’s wire rope for almost every job. Some of the many industries in which wire rope is popular include: construction, agriculture, marine, industrial manufacturing, fitness, sports and recreation (plastic coated cables for outdoor playground equipment and sports equipment), electronics, theater (black powder coated cables for stage rigging), mining, gas and oil, transportation, security, healthcare and consumer goods.
Wire rope as we know it was invented just under 200 years ago, between 1831 and 1834. At that time, the goal was to create a rope strong enough to support work in the mines of the Harz Mountains. Invented by Wilhelm Albert, a German mining engineer, this wire rope consisted on four three-stranded wires. It was much stronger than older rope varieties, such as manila rope, hemp rope and metal chain rope.
While studying at Freiburg School of Mines, a man named L.D.B. Gordon visited the mines in the Harz Mountains, where he met Albert. After he left, Gordon wrote to his friend Robert Stirling Newall, urging him to create a machine for manufacturing wire ropes. Newall, of Dundee, Scotland, did just that, designing a wire rope machine that made wire ropes with four strands, consisting of four wires each. After Gordon returned to Dundee, he and Newall, along with Charles Liddell, formed R.S. Newall and Company. In 1840, Newall received a patent for “certain improvements in wire rope and the machinery for making such rope.”
In 1841, an American manufacturer named John A. Roebling began producing wire rope for suspension bridges. Soon after, another set of Americans, Josiah White and Erskine Hazard, started incorporating wire rope into coal mining and railroad projects, forming Lehigh Coal & Navigation Company (LC&N Co.). In 1848, wire rope from their wire rope factory in Mauch Chunk, Pennsylvania provided the lift cables needed to complete the Ashley Planes Project. This project sought to improve the performance and appearance of the freight railroad that ran through Ashley, Pennsylvania, by adding lift cables. This increased tourism and increased the railroad’s coal capacity. Before, cars took almost four hours to return; after, they took less than 20 minutes.
Wire rope likewise changed the landscape (again) in Germany, in 1874, when an engineering firm called Adolf Bleichert & Co. used wire rope to build Bi-cable aerial tramways. These allowed them to mine the Ruhr Valley. Several years later, they also used wire rope to build tramways for the German Imperial Army and the Wehrmacht. These tramways were wildly successful, opening up roads in Germany and all over Europe and the USA.
Since the 1800s, manufacturers and engineers have found ways to improve wire rope, through stronger materials and material treatments, such as galvanization, and different rope configurations. Today, wire rope makes possible many heavy industrial processes. It has become a necessity of the modern world.
Strands are made by tightly twisting or braiding individual wire together. One strand could have anywhere between two and several dozen wire filaments depending on the necessary strength, flexibility, and weight capacity.
One of the most dynamic elements of wire cables is the inner core. The strands are wrapped around the core, and it can be made of different metals, fibers, or even impregnated fiber materials. For heavy applications, cores are often made of a different strand of wire called an independent wire rope core (IWRC). An IWRC has a considerable amount of flexibility and it is still very strong. In fact, at least 7.5% of the strength increase in a wire rope can be attributed to an IWRC.
While they sometimes use other metals, like aluminum, nickel, copper, titanium, and even bronze for some applications, manufacturers primarily produce wire rope from steel. This is because steel is very strong and stretchable. Among the most common types they use are: galvanized wire, bright wire, stainless steel and cold drawn steel.
Of the wire rope steels, cold drawn carbon steel wire is most popular, although stainless steel wire rope is sometimes employed as well. Stainless steel rope is most popular for its anti-corrosive properties. Bright wire rope, a type of ungalvanized steel wire rope, is also popular. For added strength and durability, galvanized steel wire rope/galvanized steel cables are a very popular choice. Galvanized aircraft cable, for example, is always a must in aerospace.
When choosing or designing a custom wire rope for your application, suppliers consider factors such as: the environment in which the rope will function, required rust resistance, required flexibility, temperature resistance, required breaking strength and wire rope diameter. To accommodate your needs, manufacturers can do special things like: make your rope rotation resistant, color code your rope, or add a corrosion resistant coating. For instance, sometimes they specially treat and coat a cable with plastic or some other compound for added protection. This is particularly important to prevent fraying if the wire rope is often in motion on a pulley.
Manufacturers and distributors identify the differences in wire cable by listing the number of strands and the amount of wires per strand so that anyone that orders understand the strength of the cable. Sometimes they are also categorized by their length or pitch. Common examples of this include: 6 x 19, 6 x 25, 19 x 7, 7 x 19, 7 x 7, 6 x 26 and 6 x 36.
More complex wire rope identification codes connote information like core type, weight limit and more. Any additional hardware like connectors, fasteners, pulleys and fittings are usually listed in the same area to show varying strengths and degrees of fray prevention.
Cable wire rope is a heavy-duty wire rope. To give it its high strength, manufacturers construct it using several individual filaments that are twisted in strands and helically wrapped around the core. A very common example of cable wire rope is steel cable.
Spiral rope is made up an assemblage of wires with round or curved strands. The assemblage features at least one outer layer cord pointed in the opposite direction of the wire. The big advantage of spiral ropes is the fact that they block moisture, water and pollutants from entering the interior of the rope.
Similarly, stranded rope steel wire is made up of an assemblage of spirally wound strands. Unlike spiral rope, though, its wire patterns have crisscrossing layers. These layers create an exceptionally strong rope. Stranded rope may have one of three core material types: wire rope, wire strand or fiber.
Wire rope chain, like all chains, is made up of a series of links. Because it is not solid, wire rope chain is quite flexible. At the same time, it is prone to mechanical failure.
Wire rope slings are made from improved plow wire steel, a strong steel wire that offers superior return loop slings and better security. The plow wire steel also shields rope at its connection points, which extends its working life. Wire rope slings, in general, provide their applications with increased safety, capacity and performance. Wire rope sling is a rope category that encompasses a wide range of sub-products, such as permaloc rope sling, permaloc bridle slings and endless slings. These and other wire rope slings may be accompanied by a wide variety of sling terminations, such as thimbles, chokers and hooks.
Wire rope offers its user many advantages. First, design of even distribution of weight among strands makes it ideal for lifting extremely heavy loads. Second, wire rope is extremely durable and, when matched properly to the application, can withstand great stress and elements like corrosion and abrasion. In addition, it is very versatile. Its many iterations and the ways in which the rope can treated means that users can get rope custom fit for virtually any application.
Depending on the type of wire rope with which you are working and your application, you may want to invest in different accessories. Among these accessories are: wire rope clips, steel carabiners, fittings, fasteners and connections.
To ensure that your wire rope quality remains high, you must regularly inspect them for wear and degradation. The right wire rope should be selected for a particular use. Watch out for performance-impacting damage like: rust, fraying and kinks. To make sure that they stay in tip-top shape, you should also clean and lubricate them as needed. Check for this need as a part of your regular inspection.
Rope care is about more than inspection. It’s also about making an effort to use and store them properly every time you use them. For example, never exceed your rope’s rated load and breaking strength. Doing so will not only cause the weakening of your cable, but it may even cause immediate breakage. In addition, always store your wire rope cable in a dry and warm area, away from those elements that could cause premature rusting or other damage. Finally, always carefully wind your wire rope when you’re done with it, so as to avoid kinks. If you follow all these tips and treat your wire rope assemblies well, they will reward you with a long and productive service life.
Always make sure that you purchase wire rope that matches your industry and regional standards. Some of the most widely referenced standards organizations for wire rope include: ISO, ASTM International and OSHA. Talk over your specifications and application with your wire rope supplier to figure out what’s best for you.
If you’re in the market for a wire rope or a wire rope assembly, the best way to know you’re getting something that will both perform well and be safe if by working with a vetted professional. Find one among the list we’ve provided on this page. Check out their profiles to get an idea of the services and products they offer. Pick out three or four to whom you’d like to speak, and reach out. Talk to them about your specifications, standard requirements and budget. Ask about lead times and delivery options. Once you’ve spoken with all of them, compare and contrast their answers. You’ll know you’ve found the one when you talk to a wire rope company that is willing to go above and beyond for your satisfaction.
Wire rope is a complex mechanical device that has many moving parts all working in tandem to help support and move an object or load. Wire ropes are attached to a crane or hoist and are fitted with swivels, shackles or hooks. These are suitable for lifting or lowering elevators and are also used for supporting suspension bridges or towers.
In this article, we"ll cover details on the top U.S. providers of wire ropes, along with our featured list of top wire rope suppliers on Thomasnet.com.
Below is a list of featured suppliers of wire rope from our platform. Included with these companies is their location, year established and the number of employees.
Below we have assembled information on the top suppliers of wire rope in the U.S. based on currently available public sales data. The table also includes the company name, location and the number of employees.
With the help of the provided details on the wire rope suppliers in the United States in the above tables and descriptions, we hope you can use this data to further aid your sourcing decisions.
ISO 9001 & AS 9120 certified 8(m)WOSB certified custom manufacturer of corrossion resistant galvanized aircraft stainless steel metal safety cable and wire braid materials include braided cords with wire center for aeronautical, aerospace, halyard, helicopter lead line, sailboat, rigging, hoisting, automotive applications and more. Wire rope products are available in 1x7 strand through 6x36 strand for aircraft cable, non rotating and non flexible applications. Custom coatings and finishes available for aerospace, automotive, safety applications. Also offers custom braids in specialty colors, finishes, and materials such as aramid, ceramic, Dyneema®, fiberglass, Kevlar®, linen, Nomex®, plasma, Spectra®, tarred, marlin, Technora™, Twaron®, and Vectran™. Galvanized aircraft wire ropes and cables available in 302/304, 305, and 316 stainless steel and zinc-coated carbon steel materials. Offers non-flexible types in 1 x 7 and 1 x 19 strand models. Suitable for aeronautical, logging, hoisting, aircraft control, and winching applications.
A wire rope is a type of cable that includes several wire strands laced together to form a single wire. Generally, both the terms “wire” and “rope” are used interchangeably with “wire rope”; however, according to the technical definition, to be labeled a wire rope, the cable must have a thickness of at least 9.52 mm. As a versatile, high load capacity alternative to natural fiber ropes such as hemp and manila, wire rope provides motion transmission through nearly all angles, tie down, counterbalance, guidance, control, or lift.
Modern wire rope was invented by Wilhelm Albert, a German mining engineer, between 1831 and 1834. He developed them in order for work in the mines in the Harz Mountains. This rope replaced weaker natural fiber ropes, like hemp rope and manila rope, and weaker metal ropes, like chain rope.
Albert’s rope was constructed of four three-stranded wires. In 1840, a Scot named Robert Stirling Newall improved upon this model. A year later in the United States, American manufacturer John A. Roebling started producing wire rope, aimed at his vision of suspension bridges. From there, other interested Americans, such as Erskine Hazard and Josiah White, used wire rope in railroad and coal mining applications. They also applied their wire rope techniques to provide lift ropes for something called the Ashley Planes project, which allowed for better transportation and increased tourism in the area.
Approximately twenty-five years later, back in Germany in 1874, the engineering firm Adolf Bleichert & Co. was founded. They used wire rope to build bicable aerial tramways for mining the Ruhr Valley. Years later they built tramways for both the Wehrmacht and the German Imperial Army. Their wire rope systems spread all across Europe, and then migrated to the USA, concentrating at Trenton Iron Works in New Jersey.
Over the years, engineers and manufacturers have created materials of all kinds to make wire rope stronger. Such materials include stainless steel, plow steel, bright wire, galvanized steel, wire rope steel, electric wire, and more. Today, wire rope is a staple in most heavy industrial processes. Wherever heavy duty lifting is required, wire rope is there to facilitate.
Wire rope is strong, durable, and versatile. Even the heaviest industrial loads may be lifted with a well-made wire rope because the weight is distributed evenly among constituent strands.
There are three basic elements of which wire ropes are composed: wire filaments, strands, and cores. Manufacturers make wire rope by taking the filaments, twisting or braiding them together into strands, and then helically winding them around a core. Because of this multiple strand configuration, wire rope is also often referred to as stranded wire.
The first component, the filaments, are cold drawn rods of metal materials of varying, but relatively small diameter. The second component, the strands, can individually consist of as few as two or as many as several dozen filaments. The last component, the core, is the central element around which strands are wrapped; wire rope cores maintain a considerable amount of flexibility, while increasing strength by at least 7.5% over the strength of fiber core wire ropes.
The helical winding of the strands around the core is known as the lay. Ropes may be right hand lay, twisting strands clockwise, or they may be left hand lay, twisting strands counter-clockwise. In an ordinary lay, the individual strands are twisted in the opposite direction of the lay of the entire rope of strands to increase tension and to prevent the rope from coming unwound. Though this is most common Lang"s lay has both the strands and the rope twisted in the same direction while alternate lays, as the name suggests alternate between ordinary and Lang style lays. While alternative rope designs are available, the helical core design is often favored, as it allows a wire cable to hold a lot of weight while remaining ductile.
There are many design aspects that wire rope manufacturers consider when they are creating custom wire rope assemblies. These include: strand gauge (varies based on application strength, flexibility, and wear resistance requirements), wire rope fittings (for connecting other cables), lay, splices, and special coatings. Specially treated steel cable and plastic coated cables, for instance, are common to many application specific variations of wire rope such as push pull cable assemblies used in transferring motion between two points.
Suppliers typically identify wire cable by listing both the number of strands and the amount of wires per strand respectively, though stranded cable may alternatively be measured by their lay and length or pitch. For example, a door-retaining lanyard wire rope is identified by its 7 x 7 construction, and wire rope used for guying purposes is identified by its 1 x 19 construction. The most common types are 6 x 19, 6 x 25, 19 x 7, 7 x 7, 7 x 19, 6 x 26, and 6 x 36.
An ungalvanized steel wire rope variety. This uncoated wire rope can also be designed to resist spinning or rotating while holding a load; this is known as rotation resistant bright wire rope.
Also called a coiled wire rope, a coiled cable is a rope made from bundles of small metal wires, which are then twisted into a coil. Wire rope and cable can come in a huge variety of forms, but coiled cables specifically provide the benefits of easy storage and tidiness. Unlike other wire ropes, coiled cables do not require a spool for storage. Because it has been coiled, the cable will automatically retract into its spring-like shape when it is not in use, making it incredibly easy to handle.
A type of high strength rope, made of several individual filaments. These filaments are twisted into strands and helically wrapped around a core. One of the most common types of wire rope cable is steel cable.
Wire rope made not as one solid piece, but as a piece made up of a series of metal links. Wire rope chain is flexible and strong, but it is more prone to mechanical failure than wire rope.
Push pull cables and controls are a particular type of control cable designed for the positive and precise transmission of mechanical motion within a given system. Unlike their counterpart pull-pull cables, these wire rope assemblies offer multidirectional control. Additionally, their flexibility allows for easy routing, making them popular in a number of industrial and commercial applications.
Iron and steel are the two most common materials used in producing wire ropes. A steel wire is normally made from non-alloy carbon steel that offers a very high strength and can support extreme stretchable forces. For even more strength and durability, manufacturers can make stainless steel wire rope or galvanized steel wire rope. The latter two are good for applications like rigging and hoisting.
Technically, spiral ropes are curved or round strands with an assemblage of wires. This gathering of wires has at least one cord situated in the opposite direction of the wire in the outer layer of the rope. The most important trait of this rope is that all the wires included are round. The biggest benefit of this category of rope is that it does not allow the entrance of pollutants, water, or moisture.
Contain an assemblage of strands placed spirally around a core. Stranded rope steel wire patterns have different layers that cross each other to form an even stronger cable or rope. Stranded ropes contain one of three types of core: a fiber core, a wire strand core, or a wire rope core.
Provide an added level of security to a manufacturing production application. Wire rope slings are made from improved plow steel wire ropes that, apart from offering added security, also provide superior return loop slings. Plow steel wire ropes improve the life of a mechanism by shielding the rope at its connection points. The key objective of wire rope slings is to enhance the safety of an application while increasing its capacity and performance. Rope slings are also available in various sling termination options, such as hook type, chokers, and thimbles.
The eye in this rope sling is made using the Flemish Splice method. Just like a typical sling, a Permaloc rope sling improves safety and provides reverse strength meaning that the uprightness of the eye does not depend on the sleeves of the metal or alloy. Additionally, permaloc rope slings offer an abrasion resistance feature that makes them long lasting.
These slings have all the features that most other slings offer. However, compared to their counterparts, Permaloc bridle slings provide better load control, wire rope resistant crushing, robust hooks and links that work for a longer duration, and help save on maintenance requirements.
Manufacturers produce wire rope for many different reasons; from cranes to playground swings, wire ropes have something for everyone. Among the many applications of wire rope are hoisting, hauling, tie down, cargo control, baling, rigging, anchoring, mooring, and towing. They can also serve as fencing, guardrails, and cable railing, among other products.
Some of the industries that make use of wire rope include industrial manufacturing, construction, marine, gas and oil, mining, healthcare, consumer goods, and transportation. Others include the fitness industry, which uses plastic coated cable products in weight machines, the theater industry, which uses black powder coated cables for stage rigging, the recreation industry, which uses plastic coated cables for outdoor playground equipment, and the electronics industry, which uses miniature wire rope for many types of electronic equipment and communications devices.
Wire ropes are typically made from cold drawn steel wire, stainless steel wire, or galvanized wire. They may also be made from a wide variety of less popular metals, including aluminum, nickel alloy, bronze, copper, and titanium. However, nearly all wire ropes, including control cables, are made from strands of cold drawn carbon steel wires. Stainless steel rope and cables are subbed in for highly corrosive environments. Galvanized cables and galvanized wire rope are popular for their increased strength and durability; these qualities are important to specialized ropes like galvanized aircraft cable.
A core may be composed of metal, fiber or impregnated fiber materials depending on the intended application. Cores may also be another strand of wire called an independent wire rope core (IWRC).
Wire rope, depending on its application, is subject to many standard requirements. Among the most common of these are the standards detailed by OSHA, ASTM International, and ISO. Per your application and industry, you’ll likely have others you need to consider. To get a full list, talk to your service provider.
To determine the safety factor, which is a margin of security against risks, the first step involves knowing the type of load that the rope will be subjected to. The load must consider the shock loads and blowing wind effects. The safety factor is characterized in ratios; typical are 4:1 and 5:1. If a ratio is 5:1, then the tensile strength of a wire rope must be five times of the load it will be subjected to. In some applications, the ratios can go up to 10:1.
By weighing all these factors carefully, the wire rope that you will buy will be safe to use and last considerably. For the best advice and guidance, though, don’t go it alone! Find a great wire rope supplier that you can trust. You’ll know you’ve found the right supplier for you when you talk to one that can not only fulfill your requirements, but shows that they are excited to go the extra mile for you. For a company like this, browse the list near the top of the page.
As the cables play an integral role in the safety of many operations and structures, careful analysis of a wire rope and all of its capabilities and features is vital. Important qualities and physical specifications you must consider include wire rope diameter, breaking strength, resistance to corrosion, difficulty of flattening or crushing, bendability, and average lifespan.
Each of the aforementioned considerations should be compatible with the specific application for which the rope is intended as well as the environment in which such operations are undertaken. Temperature and corrosive environments often require specially coated wire ropes with increased durability.
When you use your industrial wire rope, the first thing to remember is to not exceed your rope’s rated load and breaking strength. If you do not stay within these parameters, you risk causing your rope to weaken or even break.
Rust, kinks, fraying and even carefully performed splicing will all have an impact on the performance of wire ropes. To maintain the integrity of your wire rope assembly, you need to inspect them regularly and clean and lubricate them as needed. In addition, you need to store them out of the wet and cold as much as possible. Also wrap them up properly, so they are not kinked.
Steel that is designed for applications, which require greater safety features with no increase in diameter size and the highest resistance to abrasive wear. This steel is fifteen percent stronger than Improved Plow Steel, and the tensile strength of this grade ranges from 280,000 to 340,000 psi.
A high-carbon steel having a tensile strength of approximately 260,000 psi that is roughly fifteen percent stronger than Plow Steel. Most commercial wires are made from IPS.
A low carbon steel wire of approximately 10,000 psi, which is pliable and capable of repeated stresses from bending around small sheaves. This grade is effective for tillers, guys and sash ropes.
The manner in which the wires are helically wound to form rope. Lay refers specifically to the direction of the helical path of the strands in a wire rope; for example, if the helix of the strands are like the threads of a right-hand screw, the lay is known as a right lay, or right-hand, but if the strands go to the left, it is a left lay, or left-hand.
A classification of wire rope according to its breaking strength. The rank of grades according to increasing breaking strengths is as follows: Iron, Traction, Mild Plow Steel, Plow Steel, Improved Steel, Extra Improved Steel.
The act of fastening a termination to a wire rope through physical deformation of the termination about the rope via a hydraulic press or hammering. The strength is one hundred percent of the wire rope rating.
A grade of rope material that has a tensile strength range of 180,000 to 190,000 psi. Traction steel has great resistance to bending fatigue with a minimum of abrasive force on sheaves and drums, which contributes to its long use in elevators, from which the steel gets its name.
It is composed of wire strands that are braided together. Wire braid is similar to stranded wire. The difference between the two is the fact that stranded wire features strands that are bundled together, rather than braided.
Essential parts of cable assemblies, wire rope assemblies and wire rope slings that assist spliced or swaged rope ends in connecting to other cables and keeping cables and rope from unraveling.
A wire rope cable assembly is a metallic rope consisting of bundles of twisted, spiraled, or bonded wires. While the terms wire rope and cable are often used interchangeably, cables are typically designated as smaller diameter wire ropes, specifically wire ropes with a diameter less than 3/8 inch. Therefore, wire rope cable assemblies are typically utilized for lighter duty applications.
Or cable assemblies, are cables which are composed of many spiraled bundles of wire. These cables are used to support hanging objects, connect objects, pull or lift objects, secure items, and much more.
Wire rope wholesalers can sell an extensive range of wire rope and wire rope accessories at a very affordable rate as well as in bulk. Many of the additional wire rope equipment that wire rope wholesalers provide include: swivel eye pulleys, eye nuts, eye bolts, slip hooks, spring hooks, heavy duty clips, clevis hooks, turnbuckle hooks, anchor shackle pins, s hooks, rigging blocks, and much more. Wire rope fittings will generally improve the versatility of the wire and also prevent fraying.
Cables consist of two or more wires twisted together and helically wrapped around a core, to form a single assembly commonly known as wire rope. Thus, steel cables are those cables composed of individual steel and steel alloy filaments. Sometimes, cables are also known as wire rope. Because of the diversity of the members of the steel family, which include alloys with a number of different iron and carbon concentrations and metallic variations, steel cable can be fabricated to exhibit a wide range of physical and mechanical characteristics. Stainless steel cable, for example, is known for heightened corrosion and wear resistance, while galvanized cable, made from galvanized steel, is highly cost effective and useful in moderate environments. Other common steel alloys used to make cable include non-galvanized steel and bright steel.
The basic composition of all steel cables is as follows: First, cold-drawn steel wires, called filaments, are braided or twisted together to form a grouping called a strand. Filaments are generally fairly small in diameter. They may be laid together in a cross lay configuration, wherein wires of different layers cross each other, or a parallel lay configuration, in which all wire lengths are equal and the different layers lay parallel to each other, or neighbors. To complete the cable, the strands are wrapped in a helical pattern around the core, which serves to provide support and cushion the cable as it bends. There are three basic types of cores: the fiber core, the wire strand core and the independent wire rope core (IWRC). Fiber cores distinguish themselves as the most flexible and elastic, as they are made of natural or synthetic materials like sisal, hemp, jute or manila. The drawback of fiber cores is that they are easily crushed. Next, wire strand cores are simply one additional strand of wire in the middle of the other strands. Typically, steel cables with wire strand cores are used for suspension. IWRCs are the most durable cores of all, suitable for the harshest environments. To enhance their connectivity and prevent fraying, steel cables are often additionally outfitted with hardware such as fittings and fasteners.
There are a number of ways in which a steel cable may be identified and grouped. First, it may be identified by its core type. Second, it may be classified by its strands. For example, a 6x19 steel cable is a cable that has 6 strands and between 15 and 26 wires in each strand. It may also be grouped according to its diameter, rope type or strand lay.
Steel cables are durable, with a high breaking stress, high corrosion resistance and excellent wear resistance. The multi-strand construction of steel cables also allows them to remain ductile even when burdened with the heaviest loads. For these reasons, they lend themselves well to a variety of industrial and manufacturing applications, such as hoist ropes, safety cables, control cables, supportive guy lines, cable railings and general braking applications. When considering the purchase of steel cable, customers must keep several specifications in mind, such as: composition, diameter, length, reliability, ductility and resistance to flattening or crushing. To make sure a steel cable will work work for their application, interested parties may also request that their steel manufacturer conduct work load limit tests. Usually, steel cable can be made to meet various regional and/or industry standards and regulations, such as those put out by ISO (International Standards Organization), ASTM International (American Society for Testing and Materials), the NSC (National Safety Council) and OSHA (Occupational Safety and Health Administration). To get the most out of their steel cable, customers must take care to treat it well.
First, they must store it in an area that is clean, dry and well-ventilated. In addition, this storage space should be free from chemicals and/or corrosive agents that may damage the cable. This is especially important because one of the primary causes steel cable deterioration is corrosion and moisture exposure. Whatever cable owners can do to decrease this risk will help. Cable owners or operators must also take care to regularly examine their cables, checking for visible signs of deterioration or weakening, such as breaks, kinks and wear. If the cable receives lubrication applications to avoid corrosion, operators must also check and reapply this lubrication regularly. From time to time, operators must also take apart whatever system of which the steel cable is a part, so that they can examine all parts of the cable. With diligence, a steel cable should be able to function safely and properly for a long time.
YuanBo Engineering Co., Ltd., Dunamis Wire Ropes Mfg. LLP, Tokyo Rope Mfg. Co., Ltd., and Guizhou Wire Rope Incorporated Company, among others, are the top players in the bright steel wire rope market.
The global bright steel wire rope market is supported largely by the steel wire rope industry, which attained a CAGR of 3.4% in the forecast period from 2022 to 2027.
Bright steel wire ropes are general wire ropes without any coating, and free from zinc, copper, and other metallic coatings. Grease is generally used to lubricate these wires, hence preventing their deterioration. The major users of bright steel wire ropes are the oil and gas industry, shipping industry, and mining industry. Ever since the crude oil crisis, bright steel wire rope producers have seen a surge in revenue generation, especially with newer ventures for oil extraction, coal mining, and other mineral and industrial drilling.
Bright steel wire rope consumption and sales have been high in the Asia Pacific region in recent years, particularly in China, Indonesia, and India. North America and Europe are the primary areas for the global market for bright steel wire rope since they are major end-users in the oil and gas industry. During the forecasted period, the Asia Pacific countries of China, India, Indonesia, Thailand, and Malaysia are predicted to have considerable growth in the bright steel wire rope sector. Over the recent decade, China"s demand for bright steel wire rope has increased significantly, possibly because of increased steel output and infrastructure investment in lift and motion applications.
YuanBo Engineering Co., Ltd. Is the biggest bright steel wire rope manufacturer in the world. The company provides technology, solutions, and service support to meet the specific needs of customers in the pharmaceutical, chemical, fire, industrial, and other industries. As the company is located close to the northern Chinese, Tianjin port, it enjoys convenience of transport, and as a result, exports are large. It covers an area of 18000 square meters and employs more than 200 people to manufacture its goods. YuanBo exports to Europe, America, Japan, the Middle East, Africa, South Korea, and Australia.
Dunamis Wire Ropes Mfg. LLP is the largest wire rope producer in India. The various ports of Mumbai offer easy transport to other countries, hence increasing their revenue. The company provides wire ropes for a wide variety of applications such as industrial and construction work, mining, oil and gas, bridges, ski lifts, and fishing and marine.
One of the biggest wire rope manufacturers in Asia, Tokyo Rope Mfg. Co., Ltd. have built a reputation for providing the best quality in their products. The seaside ports and the immense connectivity from Japan allow for exceptional transport facilities. It is engaged in the production and sale of steel cables, steel cords, developed products, and others, the real estate leasing business, as well as logistics related business and other services.
Guizhou Wire Rope Incorporated Company is one of the largest companies specialising in steel wire rope products. The enterprise has more than 5000 employees, as they strive to achieve perfect quality control. The capacity of the company is a massive 4,00,000 metric tons a year, which they export to the United States, United Kingdom, Canada, Australia, Denmark, Netherlands, Singapore, and the Middle East.
Throughout our history, the dedicated team at Sheaves Inc. helped us expand our service to differing industrial sectors that required sheaves. As a result, we decided to better serve our customers needs through creating dedicated brands, such as QSheaves™,to serve our industries and markets with identifiable, focused offerings. Above all else, We pride ourselves on our quality products and excellent customer service, as well as our continual desire to look for innovative ways to meet your needs.Our brands reflect these values, and the unique industries each serves, all continue to carry on the tradition of providing responsibly engineered designs and the high quality standard of products our customers have come to expect. Whether you need a pulley for wire rope, cable manufacturing, or other lifting applications, we have everything you need all in one place.We thank all our customers who have remained loyal to us, and have seen us through our transition.
We develop and manufacture strands and ropes, in the fine rope range with diameters from 0.09 to 8.0 mm, for the most diverse technical requirements, with individual specifications. This results in different requirements for the material, the rope structure and the diameter range. In our rope factory, ropes can be manufactured in different lay directions. Our standard material stainless steel 1.4401 is predominantly used for a wide variety of constructions. Depending on the requirements, we also supply ropes in special materials or process them by, for example, hammering, purifying or PU coating. We produce our ropes with fiber or steel core. We also offer conducting wire ropes of the e-rope brand. The thinnest wire processed in our rope factory for use in microtechnology has a diameter of 0.015 mm. This corresponds to 1/4 the diameter of a human hair. These wire ropes are used, for example, in medical devices. Our ropes are durable quality products and thus contribute to the sustainability of the products in which they are processed.
On 28th April 2017 Redaelli entered Teufelberger Group. Teufelberger and Redaelli both leading manufacturers of high performance steel wire ropes, unite their expertise to provide the best technical solutions for steel wire ropes and establish together a global presence.
We at Teufelberger-Redaelli understand your day-to-day challenges and solve them together with you. We develop and produce high performance steel wire ropes that create added value by enhancing the efficiency and safety of your applications. Expect more: of our innovative steel wire ropes, our services, our experienced experts in development, application engineering, and sales – all around the globe. Being a family enterprise, we attach great importance to successful, long-standing business relationships. Our commitment does not begin and end solely with the supply of premium quality steel wire ropes, but we also accompany you throughout your work processes when it comes to optimizing efficiency and costs.
We know that high performance steel wire ropes are able to unleash their full potential only if crane systems have been set up optimally and if the ropes have been installed correctly. Therefore, we also provide support during project planning, installation, and subsequent careful handling to maximize rope lifetimes. After all, the purchasing costs are just the tip of the iceberg.
Rotation-resistant and non-rotation-resistant high performance steel wire ropes from Teufelberger-Redaelli are used for a variety of applications such as:
Four manufacturing sites for steel wire ropes and a combined total of more than 425 years of rope-making experience tally up to a unique wealth of expertise and an unmatched and proven production standard. The resulting high degree of flexibility allows us to keep delivery times to a minimum.
Ropes and wire strands are elements made by twisting together thinner cords or wires. They are manly used to carry and move loads or to tie things together and find application in several fields including construction, elevators, mining, energy supply, agriculture, logistics.
In the early days, steel wire ropes were made by hand on rope walks where a number of wires were laid out. Workmen equipped with a rotating device walked along the group of wires and twisted them into strands. The process was then repeated with a group of strands resulting in a rope. This technology had its roots in the manufacture of ropes made of plant materials such as hemp. The strand and rope-making process was gradually mechanized and is nowadays carried out in industrial rope making machines such as tubular stranding machines which consist of pay-off, rotor and bearing assembly, stranding section, haul-off, and take-up. Tubular stranding machines are also more and more used for the closing of ropes because of their greater effectiveness in comparison with cage type stranding machines.
In the first step, cold drawn steel wires are paid off from spools, which are fixed in the tubular part of the machine, and – as the result of the interaction of the longitudinal movement of the wires and the rotational movement of the tubular section – helically wound around a central wire. The result is called “strand”. In the following step called “roping up”, several strands are laid (“stranded”) in a similar way around a central element to become a rope. The central element can be made of steel or other materials such natural or synthetic fibers and is called "core". It supports the strands and helps to maintain their relative position under loading and bending stresses.
During the wire rope manufacturing process a lubricant is applied and penetrates to the core. The lubrication reduces friction when the individual wires and strands move over each other and protects against corrosion, inside and on the outside surface.
An important design criterion is the direction of lay, i.e. the direction in which the wires in the strand and the strands are wound around the core. There is a distinction between left hand (“S”) or right hand (“Z”) lay.
In parallel lay strands, the wires of two superimposed layers are parallel, resulting in linear contact. A wire of the outer layer is supported by two wires of the inner layer along the whole length of the strand. There are also cross lay strands where the wires of the different layers cross each other.
Depending on the final use, the properties of strands and ropes can be influenced by stretching and compacting. Basing on the design, a wire rope can be made torsion-free. In this case, it is non-rotating under the influence of a free hanging load.
An association between Broken Hill Proprietary Co. Ltd. (BHP) and rope manufacturers in Great Britain led to the establishment in 1923 of a wire rope manufacturing facility in Newcastle. A new company was formed under the name, Australian Wire Rope Works.
A site was selected in Newcastle, and a state of the art factory was built, with advanced manufacturing equipment, producing ropes compliant with British standards. Rope manufacturing began in 1925 and in 1933 the company became a fully owned subsidiary of BHP.
After 1945, Australia entered a boom period. The economy developed strongly and in the 1950s the Wire Rope Works was involved in major nation building projects such as the Snowy Mountains Scheme. In 1958, BHP consolidated and Australian Wire Rope Works became part of Australian Wire Industries (AWI). The 1970s and 1980s mining boom required new, advanced machines and additional capacity, with the capability to produce rope up to 150mm diameter, in 60 tonne parcels.
In 2000, the Long Products steel division separated from BHP and OneSteel was formed. Recognising the key role of the rope business, OneSteel began making strategic investments, such as the installation of one of the world’s largest electronically controlled rope closers in 2002, capable of producing 200mm diameter rope, and the installation of specialist plastic infusion equipment in 2009.
In July 2012, OneSteel, as a listed company, was renamed Arrium. Concurrently the rope business was rebranded as Moly-Cop Ropes, and we became part of the global mining consumables business of Moly-Cop. In March 2015 Arrium Limited sold its Wire Ropes business to Bekaert, a Belgium based company, specialising in wire products and coatings. MolyCop ropes was rebranded as WRI Australia, representing the brand used by the Bekaert Ropes Group businesses of Wire Rope Industries in North America, who themselves have over 125 years’ experience in wire ropes solutions for the mining and industrial sectors.
Jinan sino steel Co., Ltd is one large steel holding company, as a window of foreign trade of chinese Steel industry, our company has been conducting extensive exchanges and friendly co-operations with domestic and overseas companies on the basis of equality, mutual benefit and win-win, greatly supporting the healthy and rapid development of China"s iron and steel industry. The registered capital of the group is 300 million Yuan. According to the overall deployment plan and the guideline of specialized operation, the company is now mainly engaged in such international and domestic business operations as importing raw materials, mainly iron ore, producing and exporting cold and corrugated steel sheet; and processing materials as per clients’ requirements.
Meanwhile, Group company imported the most advanced technology from Germany, Japan, Belgium and America, UK etc. for iron-smelting, steel-smelting, and processing steel sheet, also equipping with the complete automatic system, then become the most advanced and biggest professional manufacture in China at that time. Currently the group holds the rolling mill and the production lines of galvanized, galvalume and prepainted steel, and corrugation machines, with the annual production capacity of
1.2million tons, Since the producing began, our group company insisted in arriving at the advancement in the technology field by our continuing effort. At present, the company has gained lots of trust and praise from all over the world with qualified products and good service, exporting to North and South America, Europe, South-east Asia, Middle East area and Africa.
Jinan Sino Steel Co.,Ltd will always set its goal to promoting the healthy and fast development of Chinese steel industry in good faith, be realistic and pragmatic, maintain our brand stronger, and devote ourselves to provide customers with both our high quality products and first class service. We sincerely hope to establish long-term win-win cooperation with domestic and overseas clients in the future.
PersonalWe are on hand to personally guide you through the entire process, we translate the jargon, we recommend what’s best, and we are always here in person. No nonsense, just straight talking people who always exceed expectations through our extensive wire rope knowledge and superior service.
The steel wire rope market is steadily propelling due to the growing usage across various industry verticals. The opportunities today are immense for all the manufacturers. This is due to the rise in demand across a wide range of industries. Steel Industries are expanding their capacities, PSUs are expanding their operations, setting up of new power plants, commissioning of new power distribution network, booming real estate and government backed development projects are all the major factors for the rise in domestic demand. Wire rope is a consumable product and thus increases in capacities of the steel manufacturing plants and other PSUs will support a sustainable demand.