what is breaking strength of wire rope price

Although Westech Rigging Supply strives to manufacture and sell the highest quality rigging and safety gear, use of the gear is dangerous if not used correctly by competent trained professionals. Westech Rigging Supply disclaims any liability resulting from the misuse of its rigging and safety gear. Please take a moment to more thoroughly review our disclaimer.
Westech Rigging Supply rigging and safety gear is only intended to be used by competent trained professionals. Misuse of the rigging and safety gear can result in serious injury up to and including loss of life. As such, Westech Rigging Supply disclaims liability for any misuse or incorrect product selection by our customers.
Rigging and safety gear purchased from Westech Rigging Supply should be used in strict accordance with all industry and OSHA standards. At no time should rigging or safety gear be used beyond its certified load ratings (aka Working Load Limits). Normal wear and tear should be expected with use of rigging and safety gear; therefore, all gear should be thoroughly inspected before each and every use. Worn or unsafe rigging and safety gear should never be used.

Although Westech Rigging Supply strives to manufacture and sell the highest quality rigging and safety gear, use of the gear is dangerous if not used correctly by competent trained professionals. Westech Rigging Supply disclaims any liability resulting from the misuse of its rigging and safety gear. Please take a moment to more thoroughly review our disclaimer.
Westech Rigging Supply rigging and safety gear is only intended to be used by competent trained professionals. Misuse of the rigging and safety gear can result in serious injury up to and including loss of life. As such, Westech Rigging Supply disclaims liability for any misuse or incorrect product selection by our customers.
Rigging and safety gear purchased from Westech Rigging Supply should be used in strict accordance with all industry and OSHA standards. At no time should rigging or safety gear be used beyond its certified load ratings (aka Working Load Limits). Normal wear and tear should be expected with use of rigging and safety gear; therefore, all gear should be thoroughly inspected before each and every use. Worn or unsafe rigging and safety gear should never be used.

Some of our calculators and applications let you save application data to your local computer. These applications will - due to browser restrictions - send data between your browser and our server. We don"t save this data.
Google use cookies for serving our ads and handling visitor statistics. Please read Google Privacy & Terms for more information about how you can control adserving and the information collected.

New: A brand-new, unused, unopened, undamaged item in its original packaging (where packaging is applicable). Packaging should be the same as what is found in a retail store, unless the item was packaged by the manufacturer in non-retail packaging, such as an unprinted box or plastic bag. See the seller"s listing for full details.See all condition definitionsopens in a new window or tab

cable,Telecommunication.Elevators,woven wire sieve,handcraft,Wire drawing office equipment,Electrical home appliances and raw material,Clocks and watches,Mechanical equipment,Hardware components,etc.

For use in lifting and rigging, securement, and general purpose, the 6x19 wire rope class comprises either a wire rope core or a fiber core. The wire rope core is its own wire rope construction, most commonly 7x7. This is known as IWRC (Interdependent Wire Rope Core), meaning it moves independent to the outer strands. It’s mostly used in winch-type applications. Within the fiber core wire rope, the fiber core is made of natural or synthetic fiber, which can provide excellent flexibility and resistance to contact pressure, and can store lubrication to reduce the friction between wire strands effectively.
The bright class of industrial wire rope is produced without a surface treatment—making the rope less likely to untwist or kink while giving it a stronger crush resistance than lay ropes. Generally, they are fully lubricated to protect the rope from rust and corrosion.
Galvanized wire rope (steel) features a compressed zinc coating for providing excellent corrosion resistance. With higher break strength, yet lower price than stainless steel wire rope, galvanized steel wire rope is widely used in general engineering applications such as winches and security ropes.
The 6x19 wire rope class is made up of six strands of between 16 and 26 wires per strand for additional wire rope strength and durability, with a maximum breaking strength of 69 tons. The 6x19 features IPS (Improved Plowed Steel), EIPS (Extra Improved Plowed Steel), or EEIPS (Extra Extra Improved Plowed Steel) grade wire rope. Also available in USA-made.

When it comes to choosing the right wire rope, you need to ensure you choose the materials best suited to meet your application’s needs, while also being sensitive to budget. This requires working with the right stainless steel wire supplier that meets ISO 9001 requirements. Stainless steel wire rope manufacturers like Carl Stahl Sava Industries know that it is cost-effective, strong, durable, corrosion-resistant, and heat resistant. This makes stainless steel among the more popular cable rope materials that Sava works with precisely due to its wide range of applications and affordability.
Stainless steel wire rope suppliers often recommend it over other cable construction materials because of its cost-effectiveness. But what’s interesting about stainless steel stranded wire is that its affordability, as compared with more expensive alternatives like tungsten for example is rooted in its low maintenance, longevity, availability and ease of use and installation. Therefore the material’s mechanical malleability, including its lifespan, combined with how readily available it is, makes stainless steel ideal in many use cases.
As a stainless steel wire rope supplier & manufacturerSava typically works with industry-standard stainless steel, such as 303, 304 and 316 stainless steel. However, we can work with any stainless steel a customer needs,and through our stainless steel wire fabrication process we provide a product other wire rope manufacturers, suppliers, and stainless steel wire rope factories cannot. We are a wire rope supplier of over-the-counter stainless steel cable and manufacture an entire family of cable fittings to create your custom cable assembly.
Another reason stainless steel is an industry-standard is because of stainless steel wire rope’sstrength and durability. It is an exceptionally strong wire.
For example, Grade 301 and 304 stainless steel possesses a tensile strength of up to 1300 MPa in strip and wire forms. Galvanized steel, with a tensile strength of up to 550 MPa, comparatively, makes stainless steel remarkably strong.
Consequently, stainless steel has a long lifespan, although not as long as tungsten due to the latter’s tolerance of more intense temperatures. Even so, stainless steel is effective in a wide range of applications over many cycles, making it ideal across many applications.
As mentioned, tungsten is preferable in extremely hot environments that require a long life span, because it heats up quickly but dissipates the heat equally as fast. However, stainless steel can perform at these same levels of extreme heat and at a lower cost, but over less cycles. But that it doesn’t last as long as tungsten under extreme conditions doesn’t rule it out. For instance, if you have an operation that needs a high lifecycle, but it’s not being used as frequently, stainless steel mechanical cable might be perfect. If cycles are less frequent, then it’s possible stainless steel will last as long as the application requires and again, under the same hostile temperatures that gives tungsten all the glory.
So, while tungsten certainly has its benefits, stainless steel mechanical cable is a strong alternative that will provide similar, if not the same, results for most applications.
Another feature that makes stainless steel cable advantageous is that it’s easy to work with, compared to other materials. It is very easily formed, especially in the small-diameter wires inside the cable as well. What’s more, stainless steel mechanical cable is also easy to lay into the appropriate shape when stranded.
When the stainless steel cable is manufactured with a nitinol core, the results possess seemingly magical easy-to-use properties. Known as a memory alloy, nitinol “remembers,” so-to-speak, the shape it was in, allowing the stainless steel cable housing the nitinol core wire to traverse winding and twisting pathways like arteries and other narrow vessels. In such surgical applications, this nitinol core wire is the center of the stranded cable otherwise comprised of stainless steel. So when paired with nitinol, stainless steel cable becomes a flexible, memory-based solution for a wide array of medical devices that use medical cable assemblies, and medical grade stainless steel wire. But as nitinol is not used to comprise the entire stranded cable used in these elegant medical devices, stainless steel remains the best material to work with when bending is critical, but cost is equally important.
If your application requires sensitivity to corrosion, such as weather or water, salt or otherwise, stainless steel cable is an excellent choice. The material’s tolerance of harsh environmental conditions ensures the cable can take a beating over a long period of time by moisture. Comparatively speaking, galvanized steel, another steel cable Sava manufacturers, is vulnerable to applications where corrosive variables are present, like marine or submerged saltwater uses.
If you are looking for a stainless steel cable supplier and manufacturer, our USA based manufacturing team can help you decide which stainless steel wire rope is right for your application. Visit our contact page to get in touch with a Sava team member and inquire about your stainless steel wire rope options!

Depending on the application, wire rope strength is determined on a case-by-case basis. 304 Stainless steel cable, for example, may not suit applications where excessive heat is present. Conversely, tungsten, the strong metal known on earth, will perform exceptionally well under extreme heat. Accordingly, the question isn’t necessarily, “what is the strongest wire rope?”, but rather, “what do you need to accomplish with mechanical cable?”
As discussed, mechanical engineers consider the material, diameter and the quantity of filaments that comprise the wire rope or miniature cable. So, these characteristics, taken in the aggregate, inform the choice of cable and its strength benefits.
304 stainless steel is among the strongest, and most popular materials used in the manufacturing of mechanical cable. While other grades of stainless steel prevail in wire rope and miniature cable making, 304, in the USA in particular, is extremely common.
Stainless steel cable is used in virtually all markets that use mechanical cable to achieve motion. Whether in endoscopic medical instruments, or an air-defense system, or even an implantable hip joint system, stainless steel is a staple. However, tungsten mechanical cable, common in the growing surgical robotics space, has swiftly supplanted stainless steel as the go-to ultrafine cable material.
Empirically, tungsten is the stronger material as compared with stainless steel alternatives. Pound for pound, tungsten, on the periodic table known as wolfram or simply W, is the strongest metal on earth. Thus, again speaking scientifically, it trumps stainless steel. But, for instance, in applications where tungsten properties aren’t as desirable, stainless steel will outperform the presumably stronger alloy. Say, the application is going to be implanted into a human’s hip joint. In this case, the non-corrosive properties of stainless steel, combined with its strength offering, makes it the ideal cable material for this surgical application. Furthermore, choosing stainless steel in this case promises a more cost-effective cable product because tungsten is dramatically more expensive.
However, if the tensile strength required of the application exceeds that of what stainless steel can yield, in a given diameter, say in the appendages of a surgical robot, tungsten is the stronger candidate. Tungsten will not compromise strength along tight turns, where miniature pulleys are required. But, if stainless steel were used to make tight radii, around extremely small pulleys, the material’s springiness may resist a given radius and perhaps compromise flexibility and subsequently lifecycle.
When determining if the cable is strong enough for the application, the filament diameter, along with the cable’s overall outer diameter (OD), contribute as well.
All mechanical cables comprise stranded wires. The larger the diameter of these wires, contributes greatly to the tensile strength achieved. So, in simplest terms, a tungsten surgical robotics cable, made from 201 wires, but at a diameter of .0005”, would not possess the strength of the same cable made from .0007” wires.
And while the difference between a single 7 and a 5 appears marginal, the difference in strength - going from .0005” to .0007” is dramatic. What’s more, adding larger diameter wires, even in constructions with fewer total wires in the cable strand, may yield more strength that more wires, albeit smaller ones, in comparably sized cable. So a 1x7 cable, which comprises seven total wires, at an outer diameter (OD) of .016” will actually yield more tensile strength that a 3x3, which comprises nine total wires, at an OD of .017”.
When two, or even 10 cables, are made from the same alloy, say tungsten, for instance, the quantity of wires, the design of construction of the mechanical cable, as well as the diameter of completed strand, all coalesce to determine strength.
Counterintuitive as it seems, adding more tungsten wires to a miniature cable, for instance, constructed in extremely small diameters, does not necessarily yield the engineer a stronger cable. Because adding ultrafine tungsten wires also adds flexibility to the completed cable, the engineer may accept some strength limitations in favor of significant improvement in malleability. While this is not always so, adding larger, but fewers filaments, provides the engineer a more rigid cable, but one more flexible around tight radii.
Strength of the mechanical cable, as is likely becoming clearer, is therefore not entirely determined by the size of the wires, nor the wire material, but the total sum of these and other variables.
When determining how much weight your mechanical cable can handle, engineers recommend using approximately 60 percent of the cable’s breaking strength. If the mechanical cable breaking strength is 100 pounds, for example, engineers would only use the cable to support 60 lbs. The higher the rated strength of the cable, the more force engineers can apply to it.

This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.

6x36 is a flexible general engineering wire rope readily available in galvanised, ungalvanised and marine grade stainless steel. The wire rope has an equal lay construction (warrington seale) and achieves a superior breaking load to the 6x19 construction range. The construction has been designed to give a flexible rope with a good fatigue life. A 6x36 wire rope is available with either FC (fibre core) or IWRC (independent wire rope core) and is used for a wide range of applications, examples of which are shown below:
 
     
             
             
         8613371530291
8613371530291