wire rope bending stiffness for sale

The use of wire rope, sometimes called steel cable, steel sling rope, or steel rigging wire, is extremely popular in the material handling industry. Wire ropes come in a huge variety of designs and constructions, all suited for different lifting applications. Each type of wire rope has benefits and drawbacks. What all wire ropes have in common however, is that they are made up of steel wires which form individual stands. These strands are laid in a helical pattern around a fiber or steel core to form the rope. Different wire configurations and strand structures offer specific benefits to fit virtually any rigging application. These benefits include:

Selecting the correct wire rope for your rigging application often requires the rigger to make a compromise between different steel cable properties. For example, a wire rope with a small number of large outer wires will be more resistant to crushing, but less resistant to bending fatigue. Conversely, a wire rope with a larger number of small outer wires will be more bending fatigue resistant but less crushing resistant. These differences not only change the way the wire rope is used but they also change the way the wire rope is to be properly cared for.

Here at Tri-State Rigging Equipment we pride ourselves on providing our customers with only the highest quality steel wire ropes, from only the most reputable manufacturers. We can provide you with any rigging product on the market so if you cannot find what you are looking for, or if you don’t know exactly what you need, call or email our sales team to speak with a rigging product specialist.

The wires of a cable rope are the smallest component and are twisted together to form individual strands. Wires can be constructed in a variety of materials and grades, all affecting the properties offered by the cable rope. These materials include:

These different materials and grades affect the cable rope’s strength, bending fatigue resistance, corrosion resistance, wear resistance, and curve of the wire rope.

The strands of the steel cable consist of two or more wires and are laid in a helical pattern around the core. The way strands of steel cable are laid affect the properties offered by the steel cable.

The job of the core inside a steel cable rope is to support the strands and keep them in place relative to each other when bending and when under load. Wire rope cores can be made of a variety of materials including natural fiber, synthetic fiber and steel.

The lubrication of a steel cable rope is extremely important and often overlooked. Wire rope lubricant is added during the manufacturing process and penetrates the wire rope throughout, core included. The purpose of wire rope lubrication is twofold. First, it reduces friction between wires and strands. Second, it provides corrosion resistance to wires, strands and the core. A lack of proper lubrication is very serious and is cause to remove any and all affected wire rope from service.

In a preformed steel wire rope, the wires and strands are manufactured into the helical shape they will take when the wire rope is constructed. Preformed wire rope offers more flexibility and fatigue resistance than non-preformed wire rope. This allows the rigging wire to be uniformly spooled on a drum.

When riggers talk about the lay of a rope, they are talking about two things. One, the way the wires are laid to form a strand (right or left), and two, the way the strands are laid around the wire rope core (regular, lang, or alternate).

Regular Lay: The wires are parallel with the core of the rope. The direction of the wires is opposite to the direction of the strands. Compared to lang laid wire rope, regular lay offers more crushing and rotation resistance, allowing it to spool better on a drum.

Lang Lay: The wires are laid at an angle to the wire rope core. The direction of the wires is the same as the direction of the strands. Compared to other wire rope lays, lang lay offers more bending fatigue and abrasion resistance.

Wire ropes can be constructed using one of the five main strand patterns or a combination of two or more of the basic strand patterns. The wire rope strand pattern refers to the number of wires per layer, the number of layers, and the size of the wires. The strand pattern of a wire rope is a very important determining factor when it comes to choosing the correct wire rope for your specific rigging application. The five basic strand patterns are:

Filler Wire: This strand pattern is constructed by laying two layers of same sized wires around a center. The outer layer will have 2x the amount of wires than the inner layer. In the valleys of the inner wires are small filler wires to fill in the gaps between the inner and outer layers.

Seale: A layer of same sized wires smaller than the center wire is laid around the center. The outer layer consists of the same amount of wires as the inner layer but bigger in size. The outer wires lay in the valleys of the inner wires.

Warrington: This strand pattern consists of two wire layers. A layer of wires is laid around a same sized center wire to form the inner layer. The outer layer is formed by laying wires of alternating sizes, big and small, around the inner layer. The larger outer wires lay in the valleys of the inner wires and the smaller outer wires lay on the crowns of the inner wires.

Combination: A combination wire rope strand pattern is constructed by combining two or more of the strand patterns above to form a single unique strand pattern.

Fiber cores offer riggers more flexibility due to their natural or synthetic polypropylene fibers. This also means, however, that fiber core wire ropes are more susceptible to crushing and are not suitable for high heat environments.

In environments that exceed 180° F, a steel wire rope core should be used. Steel wire rope cores can be either an independent wire rope or an individual wire rope strand. Steel wire rope cores offer greater support for the strands and wires of the steel cable when compared to fiber cores.

The classification of a wire rope is based on the number of strands, as well as the number of wires in each strand. Below is a table of the most common wire rope configurations arranged in specific classifications.

In addition to the general classifications of steel wire rope, here at Tri-State Rigging Equipment, we also offer a wide range of specialty wire rope constructions. These include:

Rotation Resistant Wire Rope: This special construction of steel cable rope is designed to resist twisting and turning while under load. Rotation resistant wire rope must be specially cared for to prevent introducing twist into the rope.

Compacted Strand Wire Rope: This special type of wire rope is constructed using compacted outer strands. The outer strands are run through rollers or a die before the rope is closed. This increases the density of the outer stands and gives the steel cable rope a smoother outer surface. Compacted strand wire ropes offer greater strength and durability than standard round wire rope.

Swaged Wire Rope: Unlike a compacted wire rope, a swaged wire rope is compacted using a swaging machine after the wire rope had been closed. The outer wires of a swaged wire rope can be either compacted or round. Like compacted strand wire rope, swaged wire rope offers more strength and durability when compared to similar sized round wire ropes, however, it offers less bending fatigue resistance.

Plastic Coated Wire Rope: This type of wire rope is coated in a layer of plastic to protect the rope from abrasion, wear, and environmental factors. A drawback to plastic coated wire rope is that the plastic coating covers the strands and wires making it harder to inspect the wire rope.

Plastic Impregnated (PI) Wire Rope: A plastic impregnated wire rope is filled internally with a matrix of plastic that fills the gaps between wires and strands. This plastic filling reduces internal friction and improves bending fatigue resistance.

Plastic Coated or Plastic Filled IWRC Wire Rope: This type of wire rope features an independent wire rope core that is either filled or coated in plastic. This reduces internal friction in the wire rope and gives the wire rope greater bending fatigue resistance.

Tri-State Rigging Equipment is a service provider and distributor for all steel wire rope and steel cable for rigging and lifting, serving clients from coast to coast, Canada, Mexico and especially focused in the states of Missouri, Illinois, Indiana, Iowa, Kansas, Nebraska, Arkansas, Mississippi, Tennessee, Kentucky, South Carolina, Florida, and Oklahoma.

wire rope bending stiffness for sale

More wires per strand than other wire rope provides the flexibility required for repeat bending over drums and pulleys and the stainless steel wire rope withstands outdoor and washdown applications.

wire rope bending stiffness for sale

Galvanized wire rope is categorized by number of strands in its construction. We supply most of them but we concentrate on the two major categories of galvanized (and ungalvanized or bright) wire rope. These “classes” are referred to as 6x19 and 6x36. Within each category of galvanized wire rope there are different “constructions” illustrated in the tables below.

Wire rope, galvanized and ungalvanized is used for many kinds of projects and applications. No matter the application galvanized wire rope must be used properly to insure the safest working conditions. All of our galvanized wire rope is manufactured to meet or exceed Federal Specification RRW-410 and is mill certified.

All of these general purpose wire ropes are available in full reels, custom cut sizes or as part of a custom made wire rope sling. Contact us today for more information.

Galvanized wire rope also comes in different strength categories (IPS and EIPS) and different cores (FC or fiber core and IWRC or independent wire rope core). Relevant data for each is listed in the table below.

wire rope bending stiffness for sale

Rope Services Direct can cater for all your rope wires and webbing needs. We specialize in galvanized steel and stainless steel wire rope and can custom make any assembly to your requirements, so whether you need some fine wire cables for your garden or a robust crane rope, Rope Services Direct can sort you out in no time thanks to our own workshop and industrial pressing facilities.

Wire Rope can be seen all around us, even if we may not always register it! It is most commonly used to lift or support objects but can sometimes just be used for aesthetic purposes and it can have many advantages.

Steel cable is also often used for architectural purposes as it is known for its strength, versatility and aesthetic properties. A common example is suspension bridges.

One of the reasons for the wide range of uses is the different end fittings that can be attached to the rope to enable them to fit to any anchor point and also to adjust to the required tension.

In our workshop we produce many different types of rope assemblies on a daily basis, some of the most common types we produce are trailer ropes, rigging rope, lifting slings, zip wires and many custom assemblies. We often supply many multiples of these to our regular customers; however we are happy to make individual ropes for special tasks.

Rope wire comes in many different constructions, for example, right or left hand lay; wire or fibre core, and the amount or fibres and wires included in the completed rope. It can easily become confusing especially if you add in the non-rotating rope option. Talk to the specialists about your needs to ensure you get the right one for your intended purpose. Using the wrong rope can be disastrous.

Stainless steel wire rope is used in different tasks and areas togalvanized rope, this is because of its differing properties. Due to the fact that stainless steel is aesthetically pleasing to the eye it is popular for home interior projects likebalustrade on stairs, hanging shelves or other decorative features. As stainless is very corrosion resistant its outdoor use is endless, perfect for highlighting garden areas or as decking balustrades.

One of the main advantages is its corrosion resistance which increases as the chromium content is raised, or Molybdenum is added. This means it will not succumb to uniform corrosion and rust so can be used for applications where the rope may get wet, such as in marine environments. Indeed, our ropes are graded AISI 316 so they can be used in marine environments. They also comply with EN12385 and EN10264.

It also resists staining so the aesthetics of the wire rope will not change, making it an attractive choice for many interior design projects for things such as barriers and balustrades in public areas such as shopping malls and public attractions.

At Rope Services Direct, our range is second to none and we can supply you with stainless steel wire rope. If you would like to find out more, please don’t hesitate to contact us on 01384 78004.

We also supply to the water treatment industries where it is constantly utilised in wet conditions. The marine and aviation sectors also these ropes for many tasks. More commercially these ropes are used in architecture and as safety barriers in public areas.

There are many different diameters available. They are commonly found in diameters ranging from 3mm to 76mm. It’s important to choose the right diameter as a 50mm rope would be no use round a pulley with a groove of 10mm.

One of the most important considerations is how you will use it. This is especially true if it is being used in the lifting industry, where if the rope fails then serious injuries can occur. It is of the upmost important that you examine the rope for signs of wear and if in any doubt, do not use. It is also a good idea to have a regular inspection and testing schedule, carried out by a suitably qualified person so that you know the rope is fit for purpose and safe.

Whatever type of rope wire you choose, it is important to be aware of the properties and construction of it so that you are using the correct rope and also enhances your safety knowledge.

In manufacturing it, hundreds of tiny metal filaments are wrapped, twisted and braided together to make the inner wires. These will then turn into strands by twisting together the smaller inner wires / filaments. Twisting strands in various ways around a central core is what makes the wire rope. It is how they are twisted which gives them their differing properties e.g. non-rotating, low stretch, higher breaking strength. There are also different constructions depending on left and right hand lay.

Note: The numbers used when describing a rope denote the number of wires and strands within it. For example, a 6 x 36 wire rope has 6 strands made of 36 wires. Likewise, a 7 x 19 has 7 strands with 19 wires. Strength and/or flexibility is provided when the strands are twisted around an inner core which can be steel wire or fibre core.

Due to their construction, it’s important to identify any broken wires or strands which could have severe consequences if used without inspection and testing. However, if a few strands break during a specific lift, it is more likely the intact wires and strands will hold the load whilst it is safely lowered – then the rope can be destroyed. It is this property which makes them safer than chains because if a chain link breaks then the load will likely fall.

There are many factors which can affect them, including bad coiling using pulleys and sheaves etc., grooves that are too big or too small, excessive pulling angles or twisting the rope in the opposite way to its ‘lay construction’, dirt ingress and poor lubrication to name but a few.

Handling it can impart numerous hazards. From metal splinters when cutting the rope to acute bruising if the rope abruptly recoils so vital safety strategies must be adapted when handling the product.

Before unreeling – make sure the floor space is clear so that the rope can be pulled off the reel in a straight line safely. The rope must always be pulled from the top, not the bottom of the reel and it should be pulled in a straight line which should minimise the danger of bending or kinking the wires, which will permanently damage it and make it unusable.

If it"s in a coil rather than a reel, then the only safe way to remove the rope is to carefully roll the coil in a similar way to pushing a child’s loop, again ensuring the surrounding area is clear of debris.

Equally, it can be damaged when it is being reeled back up again after use. You need to keep it wound tightly and wind it the same way the wire has been wound out which will avoid reverse bending of the rope. You should also ensure the wire is wound over the top of the reel to ensure it’s even and to avoid the bottom layers crushing.

Storage should be ideally on a rack, stand or pallet and not on the ground. It is also important to store the rope in a clean, cool and dry environment as moisture or condensation can develop amid the wires and begin the decay process rendering the rope unusable – waterproof containers and breathable tarpaulin like bags should ideally be used if the rope is stored outside.

Wire ropes are lubricated during manufacture but further lubrication at frequent intervals should be done, especially if it’s being stored for long periods of time. This will help to shield it from moisture ingress.

You should try to keep the rope elevated, off the floor to allow good air circulation. Reduce the risk of the rope becoming contaminated with dirt, dust and other particles that may affect it.

Storing rope should be done in such a way that it will not be at risk from any accidental damage. Either whilst in storage or whilst removing the rope from the storage area.

Overall, always remember manufacturers guidelines and instructions should be followed at all times to keep safe and prolong the life of the rope. If you are unsure if a rope is fit for purpose, always get it inspected and load tested which ought to be done regularly anyway.

wire rope bending stiffness for sale

Bethlehem Structural Strand is an arrangement of wires laid helically around a center wire to produce a symmetrical cross section. Structural strand is used as a load-carrying tension member where great flexibility and bending are not major requirements. For any given diameter, wire strand is the least flexible of steel cables. Structural strand provides a high strength-to-weight ratio, a high modulus of elasticity and a small diameter-per-unit strength. These are the features that permit strand to adapt so successfully to structural applications. WW manufactures Bethlehem Structural Strand to meet ASTM Specification A586, and we have the capability to manufacture strand as large as 5-1/2"diameter. Refer to Table 1 for structural strand data.

Bethlehem Structural Wire Rope consists of six strands made from zinc-coated wire with strands laid helically around a core, such as another strand or smaller wire rope. Structural wire rope provides greater flexibility when compared with coarse strand constructions and is generally the structural cable of choice where bending ability is an important requirement, such as forming flemish eye ends (drop terminals). WW manufactures Bethlehem Structural Wire Rope to meet ASTM Specification A603, and has the capability to manufacture wire rope as large as 7"diameter. Refer to Table 2 for Bethlehem Structural Wire Rope data.

Wirerope Works, Inc. offers SS-265™, a high strength structural strand designed specifically for use in tower applications. Compared with standard structural strand, SS-265 offers an increase in minimum breaking force of 15% above the values for strand manufactured to specification ASTM-A586. Using SS-265 also offers these advantages:

To ensure quality of all Bethlehem Wire Rope and Strand products, WW utilizes Statistical Process Controls (SPC). In doing so, we are able to test and certify the following:

wire rope bending stiffness for sale

The paper concerns the different forms of rope bending stiffness. The characteristic of elastic stiffness and "tribo-stiffness" are discussed. A survey is presented of the methods used to determine these two forms of bending stiffness. The influence of the type of core on bending stiffness is also addressed. Stiffness data for several types of wire ropes are presented.

wire rope bending stiffness for sale

In selecting the right steel wire rope, it is important to determine how important the various properties are in relation to the application and then to assign priorities to these. It is also important to be aware of the relevant standards and regulations. If you are in any doubt, please contact our sales consultants or our Technical Department.

The tensile strength of the steel wire rope depends on the rope’s dimensions, the tensile strength of the wires and the construction. The minimum guaranteed tensile strength for the different kinds of rope is shown in the Randers Reb product catalogue.

The design of the steel wire rope does not significantly affect the tensile strength (up to approx. 5%). A change of core from fibre to steel makes slightly more difference (approx. 10%). The greatest change is achieved by changing the dimensions, usage of Compacted steel wire ropes or tensile strength of the wires (see also fig. 28).

It is often required that the steel wire rope must have a specific SWL value (Safe Working Load), also known as a WLL value (Working Load Limit). This means the steel wire rope’s tensile strength divided by the safety factor required for the relevant application.

Steel wire ropes with thick outer wires (e.g. 6x7 Standard or 6x19 Seale) provide good abrasion resistance. Lang lay ropes provide better abrasion resistance than regular lay steel wire ropes (see also fig. 28). Abrasion resistance can also be increased by using wires with greater tensile strength.

The greater the number of wires in the strand, the greater the bending fatique resistance and flexibility. Lang lay ropes provide better bending fatique resistance than regular lay steel wire ropes. Bending fatique resistance can also be increased by using pre-formed steel wire ropes (see also fig. 28).

Galvanised and rustproof wires provide excellent protection against corrosion. Lubrication with special types of grease or oil will also increase resistance to corrosion. If the steel wire rope is subjected to significant corrosive influences, it is recommended that strands with thick outer wires are used.

Steel wire ropes with fewer wires (e.g. 1x7 Standard and 1x19 Standard) are subject to the least elongation (have the greatest elasticity modulus). This type of steel wire rope is ideally suited for guy ropes, but is not suitable to be run over sheaves/blocks. If only a small degree of elongation when running over sheaves is required, 6x7 or 6x19 steel wire rope should be used, in each case with a steel core or with certain special constructions. For larger dimensions, 6x36 steel wire rope with a steel core can also be used (see also Elongation and Pre-stretching, page 8-28).

Standard 6-lay and 8-lay steel wire ropes will rotate when they hang free and carry a load. Regular lay steel wire rope provides greater resistance to rotation than lang lay steel wire rope. A steel wire rope with a steel core rotates less than a steel wire rope with a fibre core. The type of rope that provides greatest resistance to rotation is, as the name suggests, low-rotation and rotation-resistant steel wire rope (special constructions, see also ”Low-Rotation and Rotation-Resistant Steel Wire Rope”, page 8-10).

A steel core provides better support for the strands than a fibre core, which is why the risk of flattening is less in a steel wire rope with a steel core. Strands with fewer, thicker wires have greater resistance to flattening/crushing. Also, a 6-lay steel wire rope has greater crushing resistance than an 8-lay rope (see also fig. 28).

Vibrations, from wherever they might come, send shock waves through the steel wire rope, which will be absorbed by the steel wire rope at some point, and in some cases they may cause localised destruction of the steel wire rope (not necessarily on the outside). This may, for example, be at places where the steel wire rope comes into contact with a sheaf/block, or enters the drum, and by the end terminals. In general, those steel wire ropes with the greatest flexibility also have the greatest vibration resistance.

Changes in the tension of a steel wire rope, depending on the size and frequency, will reduce the rope’s life expectancy. In general, steel wire ropes with the greatest flexibility can cope better with intermittent loading. Great care should be taken in the use of end terminals or fittings, as their pulsation resistance is equally as important as the selection of the right steel wire rope.

Lang lay steel wire ropes are the ones most suited to running over sheaves and are the most durable, but if they are to be used, three things must be observed:

The reason for Lang lay steel wire ropes’ excellent qualities of abrasion resistance and pliability is that the wires are affected/loaded in a different way and have a larger load-bearing surface than a regular lay steel wire rope (see fig. 29). Note that the largest wearing surface is on the Lang lay steel wire rope.

wire rope bending stiffness for sale

The 3 x 19 (3 strands, 19 wires per strand) galvanized jacketed wire rope construction with swaged socket terminations is the accepted standard for underwater mooring installations.

Developed at the Woods Hole Oceanographic Institution, this high performance rope is torque resistant to prevent rotation and unwinding, and provides superior handling control.

Mooring performance is also improved as the wire rope"s low drag coefficient allows better depth control of the top buoy and in-line mounted instrumentation.

wire rope bending stiffness for sale

Wire rope is a collection of metal strands that have been twisted and wound to form the shape of a helix with the purpose of supporting and lifting heavy loads and performing tasks that are too rigorous for standard wire. On shipping docks, rigging, and load bearing equipment, wire rope is attached to swivels, shackles, or hooks to lift a load in a controlled, even, and efficient manner.

The uses for wire rope include adding support to suspension bridges, lifting elevators, and serving as additional reinforcement for towers. The design of wire rope, with its multiple strands wrapped around a stable core, provides strength, flexibility, and ease of handling for applications that have bending stress.

Individual designs of wire rope involve different materials, wire, and strand configurations as a means for supporting and assisting in the completion of lifting or supportive applications.

The term wire rope encompasses a wide range of mechanical tools that are made to perform heavy and extreme lifting jobs. Wire rope is a complicated and complex tool with multiple moving parts capable of moving in unison. A 6 by 25 wire rope has 150 outer strands that move as one in an intricate pattern supported by a flexible core.

An essential part of the design of wire rope is the required clearance between the strands to give each stand the freedom to move and adjust when the rope bends. It is this unique feature that differentiates wire rope from solid wire and other forms of cable.

The basic element of wire rope is wire that is used to configure, shape, and form the rope. Typically, steel, stainless steel, and galvanized wires are the first choice with aluminum, nickel alloy, bronze, copper, and titanium being second possibilities. The choice of wire is dependent on the type of work the wire is going to be used to perform with strength, flexibility, and abrasion resistance being the major determining factors.

Stainless steel wire rope has all of the basic qualities of galvanized and general wire rope with the added benefits of corrosion and rust resistance; this makes it the ideal choice for harsh and stressful conditions.

Steel wire rope is classified as general purpose wire rope and comes in a wide variety of sizes, diameters, and strengths. It is the most common type of wire rope and is used for several industrial, manufacturing, and construction applications.

Before going further into the discussion of how wire rope is made, it is important to understand the numbers used to describe each type. All wire ropes have a core around which wires are wound. The various styles of cores vary according to the construction and design of the requirements of the wire rope that is being produced.

Wire rope is classified by the number of strands it has as well as the number of wires in each strand. The most common classification is a seven wire rope that has one strand in the center and six around its circumference. This type of wire rope is lightweight with a very simple construction. The majority of wire ropes are more complex and intricate with multiple intertwining strands and wires.

What must be understood about wire rope is that it has a complicated configuration. It is actually wires wrapped around wires to form bundles that are wrapped around other bundles. In the case of a seven wire wire rope, the core has bundles of wires wound around it; this can be seen in the image below.

The first step in wire rope creation is the production of wire strands where wires are wound around a single core wire. The number of wires included in the strand is dependent on the specified strength, flexibility, and size requirements of the rope. Once the strand is completed, it is straightened before being moved to wire rope construction.

Like wire ropes, strands have different patterns; patterns are the arrangements of the wires and their diameters. Though most strands have a core, there are strand patterns that have three or four wires without a core that are referred to as centerless strands. The design of each strand pattern is meant to enhance the strength of the wire rope and improve its performance.

For a multiple layer strand, the layers of wire are placed over one another in successive order. The placement of the wires on top of each other must be such that they fit smoothly and evenly.

The Warrington pattern is like the multiple layer pattern with one variation. Like the multiple layer pattern, the inner wires and the core are the same and have the same diameter. The difference is in the outer layer, which has wires of alternating sizes of large and small with larger diameter wires laying in the valleys of the inner wires.

All of the wires of a filler pattern are the same size. What makes this pattern unique is the insertion of small wires in the valleys of the inner wires to fill the gap between the inner and outer layer.

The flattened strand pattern is also known as the triangular strand, which can be triangular or oval. Three round wires form the core. The outer flattened surface has a greater sectional metallic area; this makes this pattern stronger and longer lasting.

The core of a wire rope runs through the center of the rope and can be composed of a variety of materials, which include synthetic fibers, natural fibers, a single strand, or another wire rope. The core supports the wound strands, helps maintain their position, is an effective lubricant carrier, and provides support.

Wire ropes with fiber cores are restricted to light loads and are not used in severe, harsh, or stressful conditions. Polypropylene and nylon are types of synthetic fiber cores and can be used in conditions where there is exposure to chemicals.

Cores made of wire are classified as independent wire cores. The core of a wire rope with a wire core is actually a wire rope with another wire rope serving as the core, as can be seen in the diagram below. These types of wire ropes are used where the rope will be exposed to exceptional resistance and crushing.

A strand, or wire strand core, is exactly like the rest of the strands of the wire rope with wires of the same diameter and size as the other strands.

The choice of core and creation of the strands are the simplest yet most essential parts of wire rope construction. Wire rope lays, the method used to wind the strands, is more complex and involves several choices.

Lay is a term used to describe three of the main characteristics of wire rope: direction, relationship, and linear distance. The strands can be wrapped around the core going right or left. Right or left refers to the direction of the strands wrapped around the core and the wires within the strands. The linear distance is how far a strand moves when it is making a revolution around the core.

In a regular lay, the wires and strands spiral in opposite directions. With a right hand regular lay, the wires spiral to the left and the strands to the right. In the left hand regular lay, the wires spiral to the right and the strands to the left. This type of lay is easy to handle but wears out quickly because the crown wires are in contact with the bearing surface.

In the Lang, or Albert, lay, the wires and strands spiral in the same direction with right hand lay being the most common. The wires in a Lang lay appear to run parallel to the center line of the rope. The difficulty with Lang lay wire ropes is handling since they tend to kink, twist, and crush.

Wire rope is an exceptionally strong tool that has been configured and designed to withstand the stress placed upon it through rigorous and continual use. In most applications, wire rope has to endure extreme stress and strain. It is for these reasons that coatings have been developed to protect wire rope from abrasions, corrosion, UV rays, and harmful and damaging chemicals.

Three main types of coatings are used to protect wire rope: polyvinyl chloride (PVC), polypropylene, and nylon. Of the three types, PVC is the most popular.

In cases where there are severe and hazardous working conditions, polypropylene is the recommended choice since it is capable of protecting wire rope against corrosion and chemical leaching. Additionally, it is resistant to impact damage and abrasion. Polypropylene is a tough, rigid, and crystalline thermoplastic that is made from a propene monomer and is resilient as well as inexpensive.

Braided wires are electrical conductors made up of small wires that are braided together to form a round tubular braid. The braiding and configuration of braided wire makes them very sturdy such that they do not break when flexed or bent. Braided wires are widely used as conductors, are commonly made from copper due to copper"s exceptional conductivity, and can be bare or coated depending on the application.

Braided wire can be round and tubular or flat. Round tubular braids fit in most spaces where flat braided wire will not. Flat braided wire begins as round braided wire which is flattened on a capstan. They are exceptionally strong and designed for medical and aircraft applications.

Metals used to make wire rope are various grades of stainless steel, bright steel, and galvanized steel. Though the majority of wire rope manufacturers use these three metals, other metals such as copper, aluminum, bronze, and monel are also used on a limited basis.

The most important aspect of wire rope is the wire and the metal from which it is made. The strength and resilience of wire rope is highly dependent on the quality of metal used to make it, and these are essential factors to be considered when purchasing it.

Bright steel wire does not have a coating and is rotation resistant, (designed to not rotate when lifting a load). It is drawn from hot rolled rods that are put through a die to match its specific dimensional tolerances, mechanical properties, and finish. Bright wire is used as a single line in conditions that require a rope that will resist cabling.

Galvanized steel has a zinc coating for corrosion resistance and has the same strength and durability as bright steel. Environmental conditions determine the use of galvanized steel. In mildly severe and slightly harsh conditions, galvanized steel wire is an economical replacement for stainless steel.

In the manufacturing process, galvanized wire goes through the process of galvanization, a method of coating steel wire with a protective and rust resistant metal. Galvanized wire is exceptionally strong, rust resistant, and flexible enough to meet the needs of a variety of applications.

Wire rope made from copper is mostly used for electrical applications due to its exceptional electrical characteristics. The benefits of copper wire rope are its durability, flexibility, and resilience compared to standard copper wire. The strength of copper wire rope is seen in its use in applications where there are vibrations and shaking.

The wire rope lubrication process begins during its fabrication and continues during its use. Lubrication of wire rope is designed to lower the amount of friction it endures and provide corrosion protection. Continued lubrication increases the lifespan of wire rope by preventing it from drying up, rusting, and breaking.

The types of lubricants for wire rope are penetrating or coating with coatings covering and sealing the outside of the rope. Penetrating lubricants go deep into the rope and seep into the core where they evaporate to form a thick coating or film.

The application of the lubricant is dependent on the type of core. Fiber cores absorb the lubricant and serve as a reservoir that retains the lubricant for an extended period of time. With metal cores, the lubricant is applied as the wire is twisted into strands to give complete saturation and coverage of the wires.

There are several types of greases that are used as wire rope lubricating agents and are made up of oil, a thickener, and additives. The essential components are the base oil and additives, which influence the behavior of the grease. The thickener holds the base oil and additives together. The amount of base oil in a grease is between 70% and 95% with an additive of 10%.

The additive in grease enhances the positive properties of the oil and suppresses the negative properties. Common additives are oxidation and rust inhibitors as well as pressure, wear, and friction reducing agents.

Of the many choices for lubricants, vegetable oil is the easiest to use and penetrates the deepest. The design of the additives for vegetable oils gives them the necessary qualities required to penetrate deep into a wire rope. The exceptional penetration provides protection against wear and corrosion. Since vegetable oil is a fluid, it helps in washing the wire rope to remove external abrasive contaminants.

Wire rope is widely used in machines, structures, and varied lifting applications. Its type, size, and requirements are determined by how it will be used. Regardless of its use, wire rope guarantees exceptional strength and provides high quality and excellent performance.

The lifting of heavy loads for centuries involved the use of hemp rope or chains, neither of which was a guaranteed or substantial method. Early in the 18th Century, between 1824 and 1838, Wilhelm Albert, a German mining engineer, combined the twisting of hemp and strength of chains to create today‘s wire rope.

The most common use of wire rope is as a part of a crane hoist wherein it is attached to the hook of the hoist and wrapped around a grooved drum. The tensile strength and durability of wire rope makes an ideal tool for lifting and keeping loads secure. Though it is used in several industries, it is very popular for production environments wherein materials need to be lifted quickly and efficiently.

In addition to its many lifting applications, the strength and stability of wire rope is useful in other applications, especially in the aerospace industry. Pedals, levers, and connectors in the cockpit of an aircraft are connected with wire rope. The wires provide for the passage of power between systems and mechanisms; this allows control of the aircraft. Wire rope is used to control propeller pitch, cowl flaps, and the throttle. It also assists in lowering and minimizing vibrations.

Tires are reinforced with wire rope to increase their durability and strength. All automotive production environments make use of wire ropes for supplying materials, moving heaving loads, and positioning equipment. Wire rope can be found in the production of steering wheels, cables, exhausts, springs, sunroofs, doors, and seating components.

As surprising as it may seem, the place that wire rope has the greatest use is in the home, where its strength, long life, endurance, and resilience provide guaranteed protection and performance. The main reason wire ropes are so popular for home use is cost.

Inexpensive, easy to obtain, easy to install, and easy to maintain, wire ropes provide an additional method for performing home repairs and structural support. Their excellent flexibility and sturdiness combined with their invisibility has made wire rope an ideal solution to several home maintenance issues. It is used to support staircases, fences, decks, and hang plants.

The search and production of crude oil has relied on wire ropes for centuries to lift drill bits, insert shafts, and support oil rigs on land and the water. When equipment, machinery, and tools have to be lowered into the depths of the earth and sea, wire ropes are the tool that the oil industry relies on to do the job.

Many of the tasks of oil production require tools that are capable of enduring severe and harsh conditions. Wire ropes have to withstand enormous pressure, extraordinary stress, and a wide range of temperatures. The use of wire rope includes maintaining oil rig stability and moorings for offshore rigs.

Wire rope has long been a standard component for the transportation industry, from the cable cars of San Francisco to the lift chairs for ski resorts. For many years, cable cars have relied on heavy duty cables (wire ropes) to be pulled by a central motor from multiple locations. It is a method of transportation that has existed for centuries.

In Europe, funiculars use cables that hang from a support to move cars up and down a mountain with cables moving in opposite directions. The word funicular is from the French word funiculaire, meaning railway by cable. The terms wire rope and cable are used interchangeably when discussed by professionals. The first part of funicular, or funiculaire, is from the Latin word "funis," meaning rope.

The major use for wire ropes in the food and beverage industries is as a means for lifting and moving heavy loads. Wine barrels and containers full of ingredients are lifted and placed through use of cranes and wire ropes. They are also part of conveyor systems that move products from one station to another.

From the beginnings of amusement rides up to the present, wire ropes have been an essential part of attraction construction and safety. They pull cars on roller coasters, hold cabins that swing, and move carriages through haunted houses. The main concern of amusement parks is safety. The strength, stability, and guaranteed performance of wire ropes ensures that people who attend amusement parks will have a good time and stay safe.

The rigging used to complete the stunts in modern movies depends on wire rope for safety. Much like in amusement rides, wire ropes protect performers from injury and harm as they hang above a scene or carry out an impossible move.

The live theater industry uses wire ropes to raise and lower curtains, support overhead rigging, and hold backdrops and scenery pieces. During a production, rapid and efficient movement is a necessity that is facilitated by the use of wire ropes.

Wire rope is a tool that we tend to envision as indestructible, unable to succumb to any form of damage. Though it is exceptionally sturdy and strong as well as capable of enduring constant use, it is just as susceptible to breakdown as any other tool.

To avoid serious harm and damage, wire ropes should be scheduled for regular inspections. There are situations that can damage or break a wire rope; these should be understood prior to the problem arising.

Guide rollers have the potential to damage and cause abrasions on wire rope if they become rough and uneven. Of the various elements of a crane and lift, guide rollers have the greatest contact with the mechanism‘s wire rope. Regular inspection of guide rollers will ensure they are not damaging the rope or causing abrasions.

Bending is normally a regular part of wire rope usage; this occurs repetitively as the rope passes through a sheave. As a wire rope traverses the sheave, it is continually bent and develops cracks or breaks. The cracking and breaking are exacerbated by movement on and off the groove of the drum. Normally, the breakage happens on the surface and is visible. Once it appears, it accelerates to the core of the rope.

A bird cage is caused by a sudden release of tension and a rebound of the rope. This type of break requires that the rope be replaced since the place of the break will not return to its normal condition.

Wire ropes are multi-layered; this makes them flexible and torque balanced. The layering inside and outside creates flexibility and wear resistance. Relative motion between the wires causes wear over time, which leads to internal breakage. The detection of these breaks can be indicated by an electromagnetic inspection that calculates the diameter of the rope.

Kinked wire rope is caused by pulling a loop on a slack line during installation or operation; this causes a distortion in the strands and wires. This is a serious condition that necessitates rope replacement.

Corrosion damage is the most difficult cause of wire rope damage to identify, which makes it the most dangerous. The main reason for corrosion is poor lubrication that can be seen in the pitted surface of the rope.

The types of damage and problems listed here are only a small portion of the problems that can be caused if a wire rope is not regularly lubricated and inspected. Various regulatory agencies require that wire ropes be inspected weekly or monthly and provide a list of factors to examine.

As with any type of heavy duty equipment, wire rope is required to adhere to a set of regulations or standards that monitor and control its use for safety and quality reasons. The two organizations that provide guidelines for wire rope use are the American Society of Mechanical Engineers (ASME) and the Occupational Safety and Health Administration (OSHA).

All wire rope manufacturers and users closely follow the standards and guidelines established by OSHA and ASME. In the majority of cases, they will identify the specific standards they are following in regard to their products.

OSHA‘s regulations regarding wire rope fall under sections 1910, 1915, and 1926, with the majority of the stipulations listed in 1926 under material handling, storage, use, and disposal.

"Running rope in service shall be visually inspected daily, unless a qualified person determines it should be performed more frequently. The visual inspection shall consist of observation of all rope that can reasonably be expected to be in use during the day‘s operations. The inspector should focus on discovering gross damage that may be an immediate hazard."

"The inspection frequency shall be based on such factors as rope life on the particular installation or similar installations, severity of environment, percentage of capacity lifts, frequency rates of operation, and exposure to shock loads. Inspections need not be at equal calendar intervals and should be more frequent as the rope approaches the end of its useful life. Close visual inspection of the entire rope length shall be made to evaluate inspection and removal criteria."

ASTM A1023 covers the requirements for steel wire ropes with specifications for various grades and constructions from ¼ in. (6 mm) to 31/2 in. (89 mm) manufactured from uncoated or metallic coated wire. Included are cord products from 1/32 in. (0.8 mm) to 3/8 in. (10 mm) made from metallic coated wire.

United States Federal Spec RR W 410 covers wire ropes and wire seizing strands but does not include all types, classes, constructions, and sizes of wire rope and strands that are available. The purpose of Spec RR W 410 is to cover more common types, classes, constructions, and sizes suitable for federal government use.

Wire rope and wire seizing strand covered by United States Federal Spec RR W 410 are intended for use in general hauling, hoisting, lifting, transporting, well drilling, in passenger and freight elevators, and for marine mooring, towing, trawling, and similar work, none of which are for use with aircraft.

API 9A lists the minimum standards required for use of wire rope for the petroleum and natural gas industries. The types of applications include tubing lines, rod hanger lines, sand lines, cable-tool drilling and clean out lines, cable tool casing lines, rotary drilling lines, winch lines, horse head pumping unit lines, torpedo lines, mast-raising lines, guideline tensioner lines, riser tensioner lines, and mooring and anchor lines. Well serving wire ropes such as lifting slings and well measuring are also included in API 9A.

Wire rope is a collection of metal strands that have been twisted and wound to form the shape of a helix with the purpose of supporting and lifting heavy loads and performing tasks that are too rigorous for standard wire.

Individual designs of wire rope involve different materials, wire, and strand configurations as a means for supporting and assisting in the completion of a lifting or supportive task.

wire rope bending stiffness for sale

Redundancy is very important for safety-relevant applications. If one of individual elements is broken, other elements will take on its function and remain in operation taking advantages of interaction between wires.

Detectability means the capacity to determine the end of service life and the degree of bending fatigue of running wires. As fatigue increase, more external wire breaks so that it is possible to estimate by visible inspection before the condition becoming dangerous.

Normally, elevator wire ropes feature parallel strand construction for reducing incidence of abrasion compared with ropes with cross laid construction. Meanwhile, they have a high fatigue bending life and less wear to running sheaves.

Fiber core, made of natural or synthetic fibers, is widely used in ropes and makes elevator ropes easier to adjust up to the relevant groove shape. Meanwhile, fiber core provides excellent resistance against contact pressure and long-term support for elevator wire ropes.

Independent wire rope core effectively increases the metallic cross-section of elevator wire ropes and reduce tensile stress in individual wires. Meanwhile, steel cores low the elongation of elevator wire ropes under same loads compared with fiber core.