what causes <a href='https://www.ruidapetroleum.com/product/47'>hydraulic</a> <a href='https://www.ruidapetroleum.com/product/49'>pump</a> failure factory

When a hydraulic system fails, finding the source of the problem can be a challenge. Though hydraulic systems primarily consist of a sump, motor, pump, valves, actuators and hydraulic fluid, any of these parts could be the source of failure. That"s not to mention the additional potential for failure through human error and faulty maintenance practices. If your system fails, you need to know why it fails, how to find the failure and how to keep it running smoothly in the future, all while keeping personnel safe.

It"s often easy to tell when a hydraulic system fails — symptoms can include high temperatures, low pressure readings and slow or erratic operation are glaring problems. But what are the most common causes of hydraulic systems failures? We can trace most hydraulic issues back to a few common causes, listed below.

Air and water contamination are the leading causes of hydraulic failure, accounting for 80 to 90% of hydraulic failures. Faulty pumps, system breaches or temperature issues often cause both types of contamination.

Air contamination is the entrance of air into a hydraulic system and consists of two types — aeration and cavitation. Both can cause severe damage to the hydraulic system over time by wearing down the pump and surrounding components, contaminating hydraulic fluids and even overheating the system. Although we are not pump manufacturers, we know it is essential to be aware of these types of contamination and how to identify their symptoms.

Cavitation:Hydraulic oil consists of about 9% dissolved air, which the pump can pull out and implode, causing pump problems and damage to the pump and to other components in a hydraulic system over time. You can identify this problem if your hydraulic pump is making a whining noise.

Aeration:Aeration occurs when air enters the pump cavity from an outside source. Usually, loose connections or leaks in the system cause this issue. Aeration also creates a sound when the pump is running, which sounds like knocking.

Water contamination is also a common problem in hydraulic systems, often caused by system leaks or condensation due to temperature changes. Water can degrade hydraulic components over time through oxidation and freeze damage. A milky appearance in hydraulic fluid can help you identify water contamination.

Fluid oxidization: Extreme heat can cause hydraulic fluid to oxidize and thicken. This fluid thickening can cause buildups in the system that restrict flow, but can also further reduce the ability of the system to dissipate heat.

Fluid thickening:Low temperatures increase the viscosity of hydraulic oil, making it harder for the oil to reach the pump. Putting systems under load before the oil reaches 70 degrees or more can damage the system through cavitation.

Fluid levels and quality can affect hydraulic system performance. Low fluid levels and inappropriate filtration can result in air contamination, while fluid contamination can cause temperature problems. Leaks can further exacerbate both issues.

Using the correct type of fluid is also essential, as certain hydraulic oils are compatible with specific applications. There are even oil options that offer higher resistance to temperature-related problems. Some oils even offer anti-wear and anti-foam additives to help prevent against wear and air contamination, respectively.

Human error is the base cause of many hydraulic system problems. Some of the most common errors that may result in your hydraulic pump not building pressure include the following.

Faulty installations: Improper installation of any component in a hydraulic system can result in severe errors. For example, the pump shaft may be rotating in the wrong direction, negatively affecting pressure buildup, or pipes may be incorrectly fitted, resulting in leaks.

Incompatible parts: An inexperienced installer may put mismatched components together, resulting in functional failures. For example, a pump may have a motor that runs beyond its maximum drive speed.

Improper maintenance or usage:Using systems outside their operational capabilities or failing to perform regular maintenance are some of the most common causes of hydraulic system damage, but are easy to rectify through updated maintenance policies and training.

The sources of system failures can be tricky to identify, but some hydraulic troubleshooting steps can help narrow down the options. So how do you troubleshoot a hydraulic system? Here are some of the fundamentals.

Check the pump: Take the pump assembly apart and assess all parts to ensure that they are functional and installed correctly. The most common problem areas include the pump shaft, coupling and filter.

Check the fluids:Check the level, color and viscosity of the hydraulic oil to ensure it meets specifications and has not become contaminated. Low hydraulic fluid symptoms include pressure or power loss. When in doubt, drain and replace the fluids.

Check the seals: Look for evidence of any fluid leakage around your hydraulic system"s seals, especially the shaft seal. Leakage can indicate worn-out or blown seals that can cause malfunctions with pumps, motors and control valves.

Check the filters: Ensure filters are clear of plugs and blockages. Common clogged hydraulic filter symptoms include sluggish operation and noisy operation.

Run the system: When you have completed all these essential checks, turn on the system and monitor it for pressure and temperature fluctuations, as well as abnormal sounds. If all seems well, check your pressure sensor for potential failure.

Hydraulic system issues are inevitable at some point. However, simple steps can help you avoid these issues and increase the longevity of your hydraulic system. On top of effective troubleshooting, you can prevent hydraulic system failure by taking the following steps.

Follow specifications: We can trace the most common hydraulic system issues back to fundamental system problems like incompatible or improperly installed parts. For this reason, it"s essential to always double-check specifications to ensure your purchased parts can work together seamlessly.

Consult with professionals: When purchasing new equipment, consult with industry peers and professionals to discover what they recommend. While manufacturers can tell you how a product should work, industry professionals can provide concrete examples of how well the equipment works for their industry.

On top of these steps, look into hydraulic system products that are specifically designed to help prevent failures. One such product is Bear-Loc® by York Precision. This innovative locking actuator is a safe, reliable feature for hydraulic components, automatically locking when sleeve pressure is relieved, preventing movement if a hydraulic system fails. This way, your can protect your personnel from injuries related to hydraulic failures. Even better, York Precision offers in-house design, engineering expertise and machining and manufacturing capabilities to produce a hydraulic locking device that meets your exact specifications.

Regularly review hydraulic system maintenance, always following manufacturer recommendations and industry best practices. Also, consider the storage condition, external influences, working pressure and usage frequency of your system to tailor your maintenance schedule and procedures.

Daily tasks:Take care of a few simple daily checks to avoid issues. For example, personnel should check the oil levels, hoses and connections and listen to the pump for abnormal sounds.

Routine tasks:Plan and execute a weekly and monthly maintenance routine, checking for the most common failure sources given your system"s working conditions. These should include components, filters and the condition of the oil.

Be mindful of location:Do not stand at endpoints while working on hydraulic systems. This safety measure can help prevent loss of limb and life, as there is a lot of pressure built up in these areas that can release and result in life-threatening situations.

The best safety measures, however, are to perform excellent maintenance and use high-quality parts. If you"re looking for a quality hydraulic component manufacturer, York Precision Machining & Hydraulics can help.

what causes <a href='https://www.ruidapetroleum.com/product/47'>hydraulic</a> <a href='https://www.ruidapetroleum.com/product/49'>pump</a> failure factory

Hydraulic pumps are at the core of many essential factory operations. Unfortunately, there are numerous pitfalls to plan for, mitigate, and overcome to keep them running. Keeping up on routine maintenance is important, but the best way factory techs can avail themselves of costly, frustrating breakdowns is to understand the various catalysts for hydraulic pump failure.

The simplest way to identify the cause of pump failure is to thoroughly inspect and dissect the aftermath of the problem. In most cases, the cause of failure will be evident by the nature of the catalyst(s). Here are eight of the most common problems, some of their defining features, and how they ultimately come to fruition.

1. Fluid contamination is one of the biggest causes of hydraulic pump damage and involves debris mixing with the liquid. This debris causes friction, leading to extenuated wear on the pump itself. The result is inefficiency, culminating in malfunction.

2. Fluid viscosity issues occur when the hydraulic fluid within a pump breaks down over time. Viscosity that’s too high leads to cavitation (another catalyst for damage). Subsequently, if a tech changes and replaces fluid with a viscosity that’s too low, heat and friction become concerns.

3. Over-pressurization occurs because of excessive load on the pump itself, resulting in red-line operation that’s both unsafe and damaging. Hydraulic pumps operating under high duress for extended periods of time will likely experience component wear and premature failure, usually in spectacular fashion.

4. Excess heat can be a product of poor fluid viscosity or environmental factors. This issue is rarely a singular catalyst for pump breakdown, but it exacerbates other factors or masks other issues, such as fluid contamination.

5. Implosion invariably results in extreme failure for hydraulic pumps and is a major safety hazard. Implosion occurs when air bubbles within a hydraulic pump collapse, causing an overload of pressure to the pump that generates an intense shock.

6. Aeration occurs when hydraulic fluid traps air bubbles. The pump subjects the bubbles to pressure, causing high heat and over-pressurization when the bubbles collapse. Aeration at extreme levels leads to implosion.

7. Pump aeration pertains to air not in the hydraulic fluid, but air introduced through unsealed joints or shafts. This air quickly causes pressure instability affecting crucial parts of the pump. This can quickly lead to breakdowns — generally marked by a whine or other high-pitched sound.

8. Cavitation is a symptom of uncontrolled pump speeds, which fail to allow hydraulic fluid to completely fill the pump. It results in destabilized pressure, heat, and excess wear. Cavitation is often marked by the same type of whine or squeal as pump aeration.

Because the factors causing each of these problems differ in nature, it’s best to fully evaluate a damaged hydraulic pump to determine if more than one issue is responsible.

Maintenance is the best approach for ensuring safe, efficient hydraulic pump function. But routine service is just the start. Identifying common issues plaguing your hydraulic pumps will lead to a better quality of targeted maintenance — for example, if you pinpoint a heat issue related to viscosity, that issue may be resolved by opting for a different fluid weight.

Every piece of information learned about your pumps can translate into better care, leading to longer uptimes, fewer issues, and fundamentally better maintenance.

Having trouble identifying the catalysts for your hydraulic pump’s issues? Let the professionals at Global Electronic Services take a look! Contact us for all your industrial electronic, servo motor, AC and DC motor, hydraulic, and pneumatic needs — and don’t forget to like and follow us on Facebook!

what causes <a href='https://www.ruidapetroleum.com/product/47'>hydraulic</a> <a href='https://www.ruidapetroleum.com/product/49'>pump</a> failure factory

In many factories, the hydraulic pump is the heart of the operation — and hydraulic pump failure can cause huge problems. But why do hydraulic pumps break? In order to avoid hydraulic pump failure, it’s helpful to know what some hydraulic pump failure causes are.

Before getting into the reasons hydraulic pumps break, it’s important to know the signs that your hydraulic pump is broken or in danger of breaking. Some of these signs include:

Noisy System:All mechanical systems make some noise, and hydraulic systems are no exception. But if you are hearing very loud banging or knocking, there’s a good chance that your system is experiencing aeration or cavitation, which could lead to pump failure.

High Temperature:If your hydraulic system is exceeding the recommended temperature level of 82 degrees Celsius, this could be due to a buildup of debris in the filters preventing the system from dissipating heat. This is a problem you will want to address quickly, as high heat can damage your system.

Slow System:If your system isn’t operating as quickly as it’s supposed to, you definitely have a problem. A slow hydraulic system means a loss of flow, which typically means internal leakage.

The major cause of hydraulic pump failure is called fluid contamination. This is an invasion of the hydraulic fluid by foreign materials. Hydraulic pumps and valves are only designed to carry hydraulic fluid, and anything else in them will damage the system, especially since this foreign debris may remain in the system and continue to damage the valves and pipes.

Aeration:Air in the hydraulic fluid can create problems when put under pressure by the pump. When this happens, they can implode and dislodge debris, causing contamination and raising the temperature inside the pump.

Cavitation:Cavitation is a situation where the hydraulic fluid doesn’t fully take up the space in the pump because of unusually high fluid viscosity, an intake line that is too long or an overfast pump, among other reasons. It can lead to problems similar as aeration.

Excessive Heat:An overheated hydraulic system can cause some massive problems for your hydraulic system. It can damage seals, degrade the hydraulic fluid and otherwise compromise the system.

Overpressurization:Hydraulic pump systems are very sensitive and should only operate under specific conditions, including precise pressure levels. Exceeding recommended pressure levels puts undue pressure and wear on the system and can cause it to fail more quickly.

The best way to avoid hydraulic system failure is to keep your system clean. Remember: fluid contamination is the main precursor to hydraulic system failure, so keeping those contaminants out of your system is your best chance to maintain healthy hydraulics. This means high-quality filters in your system that you inspect regularly and change when necessary.

The other major way to keep your hydraulic system up and running is by keeping the components cool. An overheated system can result in real problems, and you may not notice the effects until it is too late. You’ll also want to make sure your system is operating under the right pressure specifications.

A well-maintained hydraulic system can last a long time and be extremely efficient. Although there are many problems that can occur with a hydraulic system, most can be avoided with proper care, and the benefits of having a good hydraulic system for your business can be great — well worth taking good care of your system.

Part of that care is taking quick action when necessary. If you suspect that there is a problem with one or more components of your hydraulic system, the best thing to do is have a professional inspect it and repair any faulty parts that are failing or at risk of failing. The longer you let a hydraulic system problem go without addressing it, the worse the failure will be when it does happen.

Global Electronic Services has factory-trained, certified technicians who are well-versed in hydraulic systems and hydraulic problems. If you’re delaying repairing your hydraulics because you’re afraid of taking them offline, you should know that Global Electronic Services can complete your repair in a matter of days. For more information, call 877-249-1701 or contact Global Electronic Services online.

Be sure to visit us online at gesrepair.com or call us at 1-877-249-1701 to learn more about our services. We’re proud to offer Surplus, Complete Repair and Maintenance on all types of Industrial Electronics, Servo Motors, AC and DC Motors, Hydraulics and Pneumatics. Please subscribe to our YouTube page and Like Us on Facebook! Thank you!

what causes <a href='https://www.ruidapetroleum.com/product/47'>hydraulic</a> <a href='https://www.ruidapetroleum.com/product/49'>pump</a> failure factory

The pump is the most expensive and critical component in any hydraulic system—it works by first creating a vacuum at the pump inlet, which generates atmospheric pressure. Liquid from the reservoir tank is then propelled through the inlet line to the pump, past a hydraulic filter or strainer, and into the hydraulic system. On a macro-level, the mechanical energy of the pump’s gears is transferred through fluid “flow” and used to power the attached hydraulic machinery.

Although hydraulic systems can be used in many everyday objects, they’re usually best suited for products that require high-power density or systems with changing load requirements. This simple yet elegant design offers exceptional consistency and speed compared to other driving mechanisms. Hydraulic systems are widely used across industries because they are reliable, easy to maintain, long-lasting, and safe. But despite their many advantages, hydraulic systems still require some degree of maintenance. The following guide explains what can make a hydraulic pump fail, as well as tips for extending its useful lifespan as much as possible.

Fluid contamination is the leading cause of pump failure and usually happens when particulates circulate through the system via a breather valve or cylinder rod, or as a result of repairs, welding slag, sealant, or refilling. Once contaminants enter the system, they can degrade parts, create buildup, change the fluid’s physical and chemical properties, corrode equipment, and lower the system’s overall efficiency.

Hydraulic pumps are designed to work within a specific pressure range. If pressures exceed the pump’s rating, it will likely overburden the pump, cause damage, and eventually halt operations completely. If the pressure changes are extreme, it could even cause an explosion.

Joints and shafts must be completely sealed for the hydraulic pump to work properly. If air gets trapped inside the system, bubbles can cause pressure and temperature fluctuations, which eventually will cause the pump to break down. Usually the first sign there’s air in the pump is a high-pitched whine.

Cavitation occurs when the pump speed is inconsistent, creating air bubbles that rapidly form and then collapse. When this happens, the pump won’t completely fill with fluid, which destabilizes pressure in the system and produces the same type of high-pitched squeal as pump aeration. A blocked pipe, clogged filter, or poor system design can all cause cavitation.

Hydraulic systems need high-quality cooling and lubrication oil with the right mineral content and viscosity. Purity is particularly important for high-pressure systems that operate with larger loads.

The best way to prevent hydraulic pump failure is to inspect and maintain your hydraulic system. Hydraulic filters and strainers will help you avoid fluid contamination, which in turn will stabilize the temperature and pressure inside the system. Filters remove particulates that are smaller than 50 microns, and strainers work tangentially to remove contaminants larger than 50 microns. Various options are available for both filters and strainers using different ratings, mesh sizes, and materials.

After they’re installed, filters and strainers need to be routinely checked and cleaned. Operators should familiarize themselves with their hydraulic system to identify any aberrant conditions as soon as possible, if problems should arise. If you maintain your hydraulic system, it will work more efficiently, necessitate fewer repairs, require less downtime, and last as long as possible.

With over 60 years of experience manufacturing high-quality suction filters, suction strainers, gauges, and diffusers for hydraulic systems, the experts at DOMS Incorporated have the expertise to keep your operation in peak condition. We’ve worked closely with organizations from many industries, including construction, forestry, mining, energy development, industrial manufacturing, aircraft equipment manufacturing, plant processing, and more.

what causes <a href='https://www.ruidapetroleum.com/product/47'>hydraulic</a> <a href='https://www.ruidapetroleum.com/product/49'>pump</a> failure factory

A hydraulic pump failure can be caused by a number of factors. There are several different types of pumps available on the market, and each can have its own specific failure mode. Of course, certain failure modes are common to all types of pumps. Some of these failures can be caused by poor system design, using low-quality fluids and/or poor contamination control.

The best way to prevent future failures is to ensure that you are using quality hydraulic fluids. Keep in mind that the fluid is the single most important component of a hydraulic system, so always use high-quality hydraulic fluids with the correct viscosity for critical equipment.

Hydraulic fluids should also be kept clean, cool and dry. This is highly important to their performance. One of the ways you can do this is through quality filtration. Filters should be selected only if they achieve the target cleanliness levels that have been set for the fluid in the system. Also, use quality filters in locations that assure the required protection and upgrade the filters when necessary.

Another option for keeping hydraulic fluids clean is oil regeneration technology. Using a system that is able to separate and remove particles down to the nano scale can make a major difference in the service life of the hydraulic fluid while also extending the life of machines.

In addition, consider the possibility of using offline filters, because the cost of removing dirt is often much less in an offline mode than trying to do everything in a pressure-line filter location on the hydraulic system.

It is estimated that between 70 to 80 percent of hydraulic system failures are from contamination, with particle contamination making up the largest portion. Therefore, it is best practice to regularly perform oil analysis with particle counts.

Remember, the hydraulic pump is generally the most expensive component on a hydraulic system. It has the highest reliability risk, the highest contaminant sensitivity risk and the ability to cause chain-reaction failures. In other words, when the pump starts to fail, it starts to kick out debris into a debris field downstream of the pump. If there is not a good filter downstream, this debris moves on to other components like valves and actuators, and can lead to damage in those components as well.

Be wary of quick-fix solutions like switching to costly synthetics. Instead, provide solutions to the problems that exist and tackle potential future problems proactively. It is critical to set the proper cleanliness and dryness targets and to develop contamination control procedures that will allow you to meet those targets. By doing so, you should greatly reduce and possibly eliminate your pump failures.

what causes <a href='https://www.ruidapetroleum.com/product/47'>hydraulic</a> <a href='https://www.ruidapetroleum.com/product/49'>pump</a> failure factory

In any hydraulic system, the hydraulic pump is usually the most expensive component and if it fails the whole system can be rendered inactive. Hydraulic pumps are extremely sensitive to contaminants and have the highest reliability risk. When a hydraulic pump starts to fail, it can force contaminants and debris further down the system and if this is not intercepted by an effective filter, the debris can then cause damage to other components. With this in mind, it is worth knowing the warning signs of common hydraulic problems and the precautions or actions that should be taken to prevent the lost work time and expense resulting from pump failure. As experts in hydraulic pump repairs, we at CJ Plant reveal the common causes of hydraulic pump failure.

In any mechanical system, components will be subject to wear and tear throughout their working life and will eventually wear out. Poor quality components will obviously have a shorter lifespan and should, therefore, be avoided, but there are a number of system failures common to all models of hydraulic pump that can easily be prevented if users are vigilant and pay attention to the operation of the system they are using. There are three common hydraulic pump failure symptoms that operators should be aware of that can be an indication of impending hydraulic pump failure:

If the hydraulic pump is making a whining noise or producing banging or knocking sounds, it can be assign of aeration or cavitation inside the pump. As the piston operates, pressure inside the pump drops and the resulting higher atmospheric pressure in the reservoir pushes hydraulic fluid along the inlet line into the pump. Anything that reduces this inlet flow can cause dissolved air in the oil to be drawn out forming air bubbles. When these reach an area of high pressure, the bubbles will implode under pressure and the resulting shockwaves will produce a high pitched whining sound. This can be assign of a damaged or blocked suction strainer or a plugged breather cap. High temperature in the fluid can also cause air to be released or low temperature can increase viscosity and slow fluid entering the pump so fluid temperature should be monitored closely. While not a common problem in the UK, systems operating high above sea level can also suffer from insufficient fluid entering the inlet due to atmospheric pressure being too low to push it through. Air from outside entering the system will result in aeration and will result in a knocking or rattling sound in the pump. As the pressure inside the system is lower than outside, any leaks in the suction line or the cylinder seal will cause air to enter the system. Poorly tightened connections on the suction line can also result in this problem. If this is suspected apply a layer of oil over any suspected location for a leak. If a hole appears in the oil as air is drawn in, the leak has been located. The noise will subside momentarily as this happens if aeration is the cause of the sound. If a leak is not located, check the reservoir. If the fluid level is too low, air can also been drawn in here or if the fluid entering the reservoir is dropping from a height it can cause bubbles to form as the fluid splashes which again can then enter the system. Any foaming of the fluid in the reservoir is another sign of aeration as the air exiting the system will cause foam to form.

Hydraulic fluid in a working system should never be above a temperature of eighty two degrees Celsius. A temperature exceeding this can be an indication of a malfunctioning heat exchanger or an overheating final drive motor. Cooler fins and the cooling fan should be cleaned and inspected for any damage, along with the fan belt, Any change in the pressure in the system from the manufactures settings will lead to an increase in temperature, along with other problems. Pressure levels should be checked in case deliberate or accidental adjustment of pressure has been carried out and relief valves checked in case they are damaged or incorrectly adjusted, as this can also lead to a change in system pressure and subsequent overheating. A lowered level of hydraulic fluid in the reservoir can also lead to overheating. if this is the case, the level of fluid should be topped up and the reservoir checked for any leaks that could be leading to this. All filters should checked for build up of debris or blockage as this can also affect pressure in the case of internal filters or cause insufficient flow of air in cooling systems. It is also worth considering the use of an offline filter

If your hydraulic system is running slower than usual, or showing increased cycle times, this is an indication of a drop in pressure within the system which can then lead to a subsequent overheating. This can be an indication of a leak in the system. If it is an external leak, it will usually be easy to locate and repair. However, if no external leak is visible it could be a sign of an internal leak in the gear pump or actuators and a hydraulic flow tester should be employed to test for this and locate the leak for repair.

While using good quality hydraulic fluid and implementing good contamination control systems can avoid many problems, sometimes the worst can still happen. If any of the above indicators are observed, they should not be ignored and the source of the problem located and repaired before they cause further damage. The implosion of air bubbles during cavitation can cause internal wear on the pump and dislodge debris or metallic fragments that can travel through the system, causing wear and erosion to components. These can then lead to further system failure. Aeration can lead to lowered lubrication inside the pump, leading to friction between metal components and the pump seizing up. This can not only damage the pump but also alter the pressure in the system, causing overheating and damage to other components.  Overheating can lower the viscosity of hydraulic fluid, lowering its ability to lubricate and degrading it and shortening its lifespan and causing heat damage to seals, leading to leaks.

Any one of these issues can lead to a cascade effect, causing damage to multiple parts of the overall system and resulting in lost work hours and revenue and expensive repairs. If your equipment is displaying any of these symptoms, call CJ Plant maintenance today. We understand that when your equipment is malfunctioning or damaged you need fast and efficient diagnosis and thorough professional repairs as soon as possible. We carry out hydraulic pump repair and plant maintenance to customers throughout the UK and offer free collection, wherever you are located if we cannot perform repairs on site. We will thoroughly inspect your faulty equipment and offer a full evaluation and no obligation quote for repair. After repair we will return your equipment fully restored to OEM standards with a written twelve month warranty. For further information on the services we provide, please contact us, we will be happy to help.

what causes <a href='https://www.ruidapetroleum.com/product/47'>hydraulic</a> <a href='https://www.ruidapetroleum.com/product/49'>pump</a> failure factory

A leading cause of many hydraulic pump failures is hydraulic fluid contamination. It is very important to ensure that both components and fluids are clean prior to use. Fluid contamination forces hydraulic pumps and valves to wear prematurely resulting in hydraulic system failures and damaged system components. Read our article, Three Ways to Improve the Life-Span of Hydraulic Machinery, to learn how to prevent this common hydraulic mishap.

Over-heating a hydraulic hose can cause thermal expansion which can in turn cause premature aging of the elastomers and plastics within the material that comprises the internal hose tube. This condition leads to decreased elongation of the molecular structure of the material and contributes to increased brittleness eventually leading to premature hose failure.

While many hose manufacturers produce anti-wear covers that include enhanced abrasion resistance characteristics, the hose assemblies must be installed in a manner that minimizes contact with other components in the system. They must also be clamped appropriately to ensure that they do not rub against other hoses or mechanical components during use. Improper installation of hose assemblies leading to excess abrasion will cause premature hose failure.

When a hose assembly is not properly assembled, it can create a very dangerous situation. In fact, the most likely cause of hose assembly failure is a result of improper assembly rather than from manufactured defects. One of the most common assembly mistakes is caused by fittings that are not inserted to the proper insertion depth within the hose. When the crimp fitting is not inserted completely, the surface area where the crimp ferrule is clamped to the hose is reduced thus compromising the connection and leading to a condition where the fitting blows off the hose under pressure exposing the machine operator to a dangerous condition that could lead to serious injury.

We are the largest hydraulic fitting manufacturer in the United States! (Not to mention we operate multiple manufacturing facilities internationally as well.) Our scale means that we have the capability to keep a wide range of product inventory on-hand and ready to ship. This reduces the downtime our customers experience when their systems fail and fast component repair or replacement is time critical.

what causes <a href='https://www.ruidapetroleum.com/product/47'>hydraulic</a> <a href='https://www.ruidapetroleum.com/product/49'>pump</a> failure factory

When your hydraulic system fails, finding and troubleshooting the problem can be a challenge considering the complexity of hydraulic systems. The sump, motor, valves, pump, fluid, or actuators could be contributing to the failure in some way individually or all at once and an issue with one may have a domino effect on other parts of the machine.

There are four main causes of a hydraulic system failure that can be summed up as air or water contamination, fluid level or quality problems temperature issues, or simple human error. Many of the technical issues that can lead to a hydraulic system failure fall into one of these broad categories.

This is by far the most common source of failure for a hydraulic system, as much as 90% of failures can be sourced to some sort of contamination in the air or water inside the system. This is usually because air enters the system (either by way of cavitation or aeration) which causes damage to the system and eventual breakdown.

This form of failure usually leads to either an air or water contamination, as mentioned above. Low fluid levels can result in poor filtration. The wrong quality of fluid can cause temperature issues. On top of this you have to be on the lookout for leaks. One way to avoid this is to make sure you’re using the right type of fluid for your machine.

Hydraulic systems can overheat or freeze. When the system is too cold fluid can thicken, forcing the pump to work harder to move it through. If the temperature is to warm then the opposite can happen, the fluids thin and lack lubrication and can lead to leaks. Extreme heat can cause the fluid to oxidize and build up in the system as it thickens.

The best way to troubleshoot is to go through all the parts of the machine—motor, pump, valves and lines, and fluid—while the system is running to see if you can pinpoint the source of error, Keep in mind multiple symptoms can lead to different sources of error.

Check the fluid levels and connections daily and always be on the lookout for strange sounds. About once a month, do a deeper check of the system. If you find an issue, contact a hydraulic repair service so they can run systems check.

If your industrial hydraulic equipment has failed or is posing issues, it needs a reliability centered maintenance check. The team of hydraulics experts at Servo Kinetics in Ann Arbor offers the highest quality hydraulic repairs at the lowest possible cost, in the shortest turn around time possible. For more than 45 years our satisfied customers have trusted our process with their critical hydraulic repair needs.

Our services include hydraulic pump and motor repair, field piping, flight simulator repair, reverse engineering services and more. Take advantage of our rapid response hydraulic repair services and Save Big over the cost of new OEM equipment. Questions? Call and speak to a Specialist today!

what causes <a href='https://www.ruidapetroleum.com/product/47'>hydraulic</a> <a href='https://www.ruidapetroleum.com/product/49'>pump</a> failure factory

Without heat dissipation, fluid temperatures can easily reach and surpass 180°F (82°C), which is detrimental to the hydraulic pump as the hot fluid will damage the seals and cause fluid degradation.

What is worse, the above signs like aeration, cavitation, and internal leaks can significantly increase the heat load within the system, reducing the practical life of the hydraulic fluid. Additionally, as the liquid continues to heat up, the oil film thins, meaning it has a low viscosity. This is detrimental to the pump because it will damage from inadequate lubrication.

Hydraulic pumps can withstand intense working pressure using their sturdy components. However, with time, its components degrade, performance turns sluggish, efficiency decreases, and flow cycle lengthens.

If you notice any of these signs in your hydraulic pump, repair or replace your pump. ContactQuad Fluid Dynamics, Inc., today for hydraulic repair services. We look forward to helping you.

what causes <a href='https://www.ruidapetroleum.com/product/47'>hydraulic</a> <a href='https://www.ruidapetroleum.com/product/49'>pump</a> failure factory

Water mixing in with the hydraulic fluid is bad news for the hydraulic pump. When too much water is present in the hydraulic fluid, the internal components may start to corrode.In addition to its corrosion-causing qualities, water is also problematic because it could freeze inside the pump.

The hydraulic fluid present inside the pump can also be problematic even if it doesn’t mix with water.If some small particles fall into the liquid, it’s possible that they could deal damage to the inside of the pump. You must also check if the fluid level is correct or else that could alter the performance of the pump.Lastly, the viscosity of the hydraulic fluid must be just right to keep the pump from sustaining damage. Make it a habit to routinely check the viscosity of the hydraulic pump to see that it has not degraded just yet.

Heat can act as a kind of amplifier of other hydraulic pump-related issues. The heat itself can be a byproduct of other issues affecting the hydraulic pump so be sure to take note of it.

Because hydraulic pumps need the right pressure levels to function, anything that affects it can be disruptive or even damaging. Some of the joints and shafts of hydraulic pumps may spring leaks as they age causing holes to open up. If too much air gets inside the pump via the holes, it may not work as intended.

Cavitation refers to the formation of small vapor-filled bubbles in areas within the pump where the pressure is low. Once those bubbles are exposed to high pressure, they may burst and start to damage the pump.

what causes <a href='https://www.ruidapetroleum.com/product/47'>hydraulic</a> <a href='https://www.ruidapetroleum.com/product/49'>pump</a> failure factory

A common failure for zero turn mower is the hydraulic pump. If the hydraulic system fails, the mower won’t get enough power to move. Finding out the source of the problem is a challenge in terms of these failures.

That’s why it’s important to know the steps of zero turn hydraulic pump troubleshooting. You need to purge the hydraulic drive system and check other parts and symptoms.

The most common problem with a Hydraulic pump is the mixture of water and air. Very often, the pump becomes full of air instead of oil, and as a result, it cannot generate enough pressure needed to provide power.

The temperature problem can be explained twofold. If the zero turn mower runs too cold or too hot, it can engender serious problems over time, such as preventing lubrication by making the mower out of hydraulic fluid.

It can also result in the oxidization of fluids. All these restrict the flow of oil to the pump. Another thing is the temperature of hydraulic fluid. If it’s too high, it can easily get contaminated, making the oil stale and defective.

The oil level is very important for the hydraulic pump to work with full efficiency. Low oil levels can create various problems in your mower. So you should always keep the mower filled with pure, clean recommended oil.

Push motion control levers to the full forward and hold them for five seconds. Now do the reverse. Repeat this 3-5 times. It will help purge the air from the hydraulic transmission system.

Carefully examine the internal parts of the pump to see if they are installed properly and functioning accordingly. Install them in the recommended way and replace the defective parts.

The hydraulic oil or fluid is the most crucial part of the pump. Check if the oil level is right. Also, make sure the oil is clean and has the recommended viscosity. Keep in mind that all oil is not appropriate for zero turn mower. Change old and sluggish fluids.

Once your hydraulic pump fails, its lifespan can become less even if you can fix the problem. That’s why it’s better to maintain the hydraulic system regularly. It will help a lot in terms of the longevity of the pump.

what causes <a href='https://www.ruidapetroleum.com/product/47'>hydraulic</a> <a href='https://www.ruidapetroleum.com/product/49'>pump</a> failure factory

Q: I have a HC-PTO-1A pump. I am only getting 900 pounds of hydraulic pressure. What do I have to go to get 2000 pounds of pressure out of it. Please let me know.

It is important to note that a gear pump generates flow. It is the other parts of the system that resist flow, and build up pressure. Therefore, it is important to look over the entire system when investigating a pressure related problem.

2) Is the hydraulic reservoir large enough for the PTO gpm output? It is important to insure the correct amount of reservoir capacity to avoid problems. A basic rule of thumb is to get at least 1 gallon of reservoir capacity per 1 GPM of pump capacity. (i.e. 21 gpm pump output = 21 gal. or larger reservoir.)

3) Is the pump functioning properly? The proper way to check a pump output is with a flow meter, not a pressure gauge. If the pump is not producing the correct flow, it may be damaged, and require replacement. (See: Common Causes of Pump Failure.)

5) Is the system working properly with the currently generated pressure? Many hydraulic systems do not use the full extent of rated pressure unless at full load. If you do not have enough load on the system, you will not generate a very high pressure.

Please refer to the PTO Parts Manual to ensure the pump is plumbed properly. You can visit PTO Pumps Page and select Parts Manual to down load or print a copy of the manual.

Cavitation: This is caused by a lack of oil flowing into the inlet port. It will damage the pump, and reduce flow. If you see foamy oil, it is a good indication of cavitation. Increasing the size of the inlet line or reducing flow can help with cavitation problems. Removing any elbows, bends, or filters on the inlet line can also help. Lastly, making sure that the oil reservoir is above the pump may also be beneficial.

Contamination: Contamination will not only cause damage to the pump, but may also plug valves, reliefs, etc. in the system. It is important to have the proper filtration in the system, including changing filters regularly.

Heat: Any Hydraulic system will generate heat. It is important to deal with that heat so that the oil temperature does not rise high enough to cause damage to seals, valves, etc. Having a properly sized oil reservoir (or oil cooler if necessary) is important in order to avoid excessive heat buildup in the system.

Lastly, make sure to refer to your manual for the proper pressure/speed limits. Exceeding those limits will damage a pump, and cause it to fail prematurely.