api 610 mechanical seal code pricelist

A seal code is an abbreviated method of communicating basic specifications for the mechanical seal. Sadly, the seal code has been changed with every edition of API 682.  Fortunately, the new code, described in API 682 4th Edition Annex D, is the best to date and includes some concepts and codes from the historical API 610 seal code. The new code uses eight fields:

API 682 4th Edition was the first edition to include materials in the description and in many ways represents a combination of API 682 coding and the old API 610 codes.

4th Edition coding comprises four sections, some being sub-divided.  The table below shows the construction of a typical seal code, it is intended to accurately describe the seal and seal system being implemented in a given application.

T:  Seal type A, B or C per API 682 4th Edition definitions.  For dual seals using different inner and outer seal types, show both types using the format inner/outer.

Note that the codes used for Design Options are the same as those used in API 610 for materials that are included in both systems.  On the other hand, some materials cannot be specified because API 682 does not recommend them.  Such materials must be specified with an “X”.

For many years the pump standard API 610 contained a mechanical seal coding system which became widely used in industry. This coding method provided a reference to the nomenclature and features used with mechanical seals that were current during that time period. While this coding method is obsolete it still is still being used in some areas of industry. It is presented herein as a historical reference only.

A very commonly used code was BSTFM which translates to a balanced single seal with throttle bushing in the gland plate.  Gaskets would be FKM (fluoroelastomer).  Seal faces would be carbon vs nickel bound tungsten carbide.

api 610 mechanical seal code pricelist

The pumps can be fitted with a variety of proprietary components (i.e. seals, motors and couplings) from all the major manufacturers to cater for customers site preferences. Double mechanical seal arrangements can be fitted with a seal support system attached. This can be supplied by Protect System, which is designed and manufactured by Amarinth, or if required another manufacturers" seal support system can be provided for Amarinth to install and fit.

To complete the package a full range of standard material options from cast iron and stainless steel, to super duplex and hastelloy are available to match your process fluid. NACE and NORSOK compliant materials are also available. Standard documentation packs including manufacturing data books, material certification, installation and operating manuals are available to suit the application. Performance testing to API 610 / ISO 13709 and various NDE (non destructive examination) and NDT (non destructive testing) options are offered to ensure full compliance to our customer"s specifications. Alternative bespoke packages can be tailored to fit your exact requirements.

api 610 mechanical seal code pricelist

The scope of our mechanical seal product range far exceeds any other seal manufacturer. From small elastomer bellows seals used in millions of domestic water pumps to double mechanical seals that ensure maximum sealing safety and large, highly customized dry-running gas seals for mission critical high speed turbo compressors, John Crane has the right product for any application.

The right seal support system is critical for promoting seal reliability. John Crane customizes support systems to meet a variety of seal specifications, contributing to safe, cost-effective, reliable operation and reducing harmful environmental effects. Our support systems comply with constantly changing design codes and standards, and meet the increasingly stringent demands on end users.

Our comprehensive suite of seal face technologies are designed to overcome rigorous sealing challenges, including limited seal face lubrication and severe-service duties that adversely affect reliability, operational costs and seal life. Designed by our engineering experts, John Crane’s face treatment options help your equipment power through low-lubricity and dry-running conditions by using advanced micromachined patterns and features to improve seal face lubrication to optimize the performance of rotating equipment in all process industries

Isomag’s advanced magnetic face technology delivers unparalleled performance. The lapped flat faces create a positive liquid tight seal preventing lubricant leakage and the ingress of contaminants in both static and dynamic conditions on horizontal and vertical equipment alike. By optimizing the magnetic energy loading, Isomag’s are capable of running at shaft speeds well above average (up to 15,000 feet per minute) providing the ability to effectively seal the bearing housings on a wide variety of applications

Do you want to minimize leakage from your pumps in an effective manner? This is a challenge operators and maintenance managers face on a daily basis, which can prove costly. John Crane offers a wide selection of packing materials in compression packing, automatic packing, floating packing, and injectable packing. Learn more about our variety of packing equipped to handle the vast majority of sealing solutions and available for nearly all applications.

api 610 mechanical seal code pricelist

Mechanical seals are indispensable for sealing rotating shafts. They make sure that the fluid handled remains in the system, prevent emissions and thus protect the environment from contamination. High-quality shaft seals in the form of mechanical seals also ensure maximum economic efficiency and operating reliability for pumps. This is crucial because the majority of repairs arise due to sealing problems.

And this is where KSB’s mechanical seals can make a difference: as well as impressing with a robust design, they offer straightforward installation and optimal integration in the seal chamber – ensuring reliable and efficient system operation.

api 610 mechanical seal code pricelist

Many pumps in key oil and gas services have been installed in a 1+1 (one operation and one standby) configuration, as the shutdown of a pump should not stop production. Shutting down the plant or facility due to a pump trip is simply not an option due to financial damages and other concerns. However, there should also be more attention to key areas related to increasing reliability and availability. Seals and bearings are a key focus in this regard.

The operating temperature is a key parameter for pumps and their systems. Pumps for high temperature or low temperature services need great care. As an indication, for operating temperatures below 5 F (-15 C) and above 266 F (130 C), robust design and manufacturing guidelines should be used for pumps. This usually translates to the use of American Petroleum Institute (API) 610 pumps or an equivalent. There have been different features and provisions for high or low operating temperatures.

For instance, pump casings should be centerline supported to reduce the effects of temperature differences. Usually special materials and sealing systems, compatible with operating temperatures, should be employed. The top discharge, centerline supported pump configuration provides stability when subjected to extreme temperatures and associated (produced) piping loads on pump nozzles.

Pump speed should usually be chosen at an early stage of the sizing/selection process. Selection of the highest practical speed is often desirable because it yields the smallest size and, usually, the lowest cost and easiest containment of system pressure. The efficiency is usually improved with greater speed. However, higher speeds might reduce the lifetime of components, such as seals or bearings and overall reliability. Therefore, optimization is necessary to find the optimum speed for each pump. Code guidelines (such as API 610) and previously successful references should also be checked.

Today, mechanical seals are specified for nearly any pump. Of course, there are sealless pumps, such as magnetic drive pumps, that do not need seals. Cartridge-type mechanical seals are most often preferred. Almost all seals utilize a small amount of the pumped liquid or an alternative liquid to flush the seal faces.

Mechanical seals need special attention for their selection, assembly, installation and commissioning. Seals should be checked for leakage particularly during the first hours of operation. A minor leak through the seal typically reduces to negligible after a short time, but if it continues there could be an issue. If there is something wrong with the seal installation, the seal could fail in the first hours (or first day) of operation. Otherwise, it might be concluded that the seal installation has been done properly.

The mechanical seal has been responsible for many unscheduled shutdowns of process/major pumps. The overall cost for seal replacement and seal maintenance through a pump’s life cycle is one of the most expensive costs associated with pump operation and maintenance. As a rough estimate, approximately $3,000 to $20,000 (on average) can be spent for pump mechanical seal replacement. Some pumps may require pump mechanical seal replacement every one to three years. Although in the case of a mistake in the seal selection or persistent operational issues, a seal failure could be experienced every few months. This is not acceptable, nor cost-effective, and the root cause of the problem should be found and eliminated.

api 610 mechanical seal code pricelist

Please contact AESSEAL Systems Division for further details. Tel: +44 (0)28 9266 9966 Email: systems@aesseal.com For more information, and a video demonstrating the piping plan in operation, select a plan below

api 610 mechanical seal code pricelist

Termomeccanica Pompe AP pumps are single stage, single suction radial impeller, end/top centrifigual pumps for heavy duty services, especially in oil & gas processing. The back pull-out arrangement allows for easy maintenance while the center-line assembly, large diameter shaft, and very stiff bearing casing assure proper alignment of the rotating parts during the most critical conditions. The seal chamber is according to API 682 for any mechanical seal configuration and API 610 for the seal flushing plan.

api 610 mechanical seal code pricelist

OH–Overhung pumps– The impellers of these pumps protrude from the bearings. The support has to take care of all forces, e.g. the overhung mass and the rotor dynamic and hydraulic forces. The impellers of these pumps can be mounted either horizontally or vertically. Its advantages are a single bearing housing and a single seal or packing, but an overhung impeller load is a disadvantage.

The casing can be either axially or radially split, with radially split designs found in tougher applications, such as API-610, where a large gasket area of the axially split design could be a concern for leakage. In fact, axial load is nearly completely eliminated due to impeller symmetry.

(VS) Cantilever– a cantilever design in which only the impeller and casing are submerged in the tank or sump. All joints, including seals, bearings, bushings, and suction check valves, are located out of the fluid. This design is ideal for moving slurries and abrasive solutions that could degrade or interfere with submerged joints.

End Suction Pumps–A straight shot-no turns and bends-is the most efficient way to bring the flow to the impeller, and such designs are called end-suction. In the back, a mechanical seal or a set of packings separates the fluid from leaking out. Following the seal, two bearings support the entire rotor (impeller, shaft, sleeves).

For end-suction designs, the impeller is cantilevered against the inner bearing. On the positive side, there is no restriction to incoming flow, which would be caused by placing one of the bearings at the front side-also called a between-bearing design. Cantilevering the impeller against the inner bearing also helps efficiency and makes the design simple and less expensive (with only one seal).

However, a long cantilevered rotor is prone to deflections, which may overload the bearings and cause seal failures. For this reason, rotor stiffness is an important factor, and designs with bigger shafts (D) and lower overhung length (L) tend to be more reliable. The factor L3/D4, a coefficient of proportionality between force and deflection, is a good measure of comparison between similar designs. The lower the L3/D4, the more robust the rotor-which results in better resistance to deflections.

The API OH1 is a horizontal, foot mounted, single stage, overhung pump with end suction. The pump is mounted to a baseplate and driven via a flexible coupler.