hex mud pump pricelist
A mud pump is a reciprocating piston/plunger pump designed to circulate drilling fluid under high pressure (up to 7,500 psi (52,000 kPa)) down the drill string and back up the annulus. A duplex mud pump is an important part of the equipment used for oil well drilling.
Duplex mud pumps (two piston/plungers) have generally been replaced by the triplex pump, but are still common in developing countries. Two later developments are the hex pump with six vertical pistons/plungers, and various quintuplex’s with five horizontal piston/plungers. The advantages that Duplex mud pumps have over convention triplex pumps is a lower mud noise which assists with better Measurement while drilling and Logging while drilling decoding.
Use duplex mud pumps to make sure that the circulation of the mud being drilled or the supply of liquid reaches the bottom of the well from the mud cleaning system. Despite being older technology than the triplex mud pump, the duplex mud pumps can use either electricity or diesel, and maintenance is easy due to their binocular floating seals and safety valves.
A mud pump is composed of many parts including mud pump liner, mud pump piston, modules, hydraulic seat pullers, and other parts. Parts of a mud pump:housing itself
Duplex pumps are used to provide a secondary means of fuel transfer in the event of a failure of the primary pump. Each pump in a duplex set is sized to meet the full flow requirements of the system. Pump controllers can be set for any of the following common operating modes:Lead / Lag (Primary / Secondary): The lead (primary) pump is selected by the user and the lag (secondary pump operates when a failure of the primary pump is detected.
Alternating: Operates per Lead / Lag (Primary / Secondary) except that the operating pump and lead / lag status alternate on consecutive starts. A variation is to alternate the pumps based on the operating time (hour meter) of the lead pump.
The Hex Pump is an axial piston mud pump with six vertical pistons driven by two AC motors via a gear and a specially profiled cam. In contrast to crankshaft-driven triplex pumps, the Hex pump delivers a nearly pulsation free flow. Consequently, there is no need for pulsation dampeners on either the suction or discharge side when running this pump. Other major advantages are compactness (reduced weight and footprint) and no need for replacing liner sizes to achieve high pressure or flow. The Hex 240 version with 4 1/2" liners has a rated capacity of 2540 HP, a maximum rated pressure of 7500 PSI and a maximum flow capacity of 1034 GPM.
The Hex Pump has substantially less weight than a comparable Triplex pump, and this results in increased variable deck load capacity on drilling units. The potential cost savings related to increased variable deck load capacity both on new builds and on existing rigs will be discussed in this paper. Also, the potential steel weight reduction in the substructure on drilling units will be discussed.
The Hex Pump creates a clean standpipe pressure with much lower pressure fluctuation levels than triplex pumps. Due to this, there are no need for pulsation dampeners when running the Hex Pump. This additionally leads to much better and cleaner MWD-signals for the directional driller. As a consequence, this will contribute to faster and more accurate drilling in long and complicated directional wells.
The design and development of the Hex Pump is described in SPE paper 79831, ref /1/; "Development and Performance Testing of the Hex Mud Pump", but for the understanding of this paper it is important to understand the functionality of the Hex Pump design. Some of the main items are therefore repeated in this paper. SPE paper 92507, ref. /2/, "Operational experience with use of a Hex Pump on a land rig" focuses on the improved MWD-measurements related to use of Hex Pump compared to triplex pumps. Some of the main items discussed there will also be repeated in this paper.
An integral part of onshore and offshore drilling, mud pumps circulate the drilling fluids used to facilitate drilling oil and natural gas wells. Used to stabilize pressure and support the well during the drilling process, drilling fluids also provide friction reduction and a means to remove cuttings.
While drilling with some type of fluid has been in practice for centuries, the term "drilling mud" was coined when a herd of cattle was driven through a wet field near Spindletop, and the resulting mud was used to lubricate the drillstring and drill bit. Drilling fluids have come a long way since those early days of drilling, and offshore mud pumps are constantly taxed to help operators find and develop hydrocarbons in harsher, deeper and more difficult locations.
"A mud pump delivers drilling fluid from the mud tanks, through the top drive, down the drill string and through the bit," explained Juan Lerma, Mud Pumps Product Line Manager at National Oilwell Varco. "When the mud exits the bit, it travels back to the surface carrying the cuttings made by the bit where it flows over a shale-shaker removing the cuttings, cleaning the mud and returning it to the tanks, where it"s used over and over again."
"A mud pump is one of the critical and required pieces of equipment for a drilling rig whether on land or offshore," Lerma stated. "Offshore, where real estate is at a premium, mud pumps are configured with a compact top-mounted drive system, reducing the overall length with a smaller package and strategically placing it in the pump room for permanent installation."
"Jackups semis and drillships all use the same mud pumps; however, the number of pumps installed in the pump rooms changes from rig to rig depending on the drilling specifications," explained Lerma.
Additionally, the rock formations and pressure encountered when drilling may vary; HT/HP and environmental conditions also may affect the drilling process, as well as the drilling fluids chosen and mud pumps required.
"As the drilling programs require higher flows and higher pressures, it is necessary to increase pressure ratings and either increase the number of mud pumps required or utilize larger capacity mud pumps," Lerma continued. "Most early jackups utilized two mud pumps and piping systems rated for 5000 psi work pressures and 1600 horsepower, while most of today"s jackups have 7500 psi working pressure and up to four 2200 HP pumps piping systems."
According to information gathered by premium rig data service RigLogix, National Oilwell Varco leads the pack in providing mud pumps to offshore oil rigs. Of the top six brands of mud pumps, NOV supplies four of them, garnering more than 70% of the offshore mud pump market.
Those leading NOV brands include National Oilwell, Continental Emsco (which was acquired by NOV in 1999), National and NOV. The other leading mud pump system is provided by Gardner Denver and is the third most popular type of system offshore. Additionally, Lewco, a division of Rowan, has about 4% of the offshore mud pump market, putting it fifth on the list of leading suppliers.
With more than four decades of experience providing the offshore industry with mud pumps, Lerma revealed that the company has been able to sustain such a high market share by constantly transforming the product to meet the needs of the industry. As offshore drilling programs have required higher flows and pressures, the company has strived to provide the best quality equipment, while maintaining the lowest cost of ownership.
To better serve its offshore clients, the company developed the Hex Pump in the last several years, and this new line of mud pumps has proven a success in offshore waters worldwide. Boasting 2400 HP, the Hex pump is capable of delivering up to 1,034 gallons of drilling fluids per minute, making it one of the most powerful mud pumps on the market today.
In 2004, the first two Hex Pumps were deployed on a Global Santa Fe rig working offshore West Africa, and in 2005, both the Noble Max Smith and the Noble All While started using the Hex Pump as well. In fact, the Noble Al White, working in the harsh conditions of the North Sea, was the first rig to be solely dependent on the Hex Pumps with two of them located in its pump room, and the rig now has more than 8,000 hours of successful drilling operations using the system.
"The first drillship to use the system, Transocean"s Discoverer Clear Leader just started drilling in the Gulf of Mexico with five Hex Pump systems," said Lerma. "Additionally, the soon-to-start-drilling Discoverer Americas houses four Hex Pumps, and the soon-to-be-delivered Discoverer Inspiration will have five."
Lake Petro provides high quality Mud Pump Parts including Mud Pump Liners, Mud Pump Fluid End Module, piston, Valve and Seat etc. With more than 10 years of experience in the oil and gas industry, we are dedicated to help and support our loyal clients with the most cost-effective and quality Liners and Pistons. We also provide mud pump price and mud pump for sale.
We offer Liners with Ceramic (Zirconia and Aluminium oxide) and Steel (Metal and Bi-metal) materials for all common brands of the mud pump and triplex mud pump.
All Lake Petro liner products are interchangeable with O.E.M. products. Meanwhile, we provide customized Liners according to drawings. Our liners, also with our other mud pump spares, are supplied for use in Honghua, F-Series, Bomco, Emsco and National lines of triplex drilling pumps. Let Lake Petro be your one-stop shop for your whole fleet of pumps. Please refer to “Suitable Pump Models” Lable for more details.
A mud pump (sometimes referred to as a mud drilling pump or drilling mud pump), is a reciprocating piston/plunger pump designed to circulate drilling fluid under high pressure (up to 7,500 psi or 52,000 kPa) down the drill string and back up the annulus. A mud pump is an important part of the equipment used for oil well drilling.
Mud pumps can be divided into single-acting pump and double-acting pump according to the completion times of the suction and drainage acting in one cycle of the piston"s reciprocating motion.
Mud pumps come in a variety of sizes and configurations but for the typical petroleum drilling rig, the triplex (three piston/plunger) mud pump is used. Duplex mud pumps (two piston/plungers) have generally been replaced by the triplex pump, but are still common in developing countries. Two later developments are the hex pump with six vertical pistons/plungers, and various quintuplexes with five horizontal piston/plungers. The advantages that these new pumps have over convention triplex pumps is a lower mud noise which assists with better measurement while drilling (MWD) and logging while drilling (LWD) decoding.
The fluid end produces the pumping process with valves, pistons, and liners. Because these components are high-wear items, modern pumps are designed to allow quick replacement of these parts.
To reduce severe vibration caused by the pumping process, these pumps incorporate both a suction and discharge pulsation dampener. These are connected to the inlet and outlet of the fluid end.
The pressure of the pump depends on the depth of the drilling hole, the resistance of flushing fluid (drilling fluid) through the channel, as well as the nature of the conveying drilling fluid. The deeper the drilling hole and the greater the pipeline resistance, the higher the pressure needed.
With the changes of drilling hole diameter and depth, the displacement of the pump can be adjusted accordingly. In the mud pump mechanism, the gearbox or hydraulic motor is equipped to adjust its speed and displacement. In order to accurately measure the changes in pressure and displacement, a flow meter and pressure gauge are installed in the mud pump.
The construction department should have a special maintenance worker that is responsible for the maintenance and repair of the machine. Mud pumps and other mechanical equipment should be inspected and maintained on a scheduled and timely basis to find and address problems ahead of time, in order to avoid unscheduled shutdown. The worker should attend to the size of the sediment particles; if large particles are found, the mud pump parts should be checked frequently for wear, to see if they need to be repaired or replaced. The wearing parts for mud pumps include pump casing, bearings, impeller, piston, liner, etc. Advanced anti-wear measures should be adopted to increase the service life of the wearing parts, which can reduce the investment cost of the project, and improve production efficiency. At the same time, wearing parts and other mud pump parts should be repaired rather than replaced when possible.
As an integral part of onshore and offshore drilling, mud pumps circulate drilling fluids to facilitate drilling oil and natural gas wells. Mud pumps stabilize pressure and support the well during the drilling process and drilling fluids provide friction reduction and a means to remove cuttings. A leak detection system for hex pumps was created for a hex mud pump with six pistons, six suction valves, and six discharge valves. The six pistons are driven by a rotating, asymmetric cam. The system monitors the suction and discharge valves using accelerometers.
Valve leaks in piston pumps are often discovered at a late stage when the leaks are so severe that they induce large discharge pressure fluctuations and create washout damage (Figure 1). When a severe leak is detected, it is localized manually by listening to the fluid modules while the pump is running but it is difficult to uniquely localize the leak and distinguish between a suction valve leak and a discharge valve leak.
Human exposure to hazards is the main disadvantage of manual detection, verification, and localization. Mud pumps convert large amounts of power and often output high pressures up to 350 Bar discharge. Additional equipment in pump rooms also generates high acoustic noise pressure levels that can exceed 100 dBA and cause health and hearing damage if humans are not correctly protected.
During a vibration monitoring project for hex pumps, a Norwegian oil well company discovered the possibility of detecting leaks using accelerometers. Vibrations were recorded at different locations, both on the pump and on the discharge line, along with suction pressure, discharge pressure, and pump speeds for different pump conditions. A 20-kHz sampling frequency was used and 5-second snapshots were taken with intervals of a few minutes. On one occasion, the vibration signature significantly changed during a 15-minute period; the spot was a growing valve leak.
Based on that encouraging experience, the company wanted to include this condition-based maintenance system as a standard feature on all hex pumps, so it developed the system as a standalone module to add to the existing hex pump control system. Slightly simplified, it consists of the following components: accelerometers (one per valve block), a proximity sensor picking up pump speed and phase, a discharge pressure sensor, an embedded monitoring system (an NI CompactRIO system with acquisition modules for powering the accelerometers and acquiring high-frequency data), signal processing software and alarm logics implemented using NI LabVIEW software running on the CompactRIO monitoring system, and an HMI user interface developed in LabVIEW.
The data acquisition and signal processing are briefly described by the following steps: Capture high-rate data (25-kHz sample rate) from all sensors during a short time interval covering at least one pump cycle.
The default sampling frequency of the signals is 25 kHz but the system can handle higher rates if necessary. The bandpass filter is optional but experience shows that it improves contrast and detection sensitivity. Signal strength normalization by the median vibration level makes the detection nearly independent of the inherent ambient vibrations, which increase rapidly with increasing pump speed and discharge pressure. The last requirement — that the detected leaks last for a set time — eliminates erratic alarms caused by debris or large particles that can cause temporary seal malfunction.
Figure 2 shows a diagnosis screen from the hex pump control screen delivered by the leak detection system. It shows a very clear overview of the valve status and a vibration level trend of all valves.
The NI tools for prototyping the system provided an embedded deployment system that can reliably retrofit to existing pumps. In comparison to other leak detection methods based on analyzing discharge pressure, the vibration-based methods are more robust and reliable, especially when it comes to localizing a leak. Studies showed that an alternative method can be applied for shaft-driven piston pumps having either an integrated valve block or split blocks with a high vibration transfer. Leak localization for this kind of pump is mainly based on the phase of the pulsating vibration level. It can be used to localize one dominating leaky valve at a time.
The 2,200-hp mud pump for offshore applications is a single-acting reciprocating triplex mud pump designed for high fluid flow rates, even at low operating speeds, and with a long stroke design. These features reduce the number of load reversals in critical components and increase the life of fluid end parts.
The pump’s critical components are strategically placed to make maintenance and inspection far easier and safer. The two-piece, quick-release piston rod lets you remove the piston without disturbing the liner, minimizing downtime when you’re replacing fluid parts.