mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> liner pressure ratings quotation

Lake Petro provides high quality Mud Pump Parts including Mud Pump Liners, Mud Pump Fluid End Module, piston, Valve and Seat etc. With more than 10 years of experience in the oil and gas industry, we are dedicated to help and support our loyal clients with the most cost-effective and quality Liners and Pistons. We also provide mud pump price and mud pump for sale.

We offer Liners with Ceramic (Zirconia and Aluminium oxide) and Steel (Metal and Bi-metal) materials for all common brands of the mud pump and triplex mud pump.

Bi-metal liners (double metal liners) are made of forged steel shell and wear-resistant sleeve of high chromium iron. In the production process, the size accuracy should be strictly controlled, which can ensure that they can be easily and stably installed. The inner sleeve with high finish and hardness is wear-resistant, corrosion-resistant and has a long service life. The bi-metal liners are suitable for a lot of bad working conditions. Its service life is more than 800 hours.

Ceramic Liners are made of a ceramic inner sleeve and a forged steel outer shell. The service life of ceramic liners is about 4000 to 10000 hours, the minimum time is at least 2000 hours, which is a lot more than bi-metal liners. Because of the phase transformation toughen technology, the ceramic liners have the features of wear-resistance, erosion-resistance, high-pressure-resistance, high hardness and strength. Zirconia type and Alumina type are common type of ceramic sleeve. Compared with Alumina type, Zirconia type liners have better toughness properties and a much longer service life. Piston wear and water consumption for lubrication can be reduced as well.

Seal Rings for Liner packing are also important. Liner Seal Rings is designed and made with hard corner which is an integral part of seal rings and soft nitrile element rubber center. We could provide reliable liner Seal Rings for our customers could order them at the same time.

All Lake Petro liner products are interchangeable with O.E.M. products. Meanwhile, we provide customized Liners according to drawings. Our liners, also with our other mud pump spares, are supplied for use in Honghua, F-Series, Bomco, Emsco and National lines of triplex drilling pumps. Let Lake Petro be your one-stop shop for your whole fleet of pumps. Please refer to “Suitable Pump Models” Lable for more details.

mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> liner pressure ratings quotation

GDEP is the original creator of the drilling pump and continues to set the standard for durable, high-quality drilling pumps that can withstand the world’s toughest drilling environments. Starting with our PZ7 and rounding out with the market"s most popular pump, the PZ1600, our PZ Series of pumps are the perfect choice for today"s high-pressure drilling applications.

mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> liner pressure ratings quotation

The GT635 Geothermal Drilling Rig in operation showcasing a mud drilling setup with an auger drilling pipe, using a submersible sand guzzler (hydraulic driven, pick-up-pump designed for the water well driller). This pump is capable of lifting up to 500 GPM of return drilling mud, as well as solids as large as 1"(2.5cm), to a shaker or tank. The unit won"t air lock a

mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> liner pressure ratings quotation

NOV 12-P-160 Mud Pump is rated at 1600 input horsepower (1193 kw) at 120 strokes per minute, with a 12-inch (304.8 mm) stroke. Multiple liner sizes allow pressures and volumes to handle circulation requirements in deep drilling applications.

Flexibility: Compact engineering provides higher efficiency in less space. The NOV 12-P-160 Triplex Mud Pump light weight and flexible design make it easily adaptable to a variety of rig configurations. This provides flexibility as drilling requirements and conditions change.

Fluid End Modules: NOV offers a choice of fluid end modules and valve covers for every P Series pump model to select the fluid end module that exactly matches drilling requirements. All pump models can be equipped with either the standard or premium forged, two-piece interchangeable fluid modules

mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> liner pressure ratings quotation

The Hex Pump is an axial piston mud pump with six vertical pistons driven by two AC motors via a gear and a specially profiled cam. In contrast to crankshaft-driven triplex pumps, the Hex pump delivers a nearly pulsation free flow. Consequently, there is no need for pulsation dampeners on either the suction or discharge side when running this pump. Other major advantages are compactness (reduced weight and footprint) and no need for replacing liner sizes to achieve high pressure or flow. The Hex 240 version with 4 1/2" liners has a rated capacity of 2540 HP, a maximum rated pressure of 7500 PSI and a maximum flow capacity of 1034 GPM.

The Hex Pump has substantially less weight than a comparable Triplex pump, and this results in increased variable deck load capacity on drilling units. The potential cost savings related to increased variable deck load capacity both on new builds and on existing rigs will be discussed in this paper. Also, the potential steel weight reduction in the substructure on drilling units will be discussed.

The Hex Pump creates a clean standpipe pressure with much lower pressure fluctuation levels than triplex pumps. Due to this, there are no need for pulsation dampeners when running the Hex Pump. This additionally leads to much better and cleaner MWD-signals for the directional driller. As a consequence, this will contribute to faster and more accurate drilling in long and complicated directional wells.

The design and development of the Hex Pump is described in SPE paper 79831, ref /1/; "Development and Performance Testing of the Hex Mud Pump", but for the understanding of this paper it is important to understand the functionality of the Hex Pump design. Some of the main items are therefore repeated in this paper. SPE paper 92507, ref. /2/, "Operational experience with use of a Hex Pump on a land rig" focuses on the improved MWD-measurements related to use of Hex Pump compared to triplex pumps. Some of the main items discussed there will also be repeated in this paper.

mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> liner pressure ratings quotation

It’s common to think of HDD drilling spreads in terms of rig size, but the true workhorse of the spread is in fact the mud pump – a high efficiency positive displacement piston pump. Without these pumps, the drilling fluid cannot be pumped into the bore to either jet drill or motor drill, the bore would not have any stability, and the cuttings would not be removed from the bore.

In the Australian HDD sector there is a limited number of available maxi-rigs and powerful mud pumps. Having access to additional maxi-rigs and powerful mud pumps is a key means to maintaining project productivity and mitigating the impact of unscheduled repairs. If the pumps are down, the drilling stops!

Mud pressure is lost as it moves through the surface piping, and a lot more as it moves down the drill string. Most of the pressure is expended in a jet stream at the drill bit and also as it passes through the stages of a downhole motor, if being used. At this point, the mud pump needs to provide additional pressure to push the mud back along the annulus to the surface, while maintaining an operational long-term duty cycle.

It is also important that the mud pump is sized appropriately to adequately cope with the volumes of drilling fluid required and to maintain adequate annular velocity in the borehole to ensure cuttings remain in suspension in the drilling fluid until the fluid exits the borehole.

The capacity of the mud pumps is commonly misunderstood and misrepresented. It is common for people to promote their mud mumps as having a 500gpm (1,892lpm) capacity and a 500psi pressure rating. While both numbers may be on the spec sheet, promoting the pumps as a 500gpm pump at 5,000psi is almost certainly incorrect.

For example, a common HDD pump such as the EWECO 446 pump, which is a good all round pump for smaller projects, is often quoted as having an output of 565gpm with pressure rating of 5000PSI. While both numbers are true, they are not true together.

For a long duration longevity on a project it is good drilling practice to limit the operation to 60 – 70 per cent of the capacity, particularly pressure capacity.

Assuming for small HDD projects where flow is more important than pressure, the minimum pump in the example above with the largest liners which should be considered is a 565gpm x 65 per cent = 367gpm pump. Applying the same logic to the pressure rating 1200psi x 65 per cent = 780psi.

While there are many contributing factors to pressure such as choke points, valves, drill pipe joint ID, pipe internal roughness, jet nozzle diameter and number, to name a few, it would not be uncommon to see 500psi of pressure on a 1000m jetting hole running three x #16 jets at a flow rate of 360gpm flow rate.

If a downhole motor forms part of the BHA where the formation is rock it would not be unreasonable to add 150 – 200psi to the pressure to operate the motor effectively on bottom i.e. 200psi + 500psi =700psi. For long-term operation the pump is effectively at maximum capacity.

To solve the problem, the pump liner diameter must be reduced, which in turn increases pressure output but decreases flow output. So to drill a longer bore (>1500m) with large downhole motors (>8”) triple or quadruple pumps would be required to provide operational longevity.

Maxibor has a fleet of four of the largest pumps in the HDD industry. Two Gardner Denver PZ9 pumps with 1000HP engines and Two Gardner Denver PZ8 pumps with 750 HP engines.

These are 100 per cent duty rated oil well servicing pumps. Primarily due to the low speed design (130rpm stroke rate compared to the 440rpm in the previous example).

From a HDD perspective, dual PZ 8/9 pumps have delivered bores in Australia at lengths of 2,500m in the civil industry and 4,000m in the gas drainage industry.

These pumps allow very long bores to be drilled to solve particular infrastructure installation challenges or they allow forward motor reaming, which is another technique to solve particular requirements where exit site sensitivities exist or it is not possible to drill a mud return line. It is these types of pumps that allow high performance cutting edge HDD bore designs to be achieved.

Pumps of this capacity are invaluable, if not a prerequisite, on long bore (+1,000m) and large diameter hole (+800mm) projects requiring larger maxi-rigs such as the Gallagher 660e, Gallagher 600, American Auger 660 and the Vermeer D330x500 which are a key part of the Maxibor HDD fleet. They are most often required in Australia on river and harbour crossings and long and deep water and sewer projects.

Maxibor will be using its Gardner Denver mud pumps on two landmark projects requiring a total of seven bores each averaging over 2.2km in length. Availability of the pumps has been one of the key factors in the selection of Maxibor as the HDD provider on these projects.

An HDD provider like Maxibor with its sizable fleet of powerful pumps and maxi and other rigs provides added comfort to project stakeholders that these key plant items will be available to enable the construction schedule to be maintained.