air lift mud pump price
A special type of pump consisting of a vertical riser pipe submerged in the wastewater or sludge to be pumped. Compressed air is injected into a tail piece at the bottom of the pipe. Fine air bubbles mix with the wastewater or sludge to form a mixture lighter than the surrounding water, which causes the mixture to rise in the discharge pipe to the outlet.
(b) Design. (1) Air lift pumps may not be used to pump sludge from a primary clarifier. (2) Air lift pumps must be at least three inches in diameter. (3) The design air flow rates must be based on the actual submergence of an air lift pump. (4) Blowers for an air lift pump system must be sized to provide the maximum design airflow rate required by the system. (5) The discharge end of an air lift pump must prevent splashing. (6) Air lift pumps located inside of a basin must allow for cleaning without removal from the basin. (7) An air lift pump must provide a way to release trapped air. (8) Air lift pump systems for return activated sludge, waste activated sludge, internal recycle, and other systems that affect overall process performance must have a minimum dynamic submergence of 60%. (9) Air lift pump systems for scum removal, grit removal, or for transfers that do not affect overall process performance must have a minimum dynamic submergence of 50%. (10) Air lift pump systems for return activated sludge, waste activated sludge, internal recycle, and other systems that affect overall process performance must provide a method for flow measurement using: (A) an external box with a weir; or (B) a rotameter, or other flow measurement device approved in writing by the executive director on the air line to each pump. When flow is measured on the air line, the engineering report must include a graph correlating the air flow rate in the air line to the liquid flow rate of the air lift pump.
For this critical duty, MMB selected the te-sewpas pulsed air lift pump system supplied by Te-Tech Process Solutions. The self-contained unit incorporates a 4.6kW duty side channel air blower, actuated air control valves, air manifold and control panel housed within a weatherproof GRP enclosure and is delivered to site fully assembled and tested. Each pulse of air lifts a quantity of sludge and discharges it from the sludge discharge pipe. A programmable timer in the PLC allows the frequency and duration of desludging to be adjusted to allow the sludge to consolidate thus eliminating any potential ‘rat-holing’ and ensuring consistent desludging.
The unit can be located close to the tanks that it serves with flexible air delivery hoses routed through ducts to each of the desludge chambers. The air delivered is hot and as a result there is no need for thermal lagging or insulation. Each te-sewpas unit can serve up to four primary or humus tanks with typical individual air delivery hose length up to 35m.
At Stocksbridge, a single Type B te-sewpas unit with duty/standby air blowers serves the two humus tanks. Rather than using the standard control panel, MMB decided to integrate the te-sewpas controls into the central PLC and Te-Tech provided a functional design specification for this purpose. The project was completed in October 2019. “We’ve been using the air lift systems of various makes on our sites for the last 20–25 years,” says Yorkshire Water’s Wastewater Asset Planning Sponsor Jan Buczylo, “The te-sewpas is particularly robust and we decided to retrofit additional systems in place of conventional progressive cavity pumps at both Stillington and Sutton-on-the-Forest.” Installation of these two systems was completed in April 2021.
The te-sewpas system provides significant whole life cost savings when compared to conventional pumped systems. For a typical installation serving two tanks, like the Stocksbridge project, based on an estimated 25% reduction in the electrical power consumption and reduced maintenance requirements, te-sewpas provides a 40% lower capital cost and 50% reduction in operational cost compared to a pumped desludge system.
Using compressed air is one such well development method. Most of today’s water well drill rigs come equipped with rotary screw air compressors. Reciprocating piston air compressors have been going by the wayside dating back to the mid-1980s.
“Once you know these (rotary screw air) compressors, they’re pretty simple,” says Garth Owens, president of Drill Tech Drilling & Pump Inc. in Chino Valley, Arizona. “It’s not rocket science, but it is a precision unit.”
With approximately 15 rotary screw air compressors (two piston booster compressors) on six drill rigs or as auxiliaries on 10 pump hoists, Owens has learned the mechanical intricacies of them. He has rebuilt the compressors, changed their gear sets, and replaced them on rigs while passing along his knowledge to others in the industry.
“A lot of guys who are drilling don’t even have the right air to develop a well and they’ll throw a pump down there and just try to pump out the mud,” says Garth’s son, Nick, the manager at Drill Tech. “It destroys pumps and you’re never getting that mud wall cake off the walls behind the gravel pack to really get what the well’s producing.”
“You can drill too big of a well to where the annulus is too big, and you can’t get through the gravel pack to get the walls clean. That’s a big problem. A lot of guys think the bigger the hole they go, the more gravel the better, which isn’t necessarily good because you can never get enough annular velocity to get through the gravel pack and get that mud cake off. So, you’ve got to step back and look at the big picture of your annulus to your casing size to your gravel pack.
Today’s standard rotary screw air compressor rating is at least 900 cfm or 1000 cfm/350 psi. Thirty years ago, the standard was 450 cfm/250 psi or 600 cfm/250 psi.
For example, a 750 cfm/125 psi compressor is half the compressor of a 750 cfm/250 psi compressor because the contractor is compressing the air twice as tight. Therefore, with a 750 cfm/350 psi compressor, the contractor is compressing the air an additional 50%.
To decrease the uphole velocity of 3000 feet per minute, some contractors use drill foam to clean the well at half the amount, 1500 feet per minute. “If you’re using foam and you’re filling that void, you’re taking half of that void away,” Garth Owens says. “You’re using half the air because you’re filling that void with an artificial substance. It’s going to foam up and blow out and then it’s going to evaporate and go away.”
The company conducts simultaneous swab-and-airlift with its double-swabbed development tool (see right photo) or uses high-velocity horizontal jetting.
The double-swabbed tool has perforations between the two swabs. Airlifting typically occurs through the drill pipe “from which the development swabs are suspended, so as the swabbing action brings suspended solids into the well, they are purged by the simultaneous airlift system,” writes Marvin F. Glotfelty, RG, in his book, The Art of Water Wells.
“The air comes out of the end of the drill pipe, comes up and hits that rubber swab which is the same diameter as the casing,” Garth Owens says, “and therefore all that air has to go out the perforations, blows into the gravel pack, spins that around in there, and cleans the gravel pack and cleans the borehole. Then the water comes up through the gravel pack and comes back to the perforations above your swab and comes out the top of the well.”
“We’ll actually create a vacuum and pull it between sections there,” Nick Owens says. “That’s why there’s a rubber swab above and below the holes. Typically, if you want to do an air swabber, you don’t need the rubbers because you’re just blowing it out through the perforated screen into the formation.”
The company’s high-velocity horizontal jetting tools allow it to adjust the amount of air it needs to push through them. “That way it’s blowing the air through the perforated screen, through the gravel pack, and then we’re trying to develop all that mud off there if it’s a mud hole,” Nick Owens says.
The company has an additional high-velocity jetting ball tool with approximately 20 holes each drilled to 3/16 inches around it. A high-pressure pump is used to pump freshwater down the well at 2000 psi.
“That will not only churn and turn that gravel, but it places that mud thinner all the way back to the borehole to knock off the wall cake,” Garth Owens says, “and once you’re done pressure jetting it, then you’ll come back and re-swab it and RC it all back out of there.”
Drill Tech, which had a backlog of approximately 100 wells and 30 pumps to install as of late July, stresses it all starts with the design of the well, drilling it correctly, using the right products, and not overusing polymers.
“If we’re RC drilling, we’ll mud up the top and then we’ll case the top off,” Nick Owens says. “There’s some wells out here where we live where the top 300 feet is all alluvium and there’s no water in it. We’ll mud those up, we’ll set a 300-foot surface casing, and we’ll RC drill the bottom out with just pure water because it’s just solid rock. So, we don’t use any product.
To drive home the importance of using the correct amount of product, Nick Owens recalls a large drilling company that installed two large municipal wells 10 years ago in central Arizona. It both drilled with and pumped too much polymer into the wells and was unable to get the polymer out. The wells produced 300 gpm.
“Most guys will just trip their drill pipe straight in, blow it straight up the hole, and they’re done,” he shares. “But you’ll get a lot more water out of your well, you’ll pump a lot less sand, and you’ll have a much better production well with a higher pumping level if you clean that formation out and get every bit of that mud that you put in back out again. The only way to do that is with pressure through the perforations.”
While drilling in July in California, Garth Owens also noticed large amounts of gravel being put into large diameter wells drilled using the mud rotary method. “They think that the bigger the hole is, the more gravel they put in, the better it is, which is not true. What they don’t get is the bigger the hole gets, the worse development job you can do.
“You design with maybe a 10 percent passing of sand,” he says, “and then you want to go down there and develop it until that 10 percent gets down to 0.5 percent or 0.25 percent. You want to airlift develop that until you’ve blown out everything, you’ve agitated it, washed out the gravel, washed off the wall cake, and then the ground itself and those fines come out of there.
“If you don’t do it right, you can spend three or four days pumping sand because the gravel is too coarse. You put in too coarse of a filter and the sand just keeps flowing. It takes forever, if it ever does stop. Too coarse of a sand and it’ll never stop.”
However, unlike with a reciprocating piston air compressor, Garth Owens cautions against closing the downhole valve, build maximum pressure, and jerk the valve open with a rotary screw air compressor.
“Because on a piston compressor, you just have a receiver tank that just holds air,” he says, “and you can pressure it up to 250 to 300 pounds and jerk the valve open and that big surge of air is what blows out silts and rocks when it won’t do it when steady drilling.
For years, automatic transmission fluid (ATF) was the standard for lubrication on compressors. Today, synthetic compressor oil is used because they must run at about 225 degrees to 275 degrees to vaporize the water as it sucks moisture out of the air when drilling. “It sucks all that moisture into it and it rusts up all the bearings and gears,” Garth Owens says, “so by turning the thermostat up so hot, it vaporizes and burns the condensation out of it.
“Typically, there’s three thousandths max tolerant in a screw compressor, so you really have to keep your air filters clean, your oil filters clean, and your oil good. When that tolerance starts to get loose, when you start getting a bearing wearing out or one of your screws starts wearing into the impeller of the compressor, when that tolerance starts to get loose at all, typically your oil temperatures skyrocket tremendously. It’ll run at 200 degrees for 10 years and then all of a sudden, you’re wondering why it’s running at 275 degrees and trying to cook the hoses off your rig.”
The first indication is typically losing a bearing when the oil temperature begins climbing with the tolerances getting loose. “You either have steel on steel friction, or the tolerance is so loose that after you’ve compressed this air and oil, it scoops up the air and oil and pushes it through the screw,” Garth Owens says.
“Because the tolerance is so loose, it squirts right back out of it and now you’ve built more friction, more heat, and it has to scoop it back up again. So as the screw compressor starts to go out, the volume of air starts dropping and the temperature of your oil starts increasing. Those are your first indications that when the oil temperature is coming up, you’ve got screw damage, and when your cfm of air goes down, you have damage.”
Marvin F. Glotfelty, RG, discusses various types of well development (including swab-and-airlift) and physical attributes of the well that will be impacted by the various development methods in an NGWA: Industry Connected video.
Air-lift pumps are finding increasing use where pump reliability and low maintenance are required, where corrosive, abrasive, or radioactive fluids in nuclear applications must be handled and when a compressed air is readily available as a source of a renewable energy for water pumping applications. The objective of the present study is to evaluate the performance of a pump under predetermined operating conditions and to optimize the related parameters. For this purpose, an air-lift pump was designed and tested. Experiments were performed for nine submergence ratios, and three risers of different lengths with different air injection pressures. Moreover, the pump was tested under different two-phase flow patterns. A theoretical model is proposed in this study taking into account the flow patterns at the best efficiency range where the pump is operated. The present results showed that the pump capacity and efficiency are functions of the air mass flow rate, submergence ratio, and riser pipe length. The best efficiency range of the air-lift pumps operation was found to be in the slug and slug-churn flow regimes. The proposed model has been compared with experimental data and the most cited models available. The proposed model is in good agreement with experimental results and found to predict the liquid volumetric flux for different flow patterns including bubbly, slug and churn flow patterns
The air-lift pump has been used in various applications with its merit that it can pump up without any moving parts. E.g. coffee percolator, petroleum industry, suction dredge, OTEC i.e. ocean thermal energy conversion and so on. By the merit, it has high durability for high temperature water or vapor, and fluid-solid mixture like waste water, muddy water and crude, which cause problems when it"s pumped up with general pumps. In this regard, the air-lift pump has been one of the most desirable technology. A typical air-lift pump configuration is illustrated in Figure 01. The principle of this pump is very simple. When air is injected from the injector at bottom of a submerged tube, i.e., air bubbles are suspended in the liquid, the average density of the mixture in the tube is less than that of the surrounding fluid in the reservoir. Then hydrostatic pressure over the length of the tube is decreased. This buoyancy force causes a pumping action. The comparison of the simulated results, experimental result, and theoretical result is been able by data shown as Figure 04. They have similar trends but they also have a little differences because there are some limits of simulating the flow regimes. At the different flow condition, different coefficients for friction factor or pressure drop should be used, but this simulation uses a laminar condition and the theoretical equations are valid only for slug regime where the air flow rate is lower than the other regimes. From these causes, the differences has arisen, and difference comes bigger as the air flow rate increases, i.e., becoming annular flow regime or churn flow regime.
Results are presented of the specific performances of eight, different, water-pumping wind-turbines subjected to impartial tests at the Alberta Renewable Energy Test Site (ARETS), Alberta, Canada. The results presented which were derived from the test data, obtained independently of the equipment manufacturers, are expressed per unit of rotor projected area to eliminate the influence of machine size. Hub-height wind speeds and water flow rates for a common lift of 5.5 m (18 ft) constitute the essential test data. A general finding was that, to a first approximation, there were no major differences in specific performance between four units equipped with conventional reciprocating pumps two of which employed reduction gearing and two of which did not. It was found that a unit equipped with a Moyno pump performed well but three air-lift machines had, as was expected, poorer specific performances than the more conventional equipment. 10 refs., 9 figs.
Workplace monitoring, one of the key components of the radiation protection program is generally carried out by means of instruments installed permanently in respective areas or through portable air sampling instruments. Continuous air monitor (CAM) is one such monitor that constantly monitors the radionuclide concentration in air and triggers alarm as and when the air concentration goes above the pre-set levels. Conventional CAM system has a filter head, detector, display unit and a pump as four major parts. Pump may be either rotary vane or a vibrating diaphragm which are electrically driven using motors. Air lift pumps using ejectors are widely used where pump reliability and low maintenance are required, and where corrosive, abrasive, or radioactive fluids are handled. Since ejectors are uncomplicated alternative to vacuum pumps, an attempt was made to use the same as a pump for conventional CAMs. An ejector based sampling set up was made, tested and the results are represented in this paper
A study was undertaken to measure the efficiency with which carbon dioxide was stripped from freshwater (0‰) and saline water (35‰ NaCl) passing through an air-lift at 15 °C. The air-lift was constructed of 50 mm (OD) PVC pipe submerged 95 cm in a tank, had an adjustable air injection rate, and c...... for any water type (i.e. temperature, alkalinity, salinity and influent CO2 concentration).......A study was undertaken to measure the efficiency with which carbon dioxide was stripped from freshwater (0‰) and saline water (35‰ NaCl) passing through an air-lift at 15 °C. The air-lift was constructed of 50 mm (OD) PVC pipe submerged 95 cm in a tank, had an adjustable air injection rate......, and could be adjusted to three lifting heights: 11, 16 and 25 cm. The gas to liquid ratio (G:L) was high (1.9–2.0) at low water discharge rates (Qw) and represented the initial input energy required to raise the water up the vertical riser section to the discharge pipe. The air-lift increased in pumping...
Outlined herein are experimental results with a water hammer pump. It is a unique pump in that it depends only on potential energy of water to pump-up water. Water flows downwards from a reservoir at a high position into the pump , and is released from the exhaust valve. When velocity of water flowing in the pipe reaches a certain level, hydraulic force exceeds gravity of the exhaust valve to rapidly closes it, which is accompanied by rapid increase in pressure in the pump. High-pressure water flows into the air chamber, after pushing up the lifting valve, to compress air in the chamber. The lifting valve is closed, when pressure in the air chamber exceeds that in the pump, to pump up water in the chamber through the lifting pipe. Closure of the lifting valve produces a negative pressure within the pump, which, together with gravity of the exhaust valve, opens the valve again. The pump lifts water at 1.64l/min under the conditions of head: 3m and lift: 6m at an efficiency of 48.1%. 1 ref., 4 fig., 2 tab.
This invention relates to lifting appliances and particularly concerns a "pump and motor set" or motor-pump unit fitted with a lifting appliance enabling the motor to be separated from the pump. In nuclear power stations the reactor discharges heat that is carried by the coolant to a distant point away from the reactor to generate steam and electricity conventionally. In order to cause the reactor coolant to flow through the system, coolant motor-pump units are provided in the cooling system. These units are generally of the vertical type with an electric motor fitted vertically on the pump by means of a cylindrical or conical structure called motor support [fr
Due to the high costs to install electricity in remote locations, away from the regular urban electrical installations, photovoltaic solar energy has ample application in public illumination, water pumping, health services offices, etc. With the purpose to contribute to a better use of this kind of energy, this project aimed in analyzing the outflow and efficiency of a motor pump powered by photovoltaic panels, the irradiation necessary to activate it for water lift, collecting data at every 6- meter height, ranging from 6,2 to 18,2 meters. This study is part of a development project of the Universidade Tecnologica Federal do Parana (UTFPR), by making use of photovoltaic panels, motor pump, pyranometers, thermocouple type K, pressure transducer and outflow transducer. The data show a maximum average outflow of 584,299 Lh{sup -1} and maximum efficiency of 23,338% for a lift of 18,2 m. There is also the need of irradiation for the activation of the motor pump proportional to the height of the lift, in a polynomial dependence of the third order. (author)
In the Great Plains about 15 percent of the irrigation water pumped on farms comes from surface water sources; for the United States as a whole, the figure is about 22 percent. Because of forecast fuel shortages, there is a need to develop alternative energy sources such as wind power for surface water pumping. Specific objectives of this investigation were to: design and assemble a prototype wind powered pumping system for low lift irrigation pumping; determine performance of the prototype system; design and test an irrigation system using the wind powered prototype in a design and test an farm application; and determine the size combinations of wind turbines, tailwater pits, and temporary storage reservoirs needed for successful farm application of wind powered tailwater pumping systems in western Kansas. The power source selected was a two bladed, 6 m diameter, 9 m tall Darrieus vertical axis wind turbine with 0.10 solidity and 36.1 M(2) swept area.
The metering pump system that delivers high-level liquid wastes (HLLW) slurry to a melter is an integral subsystem of the vitrification process. The process of selecting a pump for this application began with a technical review of pumps typically used for slurry applications. The design and operating characteristics of numerous pumps were evaluated against established criteria. Two pumps, an air-displacement slurry (ADS) pump and an air-lift pump, were selected for further development. In the development activity, from FY 1983 to FY 1985, the two pumps were subjected to long-term tests using simulated melter feed slurries to evaluate the pumps" performances. Throughout this period, the designs of both pumps were modified to better adapt them for this application. Final reference designs were developed for both the air-displacement slurry pump and the air-lift pump. Successful operation of the final reference designs has demonstrated the feasibility of both pumps. A fully remote design of the ADS pump has been developed and is currently undergoing testing at the West Valley Demonstration Project. Five designs of the ADS pump were tested and evaluated. The initial four designs proved the operating concept of the ADS pump. Weaknesses in the ADS pump system were identified and eliminated in later designs. A full-scale air-lift pump was designed and tested as a final demonstration of the air-lift pump"s capabilities
This supporting document details calculations for the proper design of a lifting beam and redesigned lifting lugs for the 241AZO1A decant pump. This design is in accordance with Standard Architectural-Civil Design Criteria, Design Loads for Facilities (DOE-RL 1989) and is safety class three. The design and fabrication is in accordance with American Institute of Steel Construction, Manual of Steel Construction, (AISC, 1989) and the Hanford Hoisting and Rigging Manual (DOE-RL 1993)
Full Text Available The evolution of the major achievements in water lifting devices with emphasis on the major technologies over the centuries is presented and discussed. Valuable insights into ancient water lifting technologies with their apparent characteristics of durability, adaptability, and sustainability are provided. A comparison of the relevant technological developments in several early civilizations is carried out. These technologies are the underpinning of modern achievements in water engineering. They represent the best paradigm of probing the past and facing the future. A timeline of the historical development of water pumps worldwide through the last 5500 years of the history of mankind is presented. A chronological order is followed with emphasis on the major civilizations.
Personal air samplers are used to more conveniently obtain breathing zone samples from individuals over periods of several hours. Personal air sampling pumps must meet minimum performance levels under all working conditions to be suitable for use in radiation protection programs. In addition, the pumps should be simple to operate and as comfortable to wear as possible. Ten models of personal air sampling pumps were tested to evaluate their mechanical performance and physical characteristics. The pumps varied over a wide range in basic performance and operating features. Some of the pumps were found to have adequate performance for use in health physics air sampling applications. 3 references, 2 figures, 5 tables
Highlights: • The gas-lift pump has been adopted to enhance the natural circulation capability. • LENAC code is developed in my study. • The calculation results by LENAC code show good agreement with experiment results. • Gas mass flow rate, bubble diameter, rising pipe length are important parameters. -- Abstract: The gas-lift pump has been adopted to enhance the natural circulation capability in the type of lead–bismuth alloy cooled reactors such as Accelerator Driven System (ADS) and Liquid–metal Fast Reactor (LMFR). The natural circulation ability and the system safety are obviously influenced by the two phase flow characteristics of liquid metal–inert gas. In this study, LENAC (LEad bismuth alloy NAtural Circulation capability) code has been developed to evaluate the natural circulation capability of lead–bismuth cooled ADS with gas-lift pump. The drift flow theory, void fraction prediction model and friction pressure drop prediction model have been incorporated into LENAC code. The calculation results by LENAC code show good agreement with experiment results of CIRCulation Experiment (CIRCE) facility. The effects of the gas mass flow rate, void fraction, gas quality, bubble diameter and the rising pipe height or the potential difference between heat exchanger and reactor core on natural circulation capability of gas-lift pump have been analyzed. The results showed that in bubbly flow pattern, for a fixed value of gas mass flow rate, the natural circulation capability increased with the decrease of the bubble diameter. In the bubbly flow, slug flow, churn flow and annular flow pattern, with the gas mass flow rate increasing, the natural circulation capability initially increased and then declined. And the flow parameters influenced the thermal hydraulic characteristics of the reactor core significantly. The present work is helpful for revealing the law of enhancing the natural circulation capability by gas-lift pump, and providing theoretical
A bubble pump is proposed to replace the traditional mechanical solution pump in lithium bromide absorption chillers, for its advantageous feature that can be driven by industrial waste heat or solar energy or other low-grade energy. In two-stage bubble pump driven lithium bromide absorption refrigeration system, flow patterns in lifting pipe have significant effects on the performance of bubble pump. In this paper, the single bubble motion and the double bubbles coalescence in vertical ascending pipe are simulated by an improved free energy model of lattice Boltzmann method, in which the two-phase liquid to gas density ratio is 2778. The details of bubbles coalescence process are studied. Density and velocity of bubbles have been obtained. The computational results show that the initial radius of each bubble has a great influence on the coalescence time. The larger the initial bubble radius, the shorter the coalescence time. The pipe diameter has a little effect on the two bubbles coalescence time while it has a significant effect on the bubble velocity. As the pipe diameter increases, the bubble velocity increases. The obtained results are helpful for studying the transition mechanisms of two-phase flow patterns and useful for improving the bubble pump performance by controlling the flow patterns in lifting pipe.
This paper deals with individual air-to-air heat pumps in Danish dwellings and summerhouses and the question of to what extent they actually deliver savings of energy consumption. Results show that 20% of the expected reduction of electricity consumption is converted into increased comfort...... in the homes, including extended heating areas, keeping a higher temperature and a longer heating season and using the heat pump for air conditioning. Data include electricity consumption in 185 households before and after installation of heat pumps together with survey results of 480 households. Furthermore...... heating practices. These results have to be taken into account when making long-term energy planning for a sustainable energy system....
Autoignited lifted flame behavior in laminar jets of methane/hydrogen mixture fuels has been investigated experimentally in heated coflow air. Three regimes of autoignited lifted flames were identified depending on initial temperature and hydrogen
This study was carried out experimentally and analytically about the performance of solar cell panel system for operating the pump coupled by dc motor. The solar cell panel with total area 1.9848 m2 consists of three modules of 80 Wp each. The small centrifugal pump powered by dc motor is operated to lift water from 1m to 7m heads in sequence and gives the amount of water pumped over the whole day from 08.00 to 16.00 h are 11988, 10851, 8874, 7695, 5760, 3600...
This publication is a study of the dynamic performance of a 5-ton air-to-air heat pump in a residence in Washington, D.C. The effect of part-load operation on the heat pump"s cooling and heating coefficients of performance was determined. Discrepancies between measured performance and manufacturer-supplied performance data were found when the unit…
In this paper, we present a proton exchange membrane fuel cell (PEMFC) integrated with an electromagnetic (EM) air pump. The EM air pump provides the PEMFC with air by reciprocating motions of the permanent magnet attached to a flexible membrane. We performed a parametric study to decide the optimal dimensions of the reciprocating EM air pump. The effects of various operating parameters on the EM air pump were investigated with the root-mean-square (RMS) flow rate and current. A core with a higher relative permeability shows better performance. The RMS current linearly increases with the applied voltage and shows no dependence on the frequency. The RMS flow rate also increases with the voltage. The RMS flow rate per power consumption is highest at the frequency around 20 Hz and decreases as the applied voltage increases. When the reciprocating EM air pump was used to supply air to the portable PEMFC, it was found that the power density of the PEMFC increases with the applied voltage and shows the highest performance at the frequency of 10 Hz. We compared the performance of the PEMFC between the flow meter and the EM air pump used as an air supplier. About 81% of the output power using the flow meter was obtained when the EM air pump is operated at the applied voltage of 5 V. The parasitic power ratio reaches at its minimum value about 0.1 with an EM applied voltage of 0.25V. (paper)
This study was carried out experimentally and analytically about the performance of solar cell panel system for operating the pump coupled by dc-motor. The solar cell panel with total area 1.9848 m2 consists of three modules of 80 Wp each. The small centrifugal pump powered by dc-motor is operated to lift water from 1m to 7m heads in sequence and gives the amount of water pumped over the whole day from 08.00 to 16.00 h are 11988, 10851, 8874, 7695, 5760, 3600, 2340 L/d respectively. The hourl...
The ORNL Heat Pump Design Model is a FORTRAN-IV computer program to predict the steady-state performance of conventional, vapor compression, electrically-driven, air-to-air heat pumps in both heating and cooling modes. This model is intended to serve as an analytical design tool for use by heat pump manufacturers, consulting engineers, research institutions, and universities in studies directed toward the improvement of heat pump performance. The Heat Pump Design Model allows the user to specify: system operating conditions, compressor characteristics, refrigerant flow control devices, fin-and-tube heat exchanger parameters, fan and indoor duct characteristics, and any of ten refrigerants. The model will compute: system capacity and COP (or EER), compressor and fan motor power consumptions, coil outlet air dry- and wet-bulb temperatures, air- and refrigerant-side pressure drops, a summary of the refrigerant-side states throughout the cycle, and overall compressor efficiencies and heat exchanger effectiveness. This report provides thorough documentation of how to use and/or modify the model. This is a revision of an earlier report containing miscellaneous corrections and information on availability and distribution of the model--including an interactive version.
An innovative clean air heat pump (CAHP) was designed and developed based on the air purification capacity of regenerative silica gel rotor. The clean air heat pump integrated air purification, dehumidification and cooling in one unit. A prototype of the clean air heat pump was developed...... to investigate its energy performance. Energy consumption of the prototype of CAHP was measured in laboratory at different climate conditions including mild-cold, mildhot and extremely hot and humid climates. The energy saving potential of the clean air heat pump compared to a conventional ventilation and air......-conditioning system was calculated. The experimental results showed that the clean air heat pump saved substantial amount of energy compared to the conventional system. For example, the CAHP can save up to 59% of electricity in Copenhagen, up to 40% of electricity in Milan and up to 30% of electricity in Colombo...
An experimental study has been carried out at Mechanical and Electrical Research Institute, Qenater (300 N, 310 E), Egypt on a 2000 WP solar photovoltaic (PV) water pump. The main objective is to investigate the feasibility of utilizing solar energy in ground water lifting. A solar PV pumping system has been constructed as a prototype for a large-scale photovoltaic project in south of Egypt. Solar potential at the remote and arid areas of Egypt is discussed. Installation and operation factors as a function of environmental conditions are presented. Performance of the water pump has been evaluated. The water discharge and system efficiency has been estimated and presented. The changes in water discharge and system efficiency with change in solar radiation has been measured and presented. Preliminary results show that there is a huge potential and real-ability for solar PV submersible water pumping in the remote and arid areas of Egypt
A mixer pump has been used to mitigate the hydrogen build-up in tank 241SY101 (SY101), located in the 200 West Area of the Hanford Site. New equipment is being prepared for the removal, transport, storage, and disposal of the test pump. The disposal equipment for the test pump now in tank SY101 includes a shipping container, a strong back, a lifting beam, a test weight, container support stands, a modified mock-up pump, a flexible receiver blast shield, a lifting yoke, and a yoke brace. The structural evaluations of container and strong back are detailed in another supporting document (WHC 1994a), the engineering analyses of flexible receiver blast shield/lifting yoke and yoke brace are given in other supporting documents (WHC 1994b, WHC 1994c), respectively. Engineering tasks that were contracted to Advanced Engineering Consultants (AEC) include the design and analysis of the following. Two spreader-beam lifting devices. a Container test weight. Container support saddles. Mock-up pump modification. This report documents the work description, design basis, assumptions, and design calculations provided by AEC for the above components. All AEC documents appear in Appendix A. Additional work conducted by Westinghouse Hanford Company (WHC) on the modified container test weight, modification to the mock-up pump, the removable support for the transport assembly, and saddle modification for air pallets also are included in this document
Full Text Available Os fermentadores tipo air lift oferecem vantagens tais como: eficiente homogeneização dos componentes, baixo cisalhamento e economia de energia, pois o meio é agitado pelo processo de aeração, sem necessidade de agitação mecânica. O objetivo deste trabalho foi analisar a cinética de crescimento de Saccharomyces boulardii neste fermentador, com aeração de 1 e 1,5 vvm (volume de ar por volume de meio, por minuto, comparada com o crescimento em frascos agitados em shaker, visando a futura aplicação deste fermentador, em escala industrial. Os resultados indicaram que houve uma diminuição do pH com o consumo da glicose do meio, a qual foi totalmente consumida até o final da fase exponencial, de 5 e 6 horas para o shaker e o air lift, respectivamente. Após este período houve uma alteração na velocidade de crescimento de S. boulardii, em ambos os equipamentos, indicando uma possível mudança na fonte de carbono utilizada, uma vez que toda a glicose foi consumida após estes períodos. Os valores de velocidades específicas de crescimento foram semelhantes para o shaker e air-lift com 1,0 vvm, porém inferiores ao air-lift com 1,5 vvm, indicando que neste último reator há possibilidades de se conseguir uma velocidade de produção celular maior, dependendo apenas da eficiência de oxigenação oferecida.This work aimed to analyze the kinetics of S. boulardii growth in an air lift fermentor under two aeration conditions: 1 and 1.5 air vvm (air volume per volume of culture medium per minute, in comparison with growth in shaken flasks, with a view to the future application of this fermenter on an industrial scale. Air lift fermentors offer advantages such as efficient homogenization of the components, low shear stress, and energy savings because the medium is stirred by aeration and does not require mechanical stirring. The pH of the medium decreased with the glucose uptake during the exponential phase, probably due to the formation
The vacuum evacuation system for nuclear fusion reactors bears the role of exhausting hydrogen isotopes in large quantity together with helium continuously for long hours, and as the high vacuum pumps for this purpose, the mechanical pumps which can do continuous evacuation and decrease the quantity of staying radioactive tritium, such as turbo molecular pumps and compound molecular pumps, are promising. Because of the compatibility with tritium, oil lubrication is not desirable, accordingly, the pumps with ceramic rotating vanes and magnetic bearings are demanded. As a part of the development of a magnetic bearing type mechanical pump which can be used for nuclear fusion reactors, the compound molecular pump, in which emergency bearings were incorporated, was made for trial, and the test of sudden air intrusion was carried out, as the results, various knowledges were obtained. The constitution of the testing setup, and the test results are reported. When air was injected at the pressure rise of 3.3x10 4 Pa/s from exhaust port side, after about 2.5 s, the maximum lift of 4.2x10 3 N arose. When air was injected at the pressure rise of 2.7x10 5 Pa/s from the suction part side, after about 0.4s, the maximum lift of 6.9x10 3 N arose. In the air injection alternately from the suction port and exhaust port sides, the emergency bearings functioned normally in 10 times of the test. (K.I.)
Regenerated air (reverse Brayton) cycle has unique potentials in heat pump applications compared to conventional vapor-compression cycles. To better understand the regenerated air heat pump cycle characteristics, a thermodynamic model with new equivalent parameters was developed in this paper. Equivalent temperature ratio and equivalent isentropic efficiency of expander were introduced to represent the effect of regenerator, which made the regenerated air cycle in the same mathematical expressions as the basic air cycle and created an easy way to prove some important features that regenerated air cycle inherits from the basic one. Moreover, we proved in theory that the regenerator does not always improve the air cycle efficiency. Larger temperature ratio and lower effectiveness of regenerator could make the regenerated air cycle even worse than the basic air cycle. Lastly, we found that only under certain conditions the cycle could get remarkable benefits from a well-sized regenerator. These results would enable further study of the regenerated air cycle from a different perspective. - Highlights: • A thermodynamic model for regenerated air heat pump cycle was developed. • Equivalent temperature ratio and equivalent expander efficiency were introduced. • We proved regenerated air cycle can make heating capacity in line with heating load. • We proved the regenerator does not always improve the air cycle efficiency.
This report summarizes task 1 of the Clean Air Heat Pump project - modelling and simulation on energy savings when using the clean air heat pump for ventilation, air cleaning and energy recovery. The total energy consumption of the proposed ventilation systems using clean air heat pump technology was calculated by a theoretical model and compared with the reference ventilation systems (conventional ventilation systems). The energy compared between the two systems includes energy used for heating, cooling and fan. The simulation and energy saving calculation was made for the application of the clean air heat pump in three typical climate conditions, i.e. mild-cold, mild-hot and hot and wet climates. Real climate data recorded from three cities in 2002 was used for the calculation. The three cities were Copenhagen (Denmark), Milan (Italy) and Colombo (Sir Lanka) which represent the above three typical climate zones. For the Danish climate (the mild cold climate), the calculations show that the ventilation system using clean air heat pump technology can save up to 42% of energy cost in winter compared to the conventional ventilation system. The energy saving in summer can be as high as 66% for the ventilation system with humidity control and 9% for the ventilation system without the requirement of humidity control. Since the Danish summer climate is very mild, over 80% of the yearly energy consumption for ventilation is used during winter season. It is, therefore, estimated that more than 35% annual energy saving for ventilation is expected in Denmark using the clean air heat pump ventilation technology. For the mild hot climate, e.g. the Italian climate, the calculations show that up to 63% of the energy saving can be achieved in summer season. For the winter mode, 17% reduction of the energy cost can be expected for the domestic use. For industrial use, the energy cost of the clean air heat pump may not be favourable due to the industrial price of gas in Italy is
It is shown that one of the causes for tornado is Tornado Lift. At increasing vortex diameter its kinetic energy decreases to keep the moment of momentum constant. A kinetic energy gradient of such vortex is Tornado Lift. Evaluation shows that contribution of Tornado Lift in air lifting in a tornado is comparable to buoyancy according to the order of magnitude.
Francis Hauksbee (1660-1713) is well known for his double-barrelled air-pump. However, the origin of this pump, and Hauksbee"s background, are often described as a mystery. This text seeks to dispel the riddle. It is argued that Hauksbee"s competence as an exceptional maker of air-pumps was developed between 1699 and 1703 as a result of his experiences with the construction, manufacturing and sale of cupping-glasses. His cupping utensils embodied a new design, where syringes were used to evacuate the glasses, instead of the traditional way by fire or mouth suction. These syringes, which in fact were small air-pumps, were perfected between 1699 and 1701. A larger syringe, introduced in 1701, served as a transition from the cupping-syringe to his first air-pump for use in natural philosophy. This syringe was described as a "combined engine", which could serve as an air-pump, a condensing engine and a syringe for injecting air, wax or mercury into pathological specimens. Hauksbee"s first air-pump was a single-barrelled model introduced in 1702, based on the combined engine. Its various features, such as easy and convenient leak-tightening, exact pressure measurements by an in-built barometer and an air-inlet function for readmission of air into the receiver, are discussed. Finally, it is shown that these activities gave Hauksbee the reputation of being an outstanding instrument-maker, years before the double-barrelled air-pump was in sight.
The objective of this work plan is to plan the steps and estimate the costs required to remove the failed AP-102 mixer pump, and to plan and estimate the cost of the necessary design and specification work required to order a new, but modified, mixer pump including the pump and pump pit energy absorbing design. The main hardware required for the removal of the mixer is as follows: a flexible receiver and blast shield; a metal container for the pulled mixer pump; and a trailer and strongback to haul and manipulate the container. Additionally: a gamma scanning device will be needed to detect the radioactivity emanating from the mixer as it is pulled from the tank; a water spray system will be required to remove tank waste from the surface of the mixer as it is pulled from the AP-102 tank; and a lifting yoke to lift the mixer from the pump pit (the SY-101 Mixer Lifting Yoke will be used). A ""green house"" will have to be erected over the AP-102 pump pit and an experienced Hoisting and Rigging crew must be assembled and trained in mixer pump removal methods before the actual removal is undertaken
The heating system of the bioclimatic building of the Greek National Centre for Renewable Energy Sources (CRES) comprises two heating plants: the first one includes an air source heat pump, Solar Air Collectors (SACs) and a heat distribution system (comprising a fan coil unit network); the second one is, mainly, a geothermal heat pump unit to cover the ground floor thermal needs. The SAC configuration as well as the fraction of the building heating load covered by the heating plant are assessed in two operation modes; the direct (hot air from the collectors is supplied directly to the heated space) and the indirect mode (warm air from the SAC or its mixture with ambient air is not supplied directly to the heated space but indirectly into the evaporator of the air source heat pump). The technique of the indirect mode of heating aims at maximizing the efficiency of the SAC, saving electrical power consumed by the compressor of the heat pump, and therefore, at optimizing the coefficient of performance (COP) of the heat pump due to the increased intake of ambient thermal energy by means of the SAC. Results are given for three research objectives: assessment of the heat pump efficiency whether in direct or indirect heating mode; Assessment of the overall heating plant efficiency on a daily or hourly basis; Assessment of the credibility of the suggested simulation model TSAGAIR by comparing its results with the TRNSYS ones. (author)
Biogas engine-driven heat pump air conditioner is a new-style system which includes biogas engine-driven heat pump, primary heat exchanger, second heat exchanger, sprayed room and fans, pumps, etc. In summertime, the air can be reheated by the waste heat water from the biogas engine in the system, while the air can be reheated and humidified by the waste heat water in winter. Reducing or displacing electrical heating requirements can achieve the great opportunity for significant energy savings. This paper, therefore, aims to improve the energy performance of the AC system by using the waste heat from the biogas engine. The mathematic model was used to research the BHPAC. Explicitly, we investigated the influence of various factors including the outdoor air temperature and humidity in summer and winter. Results show that the biogas engine-driven heat pump air conditioner can save more energy than the electrical power heat pump. In summer, the minimum for percentage of primary energy saving for BHPAC is over 25%. With the outdoor air dry-bulb temperature and the relative humidity rises, the saving energy percentage rises. In winter, the minimum for percentage of primary energy saving for BHPAC is 37%. The more the outdoor air relative humidity of the outdoor air decreases, the more the BHPAC saves energy. It is proved that the system which is a highly actively fully utilizing energy technology has good partial load characteristic and good effects of energy saving. (author)
Autoignited lifted flames of dimethyl ether (DME) in laminar nonpremixed jets with high-temperature coflow air have been studied experimentally. When the initial temperature was elevated to over 860 K, an autoignition occurred without requiring an external ignition source. A planar laser-induced fluorescence (PLIF) technique for formaldehyde (CH2O) visualized qualitatively the zone of low temperature kinetics in a premixed flame. Two flame configurations were investigated; (1) autoignited lifted flames with tribrachial edge having three distinct branches of a lean and a rich premixed flame wings with a trailing diffusion flame and (2) autoignited lifted flames with mild combustion when the fuel was highly diluted. For the autoignited tribrachial edge flames at critical autoignition conditions, exhibiting repetitive extinction and re-ignition phenomena near a blowout condition, the characteristic flow time (liftoff height scaled with jet velocity) was correlated with the square of the ignition delay time of the stoichiometric mixture. The liftoff heights were also correlated as a function of jet velocity times the square of ignition delay time. Formaldehydes were observed between the fuel nozzle and the lifted flame edge, emphasizing a low-temperature kinetics for autoignited lifted flames, while for a non-autoignited lifted flame, formaldehydes were observed near a thin luminous flame zone.For the autoignited lifted flames with mild combustion, especially at a high temperature, a unique non-monotonic liftoff height behavior was observed; decreasing and then increasing liftoff height with jet velocity. This behavior was similar to the binary mixture fuels of CH4/H2 and CO/H2 observed previously. A transient homogeneous autoignition analysis suggested that such decreasing behavior with jet velocity can be attributed to partial oxidation characteristics of DME in producing appreciable amounts of CH4/CO/H2 ahead of the edge flame region.
Autoignited lifted flames of dimethyl ether (DME) in laminar nonpremixed jets with high-temperature coflow air have been studied experimentally. When the initial temperature was elevated to over 860 K, an autoignition occurred without requiring an external ignition source. A planar laser-induced fluorescence (PLIF) technique for formaldehyde (CH2O) visualized qualitatively the zone of low temperature kinetics in a premixed flame. Two flame configurations were investigated; (1) autoignited lifted flames with tribrachial edge having three distinct branches of a lean and a rich premixed flame wings with a trailing diffusion flame and (2) autoignited lifted flames with mild combustion when the fuel was highly diluted. For the autoignited tribrachial edge flames at critical autoignition conditions, exhibiting repetitive extinction and re-ignition phenomena near a blowout condition, the characteristic flow time (liftoff height scaled with jet velocity) was correlated with the square of the ignition delay time of the stoichiometric mixture. The liftoff heights were also correlated as a function of jet velocity times the square of ignition delay time. Formaldehydes were observed between the fuel nozzle and the lifted flame edge, emphasizing a low-temperature kinetics for autoignited lifted flames, while for a non-autoignited lifted flame, formaldehydes were observed near a thin luminous flame zone.For the autoignited lifted flames with mild combustion, especially at a high temperature, a unique non-monotonic liftoff height behavior was observed; decreasing and then increasing liftoff height with jet velocity. This behavior was similar to the binary mixture fuels of CH4/H2 and CO/H2 observed previously. A transient homogeneous autoignition analysis suggested that such decreasing behavior with jet velocity can be attributed to partial oxidation characteristics of DME in producing appreciable amounts of CH4/CO/H2 ahead of the edge flame region.
Full Text Available A novel direct expansion variable frequency finned solar/air-assisted heat pump water heater was fabricated and tested in the enthalpy difference lab with a solar simulator. A solar/air source evaporator-collector with an automatic lifting glass cover plate was installed on the system. The system could be operated in three modes, namely, air, solar, and dual modes. The effects of the ambient temperature, solar irradiation, compressor frequency, and operating mode on the performance of this system were studied in this paper. The experimental results show that the ambient temperature, solar irradiation, and operating mode almost have no effect on the energy consumption of the compressor. When the ambient temperature and the solar irradiation were increased, the COP was found to increase with decreasing heating time. Also, when the compressor frequency was increased, an increase in the energy consumption of the compressor and the heat gain of the evaporator were noted with a decrease in the heating time.
Autoignited lifted flame behavior in laminar jets of methane/hydrogen mixture fuels has been investigated experimentally in heated coflow air. Three regimes of autoignited lifted flames were identified depending on initial temperature and hydrogen to methane ratio. At relatively high initial temperature, addition of a small amount of hydrogen to methane improved ignition appreciably such that the liftoff height decreased significantly. In this hydrogen-assisted autoignition regime, the liftoff height increased with jet velocity, and the characteristic flow time - defined as the ratio of liftoff height to jet velocity - correlated well with the square of the adiabatic ignition delay time. At lower temperature, the autoignited lifted flame demonstrated a unique feature in that the liftoff height decreased with increasing jet velocity. Such behavior has never been observed in lifted laminar and turbulent jet flames. A transition regime existed between these two regimes at intermediate temperature. © 2011 The Combustion Institute.
Clean Air Heat Pump (CAHP) was one type of rotary desiccant cooling system which combined a silica gel rotor with a heat pump to achieve air cleaning, dehumidifying and cooling in buildings. Using exhaust air from the conditioned room for regeneration of the silica gel rotor might have an advantage...... on reducing the regeneration air temperature and further improving the energy performance of the CAHP. However, the exhaust air carried a lot of indoor air pollutants. Whether using exhaust air for the regeneration of the silica gel rotor had an impact on the air cleaning performance of the CAHP...... was experimentally studied. The results showed that using the air contained acetone or toluene for regeneration reduced the pollutants removal capability of CAHP with a reduction of approx. 10% in air cleaning efficiency. The energy performance of the CAHP when using exhaust air for regeneration was also evaluated...
In this paper we investigate the core temperature of air-clad photonic crystal fiber (PCF) lasers pumped by a super-Gaussian (SG) source of order four. The results are compared with conventional double-clad fiber (DCF) lasers pumped by the same super-Gaussian and by top-hat pump profiles.
Heavy-lift availability is at a premium, and the market is eager for alternatives to meet the demand. An alternative heavy-lift solution from SeaMetric - which has two multi-purpose heavy-lift vessels under construction in China - will be available in the first quarter of 2011. The TML system is based on buoyancy and ballast tanks, with four lifting arms mounted on two identical vessels, each vessel measuring 140 x 40 x 10.75 metres. To perform a lift, one TML with lifting arms is positioned on each side of the object. Using seawater pumps, lift force is created by de ballasting the buoyancy tanks and at the same time ballasting the ballast tanks. (AG). tab., ills
The purpose of this development program was to design and develop a known volume air sampling pump for use in measuring the amount of radioactive material in the atmosphere of an underground uranium mine. The principal nuclear radiation hazard to underground uranium mines comes from the mine atmosphere. Daughter products of radon-222 are inhaled by the miner resulting in a relatively high lung cancer rate among these workers. Current exposure control practice employs spot sampling in working areas to measure working level values. Currently available personal air sampling pumps fail to deliver known volumes of air under widely changing differential pressures. A unique type of gas pump known as the scroll compressor, developed by Arthur D. Little, Inc., that has no values and few moving parts is expected to provide a practical, efficient, and dependable air pump for use in dosimeters. The three deliverable known volume air sampling pumps resulting from this work incorporate a scroll pump, drive motor, speed control electronics, and battery pack in a container suitable for attachment to a miner"s belt
Highlights: ► We propose a frost-free air-source heat pump system with integrated desiccant. ► The system can provide heating load continuously and humidify room. ► The coefficient of performance of the system is 2.6 at T a = −7 °C and RH = 80%. ► The heating load of solution is 3–4 times larger than cooling load of solution. - Abstract: This paper proposes a frost-free air source heat pump system with integrated liquid desiccant dehumidification, in which frosting can be retarded by dehumidifying air before entering an outdoor heat exchanger. And the water removed from the air is used to humidify a room. Simulation is carried out at a dry-bulb temperature of −7 to 5.5 °C and a relative humidity of 80% depending on the frosting conditions. The results show that the coefficient of performance (COP) is in the range of 2.6–2.9, which is 30–40% higher than that of heat pump heating integrated with an electric heater humidifying system. And it is found that the optimum value of the concentration of lithium chloride aqueous solution is 37% for the frost-free operation mode. Experiments are conducted for liquid desiccant system under low air temperature and high relative humidity conditions. Experimental results show that the dew point of the dehumidified air is decreased by 8 °C and the humidity ratio of the humidified air is kept at 8.1 g kg −1 , which ensures the frost-free operation of the heat pump evaporator and the comfortable level of room humidity simultaneously. The heating load of solution is 3–4.5 times larger than cooling load of solution, which agrees with the assumption given at the part of the simulation. Furthermore, the deviations between the calculated COP LHRU and the experimental results are within 33%.
Leviathan and the Air-Pump examines the conflicts over the value and propriety of experimental methods between two major seventeenth-century thinkers: Thomas Hobbes, author of the political treatise Leviathan and vehement critic of systematic experimentation in natural philosophy, and Robert Boyle, mechanical philosopher and owner of the newly invented air-pump. The issues at stake in their disputes ranged from the physical integrity of the air-pump to the intellectual integrity of the knowledge it might yield. Both Boyle and Hobbes were looking for ways of establishing knowledge tha
... 10 Energy 3 2010-01-01 2010-01-01 false Definitions concerning commercial air conditioners and... PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Air Conditioners and Heat Pumps § 431.92 Definitions concerning commercial air conditioners and heat pumps. The following definitions apply...
This article presents the air conditioning system of a new cinema complex of Boulogne (92, France) which comprises a double-flux air processing plant and two heat pumps. Each heat pump has two independent refrigerating loops: one with a air condenser and the other with a water condenser. This system allows to limit the power of the loop and to reduce the size of the cooling tower and of the vertical ducts. This article describes the technical characteristics of the installation: thermodynamic units, smoke clearing, temperature control, air renewing. (J.S.)
.... EERE-2010-BT-TP-0038] Test Procedures for Central Air Conditioners and Heat Pumps: Public Meeting... methodologies and gather comments on testing residential central air conditioners and heat pumps designed to use... residential central air conditioners and heat pumps that are single phase with rated cooling capacities less...
Full Text Available In the world today for the exploitation of oil reservoirs by artificial lift methods are applied different types of deep pumps (piston, centrifugal, screw, hydraulic, water jet pumps and gas lift (continuous, intermittent and plunger. Maximum values of oil production achieved by these exploitation methods are significantly different. In order to select t