creative commons mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> oil and gas in stock

A mud pump is a reciprocating piston/plunger device designed to circulate drilling fluid under high pressure (up to 7500 PSI) down the drill string and back up the annulus.

creative commons mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> oil and gas in stock

Observe pressure gauge and move throttles and levers to control the speed of rotary tables, and to regulate pressure of tools at bottoms of boreholes.

Push levers and brake pedals to control gasoline, diesel, electric, or steam draw works that lower and raise drill pipes and casings in and out of wells.

creative commons mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> oil and gas in stock

Petroleum, also known as crude oil, or simply oil, is a naturally occurring yellowish-black liquid mixture of mainly hydrocarbons,geological formations. The name petroleum covers both naturally occurring unprocessed crude oil and petroleum products that consist of refined crude oil. A fossil fuel, petroleum is formed when large quantities of dead organisms, mostly zooplankton and algae, are buried underneath sedimentary rock and subjected to both prolonged heat and pressure.

Petroleum is primarily recovered by oil drilling. Drilling is carried out after studies of structural geology, sedimentary basin analysis, and reservoir characterisation. Recent developments in technologies have also led to the exploitation of other unconventional reserves such as oil sands and oil shale.

Once extracted, oil is refined and separated, most easily by distillation, into innumerable products for direct use or use in manufacturing. Products include fuels such as gasoline (petrol), diesel, kerosene and jet fuel; asphalt and lubricants; chemical reagents used to make plastics; solvents, textiles, refrigerants, paint, synthetic rubber, fertilizers, pesticides, pharmaceuticals, and thousands of others. Petroleum is used in manufacturing a vast variety of materials essential for modern life,barrels (16 million cubic metres) each day. Petroleum production can be extremely profitable and was critical to global economic development in the 20th century, with some countries, so-called "oil states", gaining significant economic and international power because of their control of oil production.

Petroleum exploitation and use have had significant negative environmental and social consequences. Extraction, refining and burning of petroleum fuels all release large quantities of greenhouse gases, so petroleum is one of the major contributors to climate change. Other negative environmental effects include oil spills, and air and water pollution. Some of these effects have direct and indirect health consequences for humans. Oil has also been a source of conflict, leading to both state-led-wars and other conflicts. Production of petroleum is estimated to reach peak oil before 2035climate change mitigation and a transition towards renewable energy and electrification.

Petroleum, in one form or another, has been used since ancient times. More than 4300 years ago, bitumen was mentioned when the Sumerians used it to make boats. Tablet of the legend of the birth of Sargon of Akkad mentioned a basket which was closed by straw and bitumen. More than 4000 years ago, according to Herodotus and Diodorus Siculus, asphalt was used in the construction of the walls and towers of Babylon; there were oil pits near Ardericca (near Babylon), and a pitch spring on Zacynthus.Issus, one of the tributaries of the Euphrates. Ancient Persian tablets indicate the medicinal and lighting uses of petroleum in the upper levels of their society.

Crude oil was often distilled by Persian chemists, with clear descriptions given in Arabic handbooks such as those of Muhammad ibn Zakarīya Rāzi (Rhazes).Baghdad were paved with tar, derived from petroleum that became accessible from natural fields in the region. In the 9th century, oil fields were exploited in the area around modern Baku, Azerbaijan. These fields were described by the Arab geographer Abu al-Hasan "Alī al-Mas"ūdī in the 10th century, and by Marco Polo in the 13th century, who described the output of those wells as hundreds of shiploads.Arab and Persian chemists also distilled crude oil to produce flammable products for military purposes. Through Islamic Spain, distillation became available in Western Europe by the 12th century.

Sophisticated oil pits, 4.5 to 6 metres (15 to 20 ft) deep, were dug by the Seneca People and other Iroquois in Western Pennsylvania as early as 1415–1450. The French General Louis-Joseph de Montcalm encountered Seneca using petroleum for ceremonial fires and as a healing lotion during a visit to Fort Duquesne in 1750.

Early British explorers to Myanmar documented a flourishing oil extraction industry based in Yenangyaung that, in 1795, had hundreds of hand-dug wells under production.

Pechelbronn (Pitch fountain) is said to be the first European site where petroleum has been explored and used. The still active Erdpechquelle, a spring where petroleum appears mixed with water has been used since 1498, notably for medical purposes. Oil sands have been mined since the 18th century.

Chemist James Young noticed a natural petroleum seepage in the Riddings colliery at Alfreton, Derbyshire from which he distilled a light thin oil suitable for use as lamp oil, at the same time obtaining a more viscous oil suitable for lubricating machinery. In 1848, Young set up a small business refining crude oil.

Young eventually succeeded, by distilling cannel coal at low heat, in creating a fluid resembling petroleum, which when treated in the same way as the seep oil gave similar products. Young found that by slow distillation he could obtain several useful liquids from it, one of which he named "paraffine oil" because at low temperatures it congealed into a substance resembling paraffin wax.

The production of these oils and solid paraffin wax from coal formed the subject of his patent dated 17 October 1850. In 1850 Young & Meldrum and Edward William Binney entered into partnership under the title of E.W. Binney & Co. at Bathgate in West Lothian and E. Meldrum & Co. at Glasgow; their works at Bathgate were completed in 1851 and became the first truly commercial oil-works in the world with the first modern oil refinery.

The demand for petroleum as a fuel for lighting in North America and around the world quickly grew.Edwin Drake"s 1859 well near Titusville, Pennsylvania, is popularly considered the first modern well. Already 1858 Georg Christian Konrad Hunäus found a significant amount of petroleum while drilling for lignite 1858 in Wietze, Germany. Wietze later provided about 80% of German consumption in the Wilhelminian Era.

Drake"s well is probably singled out because it was drilled, not dug; because it used a steam engine; because there was a company associated with it; and because it touched off a major boom.Poland in 1853, and another in nearby Romania in 1857. At around the same time the world"s first, small, oil refinery was opened at Jasło in Poland, with a larger one opened at Ploiești in Romania shortly after. Romania is the first country in the world to have had its annual crude oil output officially recorded in international statistics: 275 tonnes for 1857.

The first commercial oil well in Canada became operational in 1858 at Oil Springs, Ontario (then Canada West).James Miller Williams dug several wells between 1855 and 1858 before discovering a rich reserve of oil four metres below ground.oil boom which brought hundreds of speculators and workers to the area. Advances in drilling continued into 1862 when local driller Shaw reached a depth of 62 metres using the spring-pole drilling method.natural gas, Canada"s first oil gusher came into production, shooting into the air at a recorded rate of 480 cubic metres (3,000 bbl) per day.Branobel company in Azerbaijan, had taken the lead in production.

Access to oil was and still is a major factor in several military conflicts of the twentieth century, including World War II, during which oil facilities were a major strategic asset and were extensively bombed.German invasion of the Soviet Union included the goal to capture the Baku oilfields, as it would provide much-needed oil supplies for the German military which was suffering from blockades.

In 1973, Saudi Arabia and other Arab nations imposed an oil embargo against the United States, United Kingdom, Japan and other Western nations which supported Israel in the Yom Kippur War of October 1973.oil crisis. This was followed by the 1979 oil crisis, which was caused by a drop in oil production in the wake of the Iranian Revolution and caused oil prices to more than double. The two oil price shocks had many short- and long-term effects on global politics and the global economy.

Today, about 90 percent of vehicular fuel needs are met by oil. Petroleum also makes up 40 percent of total energy consumption in the United States, but is responsible for only 1 percent of electricity generation.commodities.

The top three oil-producing countries are the United States, Russia, and Saudi Arabia.hydraulic fracturing and horizontal drilling, the United States became the world"s largest producer.Saudi Arabia, United Arab Emirates, Iraq, Qatar and Kuwait. A large portion of the world"s total oil exists as unconventional sources, such as bitumen in Athabasca oil sands and extra heavy oil in the Orinoco Belt. While significant volumes of oil are extracted from oil sands, particularly in Canada, logistical and technical hurdles remain, as oil extraction requires large amounts of heat and water, making its net energy content quite low relative to conventional crude oil. Thus, Canada"s oil sands are not expected to provide more than a few million barrels per day in the foreseeable future.

Petroleum includes not only crude oil, but all liquid, gaseous and solid hydrocarbons. Under surface pressure and temperature conditions, lighter hydrocarbons methane, ethane, propane and butane exist as gases, while pentane and heavier hydrocarbons are in the form of liquids or solids. However, in an underground oil reservoir the proportions of gas, liquid, and solid depend on subsurface conditions and on the phase diagram of the petroleum mixture.

An oil well produces predominantly crude oil, with some natural gas dissolved in it. Because the pressure is lower at the surface than underground, some of the gas will come out of solution and be recovered (or burned) as associated gas or solution gas. A gas well produces predominantly natural gas. However, because the underground temperature is higher than at the surface, the gas may contain heavier hydrocarbons such as pentane, hexane, and heptane in the gaseous state. At surface conditions these will condense out of the gas to form "natural-gas condensate", often shortened to condensate. Condensate resembles gasoline in appearance and is similar in composition to some volatile light crude oils.

The proportion of light hydrocarbons in the petroleum mixture varies greatly among different oil fields, ranging from as much as 97 percent by weight in the lighter oils to as little as 50 percent in the heavier oils and bitumens.

The hydrocarbons in crude oil are mostly alkanes, cycloalkanes and various aromatic hydrocarbons, while the other organic compounds contain nitrogen, oxygen and sulfur, and trace amounts of metals such as iron, nickel, copper and vanadium. Many oil reservoirs contain live bacteria.chemical elements varies over fairly narrow limits as follows:

Four different types of hydrocarbon molecules appear in crude oil. The relative percentage of each varies from oil to oil, determining the properties of each oil.

Crude oil varies greatly in appearance depending on its composition. It is usually black or dark brown (although it may be yellowish, reddish, or even greenish). In the reservoir it is usually found in association with natural gas, which being lighter forms a "gas cap" over the petroleum, and saline water which, being heavier than most forms of crude oil, generally sinks beneath it. Crude oil may also be found in a semi-solid form mixed with sand and water, as in the Athabasca oil sands in Canada, where it is usually referred to as crude bitumen. In Canada, bitumen is considered a sticky, black, tar-like form of crude oil which is so thick and heavy that it must be heated or diluted before it will flow.Orinoco oil sands, although the hydrocarbons trapped in them are more fluid than in Canada and are usually called extra heavy oil. These oil sands resources are called unconventional oil to distinguish them from oil which can be extracted using traditional oil well methods. Between them, Canada and Venezuela contain an estimated 3.6 trillion barrels (570×10^9 m3) of bitumen and extra-heavy oil, about twice the volume of the world"s reserves of conventional oil.

Petroleum is used mostly, by volume, for refining into fuel oil and gasoline, both important liquefied petroleum gas.oil refineries are increasingly having to process heavy oil and bitumen, and use more complex and expensive methods to produce the products required. Because heavier crude oils have too much carbon and not enough hydrogen, these processes generally involve removing carbon from or adding hydrogen to the molecules, and using fluid catalytic cracking to convert the longer, more complex molecules in the oil to the shorter, simpler ones in the fuels.

Due to its high energy density, easy transportability and relative abundance, oil has become the world"s most important source of energy since the mid-1950s. Petroleum is also the raw material for many chemical products, including pharmaceuticals, solvents, fertilizers, pesticides, and plastics; the 16 percent not used for energy production is converted into these other materials. Petroleum is found in porous rock formations in the upper strata of some areas of the Earth"s crust. There is also petroleum in oil sands (tar sands). Known oil reserves are typically estimated at 190 km3 (1.2 trillion (short scale) barrels) without oil sands,3 (3.74 trillion barrels) with oil sands.×10^6 m3) per day, or 4.9 km3 per year, yielding a remaining oil supply of only about 120 years, if current demand remains static.

Petroleum is mainly a mixture of hydrocarbons, i.e. containing only carbon and hydrogen. The most common components are alkanes (paraffins), cycloalkanes (naphthenes), and aromatic hydrocarbons. They generally have from 5 to 40 carbon atoms per molecule, although trace amounts of shorter or longer molecules may be present in the mixture.

The alkanes from pentane (C5H12) to octane (C8H18) are refined into gasoline, the ones from nonane (C9H20) to hexadecane (C16H34) into diesel fuel, kerosene and jet fuel. Alkanes with more than 16 carbon atoms can be refined into fuel oil and lubricating oil. At the heavier end of the range, paraffin wax is an alkane with approximately 25 carbon atoms, while asphalt has 35 and up, although these are usually cracked by modern refineries into more valuable products. The shortest molecules, those with four or fewer carbon atoms, are in a gaseous state at room temperature. They are the petroleum gases. Depending on demand and the cost of recovery, these gases are either flared off, sold as liquefied petroleum gas under pressure, or used to power the refinery"s own burners. During the winter, butane (C4H10), is blended into the gasoline pool at high rates, because its high vapour pressure assists with cold starts. Liquified under pressure slightly above atmospheric, it is best known for powering cigarette lighters, but it is also a main fuel source for many developing countries. Propane can be liquified under modest pressure, and is consumed for just about every application relying on petroleum for energy, from cooking to heating to transportation.

The aromatic hydrocarbons are unsaturated hydrocarbons which have one or more planar six-carbon rings called benzene rings, to which hydrogen atoms are attached with the formula CnH2n-6. They tend to burn with a sooty flame, and many have a sweet aroma. Some are carcinogenic.

These different molecules are separated by fractional distillation at an oil refinery to produce gasoline, jet fuel, kerosene, and other hydrocarbons. For example, 2,2,4-trimethylpentane (isooctane), widely used in gasoline, has a chemical formula of C8H18 and it reacts with oxygen exothermically:

The number of various molecules in an oil sample can be determined by laboratory analysis. The molecules are typically extracted in a solvent, then separated in a gas chromatograph, and finally determined with a suitable detector, such as a flame ionization detector or a mass spectrometer.Unresolved Complex Mixture (UCM) of hydrocarbons is particularly apparent when analysing weathered oils and extracts from tissues of organisms exposed to oil. Some of the components of oil will mix with water: the water associated fraction of the oil.

Incomplete combustion of petroleum or gasoline results in production of toxic byproducts. Too little oxygen during combustion results in the formation of carbon monoxide. Due to the high temperatures and high pressures involved, exhaust gases from gasoline combustion in car engines usually include nitrogen oxides which are responsible for creation of photochemical smog.

Structure of a vanadium porphyrin compound (left) extracted from petroleum by Alfred E. Treibs, father of organic geochemistry. Treibs noted the close structural similarity of this molecule and chlorophyll a (right).

Petroleum is a fossil fuel derived from ancient fossilized organic materials, such as zooplankton and algae.stagnant water (water with no dissolved oxygen) or sediments such as mud and silt faster than they could decompose aerobically. Approximately 1 m below this sediment, water oxygen concentration was low, below 0.1 mg/L, and anoxic conditions existed. Temperatures also remained constant.

As further layers settled to the sea or lake bed, intense heat and pressure built up in the lower regions. This process caused the organic matter to change, first into a waxy material known as kerogen, found in various oil shales around the world, and then with more heat into liquid and gaseous hydrocarbons via a process known as catagenesis. Formation of petroleum occurs from hydrocarbon pyrolysis in a variety of mainly endothermic reactions at high temperature or pressure, or both.

In the absence of plentiful oxygen, aerobic bacteria were prevented from decaying the organic matter after it was buried under a layer of sediment or water. However, anaerobic bacteria were able to reduce sulfates and nitrates among the matter to H2S and N2 respectively by using the matter as a source for other reactants. Due to such anaerobic bacteria, at first this matter began to break apart mostly via hydrolysis: polysaccharides and proteins were hydrolyzed to simple sugars and amino acids respectively. These were further anaerobically oxidized at an accelerated rate by the enzymes of the bacteria: e.g., amino acids went through oxidative deamination to imino acids, which in turn reacted further to ammonia and α-keto acids. Monosaccharides in turn ultimately decayed to CO2 and methane. The anaerobic decay products of amino acids, monosaccharides, phenols and aldehydes combined to fulvic acids. Fats and waxes were not extensively hydrolyzed under these mild conditions.

Some phenolic compounds produced from previous reactions worked as bactericides and the actinomycetales order of bacteria also produced antibiotic compounds (e.g., streptomycin). Thus the action of anaerobic bacteria ceased at about 10 m below the water or sediment. The mixture at this depth contained fulvic acids, unreacted and partially reacted fats and waxes, slightly modified lignin, resins and other hydrocarbons.kerogen. Combination happened in a similar fashion as phenol and formaldehyde molecules react to urea-formaldehyde resins, but kerogen formation occurred in a more complex manner due to a bigger variety of reactants. The total process of kerogen formation from the beginning of anaerobic decay is called diagenesis, a word that means a transformation of materials by dissolution and recombination of their constituents.

Kerogen formation continued to the depth of about 1 km from the Earth"s surface where temperatures may reach around 50 °C. Kerogen formation represents a halfway point between organic matter and fossil fuels: kerogen can be exposed to oxygen, oxidize and thus be lost, or it could be buried deeper inside the Earth"s crust and be subjected to conditions which allow it to slowly transform into fossil fuels like petroleum. The latter happened through catagenesis in which the reactions were mostly radical rearrangements of kerogen. These reactions took thousands to millions of years and no external reactants were involved. Due to radical nature of these reactions, kerogen reacted towards two classes of products: those with low H/C ratio (anthracene or products similar to it) and those with high H/C ratio (methane or products similar to it); i.e., carbon-rich or hydrogen-rich products. Because catagenesis was closed off from external reactants, the resulting composition of the fuel mixture was dependent on the composition of the kerogen via reaction stoichiometry. Three types of kerogen exist: type I (algal), II (liptinic) and III (humic), which were formed mainly from algae, plankton and woody plants (this term includes trees, shrubs and lianas) respectively.

Catagenesis was pyrolytic despite the fact that it happened at relatively low temperatures (when compared to commercial pyrolysis plants) of 60 to several hundred °C. Pyrolysis was possible because of the long reaction times involved. Heat for catagenesis came from the decomposition of radioactive materials of the crust, especially 40K, 232Th, 235U and 238U. The heat varied with geothermal gradient and was typically 10-30 °C per km of depth from the Earth"s surface. Unusual magma intrusions, however, could have created greater localized heating.

Geologists often refer to the temperature range in which oil forms as an "oil window".thermal cracking. Sometimes, oil formed at extreme depths may migrate and become trapped at a much shallower level. The Athabasca Oil Sands are one example of this.

An alternative mechanism to the one described above was proposed by Russian scientists in the mid-1850s, the hypothesis of abiogenic petroleum origin (petroleum formed by inorganic means), but this is contradicted by geological and geochemical evidence.

a caprock (seal) or other mechanism to prevent the oil from escaping to the surface. Within these reservoirs, fluids will typically organize themselves like a three-layer cake with a layer of water below the oil layer and a layer of gas above it, although the different layers vary in size between reservoirs. Because most hydrocarbons are less dense than rock or water, they often migrate upward through adjacent rock layers until either reaching the surface or becoming trapped within porous rocks (known as reservoirs) by impermeable rocks above. However, the process is influenced by underground water flows, causing oil to migrate hundreds of kilometres horizontally or even short distances downward before becoming trapped in a reservoir. When hydrocarbons are concentrated in a trap, an oil field forms, from which the liquid can be extracted by drilling and pumping.

The reactions that produce oil and natural gas are often modeled as first order breakdown reactions, where hydrocarbons are broken down to oil and natural gas by a set of parallel reactions, and oil eventually breaks down to natural gas by another set of reactions. The latter set is regularly used in petrochemical plants and oil refineries.

Petroleum has mostly been recovered by oil drilling (natural petroleum springs are rare). Drilling is carried out after studies of structural geology (at the reservoir scale), sedimentary basin analysis, and reservoir characterisation (mainly in terms of the porosity and permeability of geologic reservoir structures).oil sands and oil shale. Wells are drilled into oil reservoirs to extract the crude oil. "Natural lift" production methods that rely on the natural reservoir pressure to force the oil to the surface are usually sufficient for a while after reservoirs are first tapped. In some reservoirs, such as in the Middle East, the natural pressure is sufficient over a long time. The natural pressure in most reservoirs, however, eventually dissipates. Then the oil must be extracted using "artificial lift" means. Over time, these "primary" methods become less effective and "secondary" production methods may be used. A common secondary method is "waterflood" or injection of water into the reservoir to increase pressure and force the oil to the drilled shaft or "wellbore." Eventually "tertiary" or "enhanced" oil recovery methods may be used to increase the oil"s flow characteristics by injecting steam, carbon dioxide and other gases or chemicals into the reservoir. In the United States, primary production methods account for less than 40 percent of the oil produced on a daily basis, secondary methods account for about half, and tertiary recovery the remaining 10 percent. Extracting oil (or "bitumen") from oil/tar sand and oil shale deposits requires mining the sand or shale and heating it in a vessel or retort, or using "in-situ" methods of injecting heated liquids into the deposit and then pumping the liquid back out saturated with oil.

Oil-eating bacteria biodegrade oil that has escaped to the surface. Oil sands are reservoirs of partially biodegraded oil still in the process of escaping and being biodegraded, but they contain so much migrating oil that, although most of it has escaped, vast amounts are still present—more than can be found in conventional oil reservoirs. The lighter fractions of the crude oil are destroyed first, resulting in reservoirs containing an extremely heavy form of crude oil, called crude bitumen in Canada, or extra-heavy crude oil in Venezuela. These two countries have the world"s largest deposits of oil sands.

On the other hand, oil shales are source rocks that have not been exposed to heat or pressure long enough to convert their trapped hydrocarbons into crude oil. Technically speaking, oil shales are not always shales and do not contain oil, but are fined-grain sedimentary rocks containing an insoluble organic solid called kerogen. The kerogen in the rock can be converted into crude oil using heat and pressure to simulate natural processes. The method has been known for centuries and was patented in 1694 under British Crown Patent No. 330 covering, "A way to extract and make great quantities of pitch, tar, and oil out of a sort of stone." Although oil shales are found in many countries, the United States has the world"s largest deposits.

The petroleum industry generally classifies crude oil by the geographic location it is produced in (e.g., West Texas Intermediate, Brent, or Oman), its API gravity (an oil industry measure of density), and its sulfur content. Crude oil may be considered medium if it has a density between that of light and heavy.

The geographic location is important because it affects transportation costs to the refinery. Light crude oil is more desirable than heavy oil since it produces a higher yield of gasoline, while sweet oil commands a higher price than sour oil because it has fewer environmental problems and requires less refining to meet sulfur standards imposed on fuels in consuming countries. Each crude oil has unique molecular characteristics which are revealed by the use of Crude oil assay analysis in petroleum laboratories.

Barrels from an area in which the crude oil"s molecular characteristics have been determined and the oil has been classified are used as pricing references throughout the world. Some of the common reference crudes are:

Brent Blend, consisting of 15 oils from fields in the Brent and Ninian systems in the East Shetland Basin of the North Sea. The oil is landed at Sullom Voe terminal in Shetland. Oil production from Europe, Africa and Middle Eastern oil flowing West tends to be priced off this oil, which forms a benchmark

There are declining amounts of these benchmark oils being produced each year, so other oils are more commonly what is actually delivered. While the reference price may be for West Texas Intermediate delivered at Cushing, the actual oil being traded may be a discounted Canadian heavy oil—Western Canadian Select—delivered at Hardisty, Alberta, and for a Brent Blend delivered at Shetland, it may be a discounted Russian Export Blend delivered at the port of Primorsk.

Once extracted, oil is refined and separated, most easily by distillation, into numerous products for direct use or use in manufacturing, such as petrol (gasoline), diesel and kerosene to asphalt and chemical reagents (ethylene, propylene, butene, acrylic acid, para-xyleneplastics, pesticides and pharmaceuticals.

The petroleum industry, also known as the oil industry or the oil patch, includes the global processes of exploration, extraction, refining, transportation (often by oil tankers and pipelines), and marketing of petroleum products. The largest volume products of the industry are fuel oil and gasoline (petrol). Petroleum is also the raw material for many chemical products, including pharmaceuticals, solvents, fertilizers, pesticides, synthetic fragrances, and plastics. The industry is usually divided into three major components: upstream, midstream, and downstream. Upstream regards exploration and extraction of crude oil, midstream encompasses transportation and storage of crude, and downstream concerns refining crude oil into various end products.

Petroleum is vital to many industries, and is necessary for the maintenance of industrial civilization in its current configuration, making it a critical concern for many nations. Oil accounts for a large percentage of the world’s energy consumption, ranging from a low of 32% for Europe and Asia, to a high of 53% for the Middle East.

Other geographic regions" consumption patterns are as follows: South and Central America (44%), Africa (41%), and North America (40%). The world consumes 36 billion barrels (5.8 km³) of oil per year,United States consumed 18% of the oil produced in 2015.

The oil and gas industry spends only 0,4% of its net sales for Research & Development which is in comparison with a range of other industries the lowest share.

Governments such as the United States government provide a heavy public subsidy to petroleum companies, with major tax breaks at various stages of oil exploration and extraction, including the costs of oil field leases and drilling equipment.

In recent years, enhanced oil recovery techniques — most notably multi-stage drilling and hydraulic fracturing ("fracking") — have moved to the forefront of the industry as this new technology plays a crucial and controversial role in new methods of oil extraction.

In the 1950s, shipping costs made up 33 percent of the price of oil transported from the Persian Gulf to the United States,supertankers in the 1970s, the cost of shipping dropped to only 5 percent of the price of Persian oil in the US.

The price of oil, or the oil price, generally refers to the spot price of a barrel (159 litres) of benchmark crude oil—a reference price for buyers and sellers of crude oil such as West Texas Intermediate (WTI), Brent Crude, Dubai Crude, OPEC Reference Basket, Tapis crude, Bonny Light, Urals oil, Isthmus and Western Canadian Select (WCS).

The global price of crude oil was relatively consistent in the nineteenth century and early twentieth century.OPEC oil embargo targeting nations that had supported Israel during the Yom Kippur War: 329 resulting in the 1973 oil crisis, the Iranian Revolution in the 1979 oil crisis, and the financial crisis of 2007–2008, and the more recent 2013 oil supply glut that led to the "largest oil price declines in modern history" in 2014 to 2016. The 70% decline in global oil prices was "one of the three biggest declines since World War II, and the longest lasting since the supply-driven collapse of 1986."

The 2020 Russia–Saudi Arabia oil price war resulted in a 65% decline in global oil prices at the beginning of the COVID-19 pandemic.record-high energy prices were driven by a global surge in demand as the world recovered from the COVID-19 recession.

Crude oil is traded as a future on the Nymex exchange. Futures contracts are agreements in which buyers and sellers agree to purchase and deliver specific amounts of physical crude oil on a given date in the future. Each contract covers 1000 barrels and can be purchased up to nine years into the future.

The chemical structure of petroleum is heterogeneous, composed of hydrocarbon chains of different lengths. Because of this, petroleum may be taken to oil refineries and the hydrocarbon chemicals separated by distillation and treated by other chemical processes, to be used for a variety of purposes. The total cost per plant is about 9 billion dollars.

2 Canadian statistics are complicated by the fact it is both an importer and exporter of crude oil, and refines large amounts of oil for the U.S. market. It is the leading source of U.S. imports of oil and products, averaging 2,500,000 bbl/d (400,000 m3/d) in August 2007.

As of 2018greenhouse gas emissions is the carbon dioxide from burning petroleum (plus methane leaks from the industry).2.2 has risen over the last 150 years to current levels of over 415 ppmv,180–300 ppmv of the prior 800 thousand years.Arctic ice pack to 4,320,000 km2 (1,670,000 sq mi), a loss of almost half since satellite measurements started in 1979.

Oil extraction is simply the removal of oil from the reservoir (oil pool). There are many methods on extracting the oil from the reservoirs for example; mechanical shaking, specialty chemicals called demulsifiers that separate the oil from water. Oil extraction is costly and often environmentally damaging. Offshore exploration and extraction of oil disturb the surrounding marine environment.

Crude oil and refined fuel spills from tanker ship accidents have damaged natural ecosystems and human livelihoods in Alaska, the Gulf of Mexico, the Galápagos Islands, France and many other places.

The quantity of oil spilled during accidents has ranged from a few hundred tons to several hundred thousand tons (e.g., Deepwater Horizon oil spill, SS Atlantic Empress, Amoco Cadiz). Smaller spills have already proven to have a great impact on ecosystems, such as the Exxon Valdez oil spill.

Oil spills at sea are generally much more damaging than those on land, since they can spread for hundreds of nautical miles in a thin oil slick which can cover beaches with a thin coating of oil. This can kill sea birds, mammals, shellfish and other organisms it coats. Oil spills on land are more readily containable if a makeshift earth dam can be rapidly bulldozed around the spill site before most of the oil escapes, and land animals can avoid the oil more easily.

Control of oil spills is difficult, requires ad hoc methods, and often a large amount of manpower. The dropping of bombs and incendiary devices from aircraft on the SS Torrey Canyon wreck produced poor results;Prestige oil spill or the Erika oil spill.

Though crude oil is predominantly composed of various hydrocarbons, certain nitrogen heterocyclic compounds, such as pyridine, picoline, and quinoline are reported as contaminants associated with crude oil, as well as facilities processing oil shale or coal, and have also been found at legacy wood treatment sites. These compounds have a very high water solubility, and thus tend to dissolve and move with water. Certain naturally occurring bacteria, such as

Because petroleum is a naturally occurring substance, its presence in the environment need not be the result of human causes such as accidents and routine activities (seismic exploration, drilling, extraction, refining and combustion). Phenomena such as seepstar pits are examples of areas that petroleum affects without man"s involvement.

A tarball is a blob of crude oil (not to be confused with tar, which is a man-made product derived from pine trees or refined from petroleum) which has been weathered after floating in the ocean. Tarballs are an aquatic pollutant in most environments, although they can occur naturally, for example in the Santa Barbara Channel of Californiaoil spills. Their composition can be used to identify their sources of origin,

James S. Robbins has argued that the advent of petroleum-refined kerosene saved some species of great whales from extinction by providing an inexpensive substitute for whale oil, thus eliminating the economic imperative for open-boat whaling,

In 2018 road transport used 49% of petroleum, aviation 8%, and uses other than energy 17%.Electric vehicles are the main alternative for road transport and biojet for aviation.

Control of petroleum production has been a significant driver of international relations during much of the 20th and 21st centuries.Age of Oil"renewable energy and addressing climate change some commentators expect a realignment of international power away from petrostates.

Petroleum production can be linked with conflict:the 2020 Russia–Saudi Arabia oil price war, or by indirectly funding aggressors, such as the Islamic State of Iraq and the Levant.

The Organization of the Petroleum Exporting Countries (OPEC, OH-pek) is a cartel of 13global oil production and 81.5 percent of the world"s proven oil reserves, giving OPEC a major influence on global oil prices that were previously determined by the so-called "Seven Sisters" grouping of multinational oil companies.

The formation of OPEC marked a turning point toward national sovereignty over natural resources, and OPEC decisions have come to play a prominent role in the global oil market and international relations. The effect can be particularly strong when wars or civil disorders lead to extended interruptions in supply. In the 1970s, restrictions in oil production led to a dramatic rise in oil prices and in the revenue and wealth of OPEC, with long-lasting and far-reaching consequences for the global economy. In the 1980s, OPEC began setting production targets for its member nations; generally, when the targets are reduced, oil prices increase. This has occurred most recently from the organization"s 2008 and 2016 decisions to trim oversupply.

Economists have characterized OPEC as a textbook example of a cartel that cooperates to reduce market competition, but one whose consultations are protected by the doctrine of state immunity under international law. In the 1960s and 1970s, OPEC successfully restructured the global oil production system so that decision-making authority and the vast majority of profits is in the hands of oil-producing countries. Since the 1980s, OPEC has had a limited impact on world oil supply and price stability, as there is frequent cheating by members on their commitments to one another, and as member commitments reflect what they would do even in the absence of OPEC.

Consumption in the twentieth and twenty-first centuries has been abundantly pushed by automobile sector growth. The 1985–2003 oil glut even fueled the sales of low fuel economy vehicles in OECD countries. The 2008 economic crisis seems to have had some impact on the sales of such vehicles; still, in 2008 oil consumption showed a small increase.

In 2016 Goldman Sachs predicted lower demand for oil due to emerging economies concerns, especially China.BRICS (Brasil, Russia, India, China, South Africa) countries might also kick in, as China briefly had the largest automobile market in December 2009.OPEC believes that the OECD countries will push low consumption policies at some point in the future; when that happens, it will definitely curb oil sales, and both OPEC and the Energy Information Administration (EIA) kept lowering their 2020 consumption estimates during the past five years.International Energy Agency oil projections have revealed that revisions of world oil production, price and investments have been motivated by a combination of demand and supply factors.tight oil.

Production will also face an increasingly complex situation; while OPEC countries still have large reserves at low production prices, newly found reservoirs often lead to higher prices; offshore giants such as Tupi, Guara and Tiber demand high investments and ever-increasing technological abilities. Subsalt reservoirs such as Tupi were unknown in the twentieth century, mainly because the industry was unable to probe them. Enhanced Oil Recovery (EOR) techniques (example: DaQing, China

The expected availability of petroleum resources has always been around 35 years or even less since the start of the modern exploration. The oil constant, an insider pun in the German industry, refers to that effect.

A growing number of divestment campaigns from major funds pushed by newer generations who question the sustainability of petroleum may hinder the financing of future oil prospection and production.

Peak oil is a term applied to the projection that future petroleum production (whether for individual oil wells, entire oil fields, whole countries, or worldwide production) will eventually peak and then decline at a similar rate to the rate of increase before the peak as these reserves are exhausted.

In 2020, according to BP"s Energy Outlook 2020, peak oil had been reached, due to the changing energy landscape coupled with the economic toll of the COVID-19 pandemic.

While there has been much focus historically on peak oil supply, focus is increasingly shifting to peak demand as more countries seek to transition to renewable energy. The GeGaLo index of geopolitical gains and losses assesses how the geopolitical position of 156 countries may change if the world fully transitions to renewable energy resources. Former oil exporters are expected to lose power, while the positions of former oil importers and countries rich in renewable energy resources is expected to strengthen.

Unconventional oil is petroleum produced or extracted using techniques other than the conventional methods. The calculus for peak oil has changed with the introduction of unconventional production methods. In particular, the combination of horizontal drilling and hydraulic fracturing has resulted in a significant increase in production from previously uneconomic plays.strata contain hydrocarbons but have low permeability and are not thick from a vertical perspective. Conventional vertical wells would be unable to economically retrieve these hydrocarbons. Horizontal drilling, extending horizontally through the strata, permits the well to access a much greater volume of the strata. Hydraulic fracturing creates greater permeability and increases hydrocarbon flow to the wellbore.

On Saturn"s largest moon, Titan, lakes of liquid hydrocarbons comprising methane, ethane, propane and other constituents, occur naturally. Data collected by the space probe Mars taken in 2015 by the Curiosity rover"s Mars Science Laboratory have found organic molecules of benzene and propane in 3-billion-year-old rock samples in Gale Crater.

van Dijk, J.P. (2022); Unravelling the Maze of Scientific Writing Through the Ages: On the Origins of the Terms Hydrocarbon, Petroleum, Natural Gas, and Methane. Amazon Publishers, 166 pp. PaperBack Edition B0BKRZRKHW. ISBN 979-8353989172

Salim Al-Hassani (2008). "1000 Years of Missing Industrial History". In Emilia Calvo Labarta; Mercè Comes Maymo; Roser Puig Aguilar; Mònica Rius Pinies (eds.). A shared legacy: Islamic science East and West. Edicions Universitat Barcelona. pp. 57–82 [63]. ISBN 978-84-475-3285-8.

Keoke, Emory Dean; Porterfield, Kay Marie (2003). American Indian Contributions to the World: 15,000 Years of Inventions and Innovations. p. 199. ISBN 978-0816053674.

Longmuir, Marilyn V. (2001). Oil in Burma : the extraction of "earth-oil" to 1914. Bangkok: White Lotus Press. p. 329. ISBN 978-974-7534-60-3. OCLC 48517638.

Karlsch, Rainer; Stokes, Raymond G. (2003). Faktor Öl : die Mineralölwirtschaft in Deutschland 1859–1974. Stokes, Raymond G. Munich: C.H. Beck. ISBN 978-3-406-50276-7. OCLC 52134361.

By, Undiscovered Scotland. "James Young: Biography on Undiscovered Scotland". www.undiscoveredscotland.co.uk. Archived from the original on June 29, 2017. Retrieved March 18, 2018.

Frank, Alison Fleig (2005). Oil Empire: Visions of Prosperity in Austrian Galicia (Harvard Historical Studies). Harvard University Press. ISBN 978-0-674-01887-7.

Vassiliou, Marius S. (2018). Historical dictionary of the petroleum industry, 2nd Edition. Lanham, MD: Rowman and Littlefield. p. 621. ISBN 978-1-5381-1159-8. OCLC 315479839.

McKain, David L.; Bernard, L. Allen (1994). Where It All Began: The Story of the People and Places Where the Oil Industry Began – West Virginia and South-eastern Ohio. Parkersburg, WV: D.L. McKain. ASIN B0006P93DY.

May, Gary (1998). Hard oiler! : the story of Canadiansʼ quest for oil at home and abroad. Toronto: Dundurn Press. p. 43. ISBN 978-1-55002-316-9. OCLC 278980961.

Baldwin, Hanson. "Oil Strategy in World War II". oil150.com. American Petroleum Institute Quarterly – Centennial Issue. pp. 10–11. Archived from the original on August 15, 2009.

Alakbarov, Farid. "10.2 An Overview – Baku: City that Oil Built". azer.com. Archived from the original on December 13, 2010. Retrieved March 18, 2018.

Times, Chrisopher S. Wren Special to The New York (November 13, 1974). "Soviet Moves Ahead of U.S. in oil output". The New York Times. ISSN 0362-4331. Archived from the original on May 31, 2020. Retrieved April 4, 2020.

"US expected to surpass Saudi Arabia, Russia as world"s top oil producer". Christian Science Monitor. July 12, 2018. ISSN 0882-7729. Archived from the original on May 16, 2020. Retrieved April 5, 2020.

"The United States is now the largest global crude oil producer". www.eia.gov. Today in Energy – U.S. Energy Information Administration (EIA). Archived from the original on October 3, 2018. Retrieved October 6, 2018.

"US soon to leapfrog Saudis, Russia as top oil producer". www.abqjournal.com. The Associated Press. Archived from the original on October 6, 2018. Retrieved October 6, 2018.

"Canada"s oil sands survive, but can"t thrive in a $50 oil world". Reuters. October 18, 2017. Archived from the original on May 18, 2020. Retrieved April 5, 2020.

Norman, J. Hyne (2001). Nontechnical guide to petroleum geology, exploration, drilling, and production (2nd ed.). Tulsa, OK: Penn Well Corp. pp. 1–4. ISBN 978-0-87814-823-3. OCLC 49853640.

Speight, James G. (2019). Heavy Oil Recovery and Upgrading. Elsevier. p. 13. ISBN 978-0-12-813025-4. Archived from the original on November 22, 2021. Retrieved November 18, 2020.

G., Speight, J. (1999). The chemistry and technology of petroleum (3rd ed., rev. and expanded ed.). New York: Marcel Dekker. pp. 215–216, 543. ISBN 978-0-8247-0217-5. OCLC 44958948.

Alboudwarej; et al. (Summer 2006). "Highlighting Heavy Oil" (PDF). Oilfield Review. Archived from the original on April 11, 2012. Retrieved July 4, 2012. Cite journal requires |journal= (help)

"Oil Sands – Glossary". Mines and Minerals Act. Government of Alberta. 2007. Archived from the original on November 1, 2007. Retrieved October 2, 2008.

"Energy Alternatives and the Future of Oil and Gas in the Gulf". Al Jazeera Center for Studies. Archived from the original on April 6, 2020. Retrieved April 6, 2020.

"How long will world"s oil reserves last? 53 years, says BP". Christian Science Monitor. July 14, 2014. ISSN 0882-7729. Archived from the original on April 6, 2020. Retrieved April 6, 2020.

Schobert, Harold H. (2013). Chemistry of fossil fuels and biofuels. Cambridge: Cambridge University Press. pp. 103–130. ISBN 978-0-521-11400-4. OCLC 795763460.

Braun, R.L.; Burnham, A.K. (June 1993). Chemical reaction model for oil and gas generation from type 1 and type 2 kerogen (Report). Lawrence Livermore National Laboratory. doi:10.2172/10169154. Archived from the original on May 17, 2020. Retrieved March 18, 2018.

Malyshev, Dmitry (December 13, 2013). "Origin of oil". large.stanford.edu. Archived from the original on September 21, 2021. Retrieved September 21, 2021.

Lambertson, Giles (February 16, 2008). "Oil Shale: Ready to Unlock the Rock". Construction Equipment Guide. Archived from the original on July 11, 2017. Retrieved May 21, 2008.

Rhodes, Christopher J. (2008). "The Oil Question: Nature and Prognosis". Science Progress. 91 (4): 317–375. doi:10.3184/003685008X395201. PMID 19192735. S2CID 31407897.

"Chevron Crude Oil Marketing – North America Posted Pricing – California". Crudemarketing.chevron.com. May 1, 2007. Archived from the original on June 7, 2010. Retrieved August 29, 2010.

Natural Resources Canada (May 2011). Canadian Crude Oil, Natural Gas and Petroleum Products: Review of 2009 & Outlook to 2030 (PDF) (Report). Ottawa: Government of Canada. p. 9. ISBN 978-1100164366. Archived from the original (PDF) on October 3, 2013.

"Light Sweet Crude Oil". About the Exchange. New York Mercantile Exchange (NYMEX). 2006. Archived from the original on March 14, 2008. Retrieved April 21, 2008.

Li, Guixian; Wu, Chao; Ji, Dong; Dong, Peng; Zhang, Yongfu; Yang, Yong (April 1, 2020). "Acidity and catalyst performance of two shape-selective HZSM-5 catalysts for alkylation of toluene with methanol". Reaction Kinetics, Mechanisms and Catalysis. 129 (2): 963–974. doi:10.1007/s11144-020-01732-9. ISSN 1878-5204. S2CID 213601465.

"The Pharmaceutical Industry in Figures Key Data 2021" (PDF). European Federation of Pharmaceutical Industries and Associations. Retrieved June 28, 2022.

Boudet, Hilary; Clarke, Christopher; Bugden, Dylan; Maibach, Edward; Roser-Renouf, Connie; Leiserowitz, Anthony (February 1, 2014). ""Fracking" controversy and communication: Using national survey data to understand public perceptions of hydraulic fracturing". Energy Policy. 65: 57–67. doi:10.1016/j.enpol.2013.10.017. ISSN 0301-4215.

"A liquid market: Thanks to LNG, spare gas can now be sold the world over". The Economist. July 14, 2012. Archived from the original on June 14, 2014. Retrieved January 6, 2013.

Kelly, Stephanie; Sharafedin, Bozorgmehr; Samanta, Koustav (December 23, 2021). "Global oil"s comeback year presages more strength in 2022". Reuters. Retrieved January 19, 2022.

Simanzhenkov, Vasily; Idem, Raphael (2003). Crude Oil Chemistry. CRC Press. p. 33. ISBN 978-0-203-01404-2. Archived from the original on June 17, 2016. Retrieved November 10, 2014.

"Crude oil including lease condensate production (Mb/d)". U.S. Energy Information Administration. Archived from the original on May 14, 2020. Retrieved April 14, 2020.

"Production of Crude Oil including Lease Condensate 2016" (CVS download). U.S. Energy Information Administration. Archived from the original on May 22, 2015. Retrieved May 30, 2017.

Marland, Gregg; Houghton, R. A.; Gillett, Nathan P.; Conway, Thomas J.; Ciais, Philippe; Buitenhuis, Erik T.; Field, Christopher B.; Raupach, Michael R.; Quéré, Corinne Le (November 20, 2007). "Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks". Proceedings of the National Academy of Sciences. 104 (47): 18866–18870. Bibcode:2007PNAS..10418866C. doi:ISSN 0027-8424. PMC PMID 17962418.

Zheng, Bo; Zaehle, Sönke; Wright, Rebecca; Wiltshire, Andrew J.; Walker, Anthony P.; Viovy, Nicolas; Werf, Guido R. van der; Laan-Luijkx, Ingrid T. van der; Tubiello, Francesco N. (December 5, 2018). "Global Carbon Budget 2018". Earth System Science Data. 10 (4): 2141–2194. Bibcode:2018ESSD...10.2141L. doi:ISSN 1866-3508.

US Department of Commerce, NOAA. "Global Monitoring Laboratory – Carbon Cycle Greenhouse Gases". www.esrl.noaa.gov. Archived from the original on March 16, 2007. Retrieved May 24, 2020.

Schwab, A. P.; Su, J.; Wetzel, S.; Pekarek, S.; Banks, M. K. (June 1, 1999). "Extraction of Petroleum Hydrocarbons from Soil by Mechanical Shaking". Environmental Science & Technology. 33 (11): 1940–1945. doi:10.1021/es9809758. ISSN 0013-936X.

Itah A.Y. and Essien J.P. (October 2005). "Growth Profile and Hydrocarbonoclastic Potential of Microorganisms Isolated from Tarballs in the Bight of Bonny, Nigeria". World Journal of Microbiology and Biotechnology. 21 (6–7): 1317–1322. doi:10.1007/s11274-004-6694-z. S2CID 84888286.link)

Hostettler, Frances D.; Rosenbauer, Robert J.; Lorenson, Thomas D.; Dougherty, Jennifer (2004). "Geochemical characterization of tarballs on beaches along the California coast. Part I – Shallow seepage impacting the Santa Barbara Channel Islands, Santa Cruz, Santa Rosa and San Miguel". Organic Geochemistry. 35 (6): 725–746. doi:10.1016/j.orggeochem.2004.01.022.

Knap Anthony H, Burns Kathryn A, Dawson Rodger, Ehrhardt Manfred, and Palmork Karsten H (December 1984). "Dissolved/dispersed hydrocarbons, tarballs and the surface microlayer: Experiences from an IOC/UNEP Workshop in Bermuda". Marine Pollution Bulletin. 17 (7): 313–319. doi:10.1016/0025-326X(86)90217-1.link)

Wang, Zhendi; Fingas, Merv; Landriault, Michael; Sigouin, Lise; Castle, Bill; Hostetter, David; Zhang, Dachung; Spencer, Brad (July 1998). "Identification and Linkage of Tarballs from the Coasts of Vancouver Island and Northern California Using GC/MS and Isotopic Techniques". Journal of High Resolution Chromatography. 21 (7): 383–395. doi:10.1002/(SICI)1521-4168(19980701)21:7<383::AID-JHRC383>3.0.CO;2-3.

"Is it the end of the oil age?". The Economist. September 17, 2020. ISSN 0013-0613. Archived from the original on December 31, 2020. Retrieved December 31, 2020.

"Linking Oil and War: Review of "Petro-Aggression"". New Security Beat. November 18, 2013. Archived from the original on February 13, 2021. Retrieved December 31, 2020.

Colgan, Jeff D. (2021), "The Stagnation of OPEC", Partial Hegemony: Oil Politics and International Order, Oxford University Press, pp. 94–118, doi:10.1093/oso/9780197546376.003.0004, ISBN 978-0-19-754637-6

Peak Oil Info and Strategies Archived June 17, 2012, at the Wayback Machine "The only uncertainty about peak oil is the time scale, which is difficult to predict accurately."

Overland, Indra; Bazilian, Morgan; Ilimbek Uulu, Talgat; Vakulchuk, Roman; Westphal, Kirsten (2019). "The GeGaLo index: Geopolitical gains and losses after energy transition". Energy Strategy Reviews. 26: 100406. doi:

U.S. Crude Oil Production Forecast – Analysis of Crude Types (PDF), Washington, DC: U.S. Energy Information Administration, May 28, 2015, archived (PDF) from the original on November 22, 2019, retrieved September 13, 2018, U.S. oil production has grown rapidly in recent years. U.S. Energy Information Administration (EIA) data, which reflect combined production of crude oil and lease condensate, show a rise from 5.6 million barrels per day (bbl/d) in 2011 to 7.5 million bbl/d in 2013, and a record 1.2 million bbl/d increase to 8.7 million bbl/d in 2014. Increasing production of light crude oil in low-permeability or tight resource formations in regions like the Bakken, Permian Basin, and Eagle Ford (often referred to as light tight oil) account for nearly all the net growth in U.S. crude oil production.

EIA"s latest Short-Term Energy Outlook, issued in May 2015, reflects continued production growth in 2015 and 2016, albeit at a slower pace than in 2013 and 2014, with U.S. crude oil production in 2016 forecast to reach 9.2 million bbl/d. Beyond 2016, the Annual Energy Outlook 2015 (AEO2015) projects further production growth, although its pace and duration remains highly uncertain.

Mabro, Robert; Organization of Petroleum Exporting Countries (2006). Oil in the 21st century: issues, challenges and opportunities. Oxford Press. ISBN 978-0-19-920738-1.

creative commons mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> oil and gas in stock

The College of Earth and Mineral Sciences is committed to making its websites accessible to all users, and welcomes comments or suggestions on access improvements. Please send comments or suggestions on accessibility to the site editor. The site editor may also be contacted with questions or comments about this Open Educational Resource.

The College of Earth and Mineral Sciences is committed to making its websites accessible to all users, and welcomes comments or suggestions on access improvements. Please send comments or suggestions on accessibility to the site editor. The site editor may also be contacted with questions or comments about this course.

creative commons mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> oil and gas in stock

The policy set forth below outlines the personal data that Power Zone Equipment may collect, how Power Zone Equipment uses and safeguards that data, and with whom we may share it. This policy is intended to provide notice to individuals regarding personal data in an effort to be compliant with the data privacy laws and regulations of the jurisdictions in which Power Zone Equipment operates.

Power Zone Equipment encourages our employees, independent contractors, customers, suppliers, commercial visitors, business associates, and other interested parties to read this policy. By using our website or submitting personal data to Power Zone Equipment by any other means, you acknowledge that you understand and agree to be bound by this policy, and agree that Power Zone Equipment may collect, process, transfer, use and disclose your personal data as described in this policy.

Power Zone Equipment is committed to maintaining all reasonable precautions to ensure the privacy and security of personal data gathered by Power Zone Equipment. During your use of our website or through other communications with Power Zone Equipment, personal data may be collected and processed by Power Zone Equipment. In general, Power Zone Equipment collects personal contact information (e.g. name, company, address, telephone number and e-mail address), which you knowingly provide either by registration, requesting quotes, answering questions or otherwise for use in our commercial relationship. At times we may collect additional personal data that you voluntarily provide, including, but not limited to, job title, additional contact information, date of birth, hobbies, areas of interest, and professional affiliations.

Power Zone Equipment’s website is intended to be used by Power Zone Equipment customers, commercial visitors, business associates, and other interested parties for business purposes. Personal data collected by Power Zone Equipment through its website or by other means is used in support of our commercial relationship with you, including, but not limited to, the processing of customer orders, orders from vendors, managing accounts, learning about customers’ needs, responding to inquiries, and providing access to information. Also, in compliance with the laws and regulations of the relevant jurisdiction to support our relationship with you:

we (or a third party on our behalf) may use personal data to contact you about a Power Zone Equipment offer in support of your business needs or to conduct online surveys to understand better our customers’ needs; and

If you choose not to have your personal data used to support our customer relationship (especially direct marketing or market research), we will respect your choice. We do not sell your personal data to third parties, nor share it with third parties except as set forth in this policy. Power Zone Equipment will retain your personal data as long as you maintain a customer relationship with Power Zone Equipment and/or if you have registered to receive marketing or other communication from Power Zone Equipment, until such time as you request that we delete such personal data.

Power Zone Equipment is the commercial operator of its website and uses service providers to assist in hosting or otherwise acting as data processors, to provide software and content for our sites and to provide other services. Power Zone Equipment may disclose personal data supplied by you to these third parties who provide such services under contract to protect your personal data. In addition, where consistent with the laws and regulations of the relevant jurisdiction, Power Zone Equipment may disclose personal data if such disclosure:

For our customers in Switzerland and the European Union (EU), please note that Power Zone Equipment is a US based company. If you use our websites or web portals or, all information, including personal information, may be transferred to Power Zone Equipment (including subcontractors that may be maintaining and/or operating our website) in the United States and elsewhere and may be transferred to third parties that may be located anywhere in the world. Although this may include recipients of information located in countries where there may be a lower level of legal protection for your personal information than in your location country, we will protect your information in accordance with requirements applicable to your information and/or location. Specifically, for data transfers out of the EU, Power Zone Equipment will utilize data transfer agreements containing the Standard Contractual Clauses. By using our websites or web portals, you unambiguously consent to the transfer of your personal information and other information to the United States and elsewhere for the purposes and uses described herein.

When you access Power Zone Equipment’s websites or web portals, we may automatically (i.e., not by registration) collect non-personal data (e.g. type of Internet browser and operating system used, domain name of the website from which you came, number of visits, average time spent on the site, pages viewed). We may use this data and share it with our worldwide affiliates and related service providers to monitor the attractiveness of our websites and improve their performance or content. In this case, processing is performed on an anonymous basis and at Power Zone Equipment’s discretion.

In addition, certain online technical applications or other interactions you have with Power Zone Equipment may require the entry of business and technical data. By providing the requested information, you are consenting to the processing and storage of such information by Power Zone Equipment. Unless Power Zone Equipment is advised that you want this information removed from Power Zone Equipment’s server, such information may be retained by Power Zone Equipment and used for future commercial communications. A request for removal of this information can be made at the contact information provided below. Power Zone Equipment will take all reasonable precautions to assure that no such information will be provided or divulged to other third parties, except, if applicable, those third parties performing site hosting, maintenance, and related site service activities.

Cookies are information stored automatically on a website user’s computer. When a user views Power Zone Equipment’s website(s), Power Zone Equipment may store some data on the user’s computer in the form of a “cookie” to automatically recognize the user upon future visits to Power Zone Equipment’s website(s). Power Zone Equipment will make reasonable efforts to ensure compliance with the laws and regulations of relevant jurisdictions with regard to cookies.

Power Zone Equipment will take reasonable precautions to protect personal dat