gas mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> free sample

Created specifically for drilling equipment inspectors and others in the oil and gas industry, the Oil Rig Mud Pump Inspection app allows you to easily document the status and safety of your oil rigs using just a mobile device. Quickly resolve any damage or needed maintenance with photos and GPS locations and sync to the cloud for easy access. The app is completely customizable to fit your inspection needs and works even without an internet signal.Try Template

gas mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> free sample

The 2,200-hp mud pump for offshore applications is a single-acting reciprocating triplex mud pump designed for high fluid flow rates, even at low operating speeds, and with a long stroke design. These features reduce the number of load reversals in critical components and increase the life of fluid end parts.

The pump’s critical components are strategically placed to make maintenance and inspection far easier and safer. The two-piece, quick-release piston rod lets you remove the piston without disturbing the liner, minimizing downtime when you’re replacing fluid parts.

gas mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> free sample

I’ve run into several instances of insufficient suction stabilization on rigs where a “standpipe” is installed off the suction manifold. The thought behind this design was to create a gas-over-fluid column for the reciprocating pump and eliminate cavitation.

When the standpipe is installed on the suction manifold’s deadhead side, there’s little opportunity to get fluid into all the cylinders to prevent cavitation. Also, the reciprocating pump and charge pump are not isolated.

The gas over fluid internal systems has limitations too. The standpipe loses compression due to gas being consumed by the drilling fluid. In the absence of gas, the standpipe becomes virtually defunct because gravity (14.7 psi) is the only force driving the cylinders’ fluid. Also, gas is rarely replenished or charged in the standpipe.

The suction stabilizer’s compressible feature is designed to absorb the negative energies and promote smooth fluid flow. As a result, pump isolation is achieved between the charge pump and the reciprocating pump.

The isolation eliminates pump chatter, and because the reciprocating pump’s negative energies never reach the charge pump, the pump’s expendable life is extended.

Investing in suction stabilizers will ensure your pumps operate consistently and efficiently. They can also prevent most challenges related to pressure surges or pulsations in the most difficult piping environments.

Sigma Drilling Technologies’ Charge Free Suction Stabilizer is recommended for installation. If rigs have gas-charged cartridges installed in the suction stabilizers on the rig, another suggested upgrade is the Charge Free Conversion Kits.

gas mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> free sample

A well-placed suction stabilizer can also prevent pump chatter. Pump chatter occurs when energy is exchanged between the quick opening and closing of the reciprocating pump’s valves and the hammer effect from the centrifugal pump. Pump isolation with suction stabilizers is achieved when the charge pumps are isolated from reciprocating pumps and vice versa. The results are a smooth flow of pumped media devoid of agitating energies present in the pumped fluid.

gas mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> free sample

Specifically designed for drilling companies and others in the oil and gas industry, the easy to use drilling rig inspections app makes it easy to log information about the drill rigs, including details about the drill rigs operators, miles logged and well numbers. The inspection form app covers everything from the mud pump areas and mud mixing area to the mud tanks and pits, making it easy to identify areas where preventative maintenance is needed. The drilling rig equipment checklist also covers health and safety issues, including the availability of PPE equipment, emergency response and preparedness processes, and other critical elements of the drilling process and drill press equipment.

gas mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> free sample

With 60 years of experience and more than 3200 wells drilled in the Gulf of Mexico region, Continental Laboratories has accrued a leadership role in designing and implementing gas analysis systems for the Oil and Gas industry. Our latest generation gas detection system incorporates two different technologies into one detector. Catalytic sensors are utilized for greater accuracy when smaller percentages of hydrocarbon gases are present. When greater percentages are encountered, infrared sensor technology is utilized to measure target gasses up to 100% by volume.

This rugged gas detector was designed to withstand extreme levels of rig-induced electrical noise, ambient temperature swings and rig vibrations while still maintaining excellent characteristics throughout the full range of hydrocarbon gases. The result is an extremely accurate and reliable instrument, suitable for all oilfield environments.

Safety is our number one priority at Continental Laboratories and we have designed our gas detector to be as safe to operate as possible. We have added advanced safety features including over-temp monitoring, sensor status indicators, remote alarm capability and audible and visual alarms that are easily accessible to the operator.

gas mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> free sample

Drilling mud is most commonly used in the process of drilling boreholes for a variety of reasons such as oil and gas extraction as well as core sampling. The mud plays an important role in the drilling process by serving numerous functions. The main function it is utilized for is as a lubricating agent. A large amount of friction is generated as drilling occurs which has the potential to damage the drill or the formation being drilled. The mud aids in the decrease in friction as well as lowering the heat of the drilling. It also acts a carrier for the drilled material so it becomes suspended in the mud and carried to the surface.

Using a Moyno progressive cavity pump, the drilling mud with suspended material can be pumped through a process to remove the solids and reuse the cleaned mud for further drilling.

gas mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> free sample

The present invention relates to a method and apparatus for uniformly and continuously drawing samples of gas entrained in a liquid containing a high percentage of solids. More particularly, the present invention relates to a method and apparatus for obtaining samples of gases contained in drilling mud coming to the surface from an oil well drilling operation.

The conventional practice in drilling for oil is to use a special fluid, termed "drilling mud", which is pumped down the drill string to circulate from the drilling head and carry upward to the surface the debris created by the drilling operation. When a gas-containing strata is encountered by the drilling operation, a certain amount of the gas from the strata will be entrained in the drilling mud and thus be carried to the surface. Extracting these gases from the drilling mud allows determination of the presence of hydrocarbons and an estimate of the quantity of hydrocarbon being encountered. Analysis of the recovered gas can be used to make a determination as to the desirability of recovering the gas or oil from the particular strata. This practice is generally categorized as "mud logging". The known devices for accomplishing mud logging separate the gas from the fluid by an agitation or vibrating process. The gas, i.e. hydrocarbon, samples are collected in a gas trap during this operation. Gas traps of several different designs are currently used in the mud logging industry in order to extract light hydrocarbon gases from the return flow line mud for measurement. The purpose of this measurement is twofold: (1) to provide warning of dangerous underbalanced drilling conditions indicated by increased gas returns; and (2) to evaluate the formation being drilled for hydrocarbon productivity.

Several different gas traps are currently used in the mud logging industry. The purpose of these trap systems is to measure the amount of gas in the drilling fluid, which gas will be representative of the formation gas. This measurement is critical to identification of productive zones during drilling of the well. However, existing traps are not reliable and are very dependent upon operating conditions, such as mud flow rate and air dilution of the sample as it passes through the trap. These parameters cannot be readily controlled by many existing trap designs. The fluid level, where the trap is installed, will change during the drilling operation. This change in level will affect the flow of fluid through the trap thereby changing the amount of gas measured by the trap over any given time period while there is no actual change in the amount of gas in the drilling fluid.

The amount of air dilution cannot be measured accurately in the current traps because of air and gas leaks through the fluid exhaust port, which is generally open to the air outside the trap, and leakage around the motor shaft stirrer bar.

In general, gas traps operate by diverting a portion of the return mud through an enclosed volume which provides some mechanism for gas release within that volume. The mechanism may be passive, such as a mud-spreading plate, or may contain some sort of mechanical agitator to maximize the mud/air contact. In either case, the evolved gas is conveyed to the analytical equipment by means of suction applied to a gas phase sample line attached to the trap body. Due to the need to provide continuously updated gas readings, mud residence time within the trap is normally so short that only a fraction of the gas is released. For quantitative operation, the trap design must therefore be such that the observed gas in the sample stream can be easily related to the actual gas content of the return mud.

Regardless of the details of the trap operation, several flows are always present in one form or another, mud phase entry and exit flows to permit continuous sampling of fresh mud, gas phase sampling flow, and gas phase vent flow whose direction and rate is determined by the difference in gas evolution and gas sampling rates. In order for quantitative reproducible readings to be obtained, these flows should be discreet and accessible to measurement by the operator. Of particular importance is the avoidance of uncontrolled external air and evolved gas mixing due to poor design of the trap vent flow, a failing encountered in several commonly used trap designs.

Another fault in many designs is the excessive variation in trap response with changes in the return mud level. The driller often has occasion to change the pump rate. Such flow rate changes alter the level of mud in the return mud handling equipment and, unless the trap is dynamically mounted, also alter the immersion level of the trap mud entry port. One solution sometimes is to provide an active pumping mechanism in the trap, but, due to formation cuttings in the mud, such pumps are prone to jamming and high maintenance requirements with the attendant high costs.

The present invention overcomes the difficulties of the prior art by providing a gas trap which eliminates problems with existing trap designs and provides an accurate and reliable tool for measuring mud gas. Quantitative operation is provided by inclusion of a discrete air vent line, whose far end is in gas-free air, and by elimination of uncontrolled gas phase mixing at the mud exit port and the agitator shaft feed-through. The mud exit port is sealed to gas exchange by means of a down-tube directing the exiting mud to below the external mud surface. In addition, the down-tube design is such that spent mud is directed away from the mud entry port to insure that fresh mud is continuously sampled. The invention provides immersion level insensitivity by means of an agitator design used in combination with a mud containment ring within the trap body. Finally, trap operation is made more reliable and maintenance free by means of splash protection baffles which minimize the chance for mud plugging of the vent and sampling lines.

The present invention is a gas trap which is compact, easily installed, has low maintenance requirements, provides quantitative gas recovery and is insensitive to immersion level changes encountered during normal drilling operations. The present invention is of the enclosed agitator type. In general, the present invention is of maximum simplicity and economy of design in that a number of important functions are simultaneously provided by the agitator, including, but not limited to: (1) the trap body is configured such that the agitator pumps mud through the trap by centrifugal action so that no external mud pump is required; (2) the agitator provides vigorous mud/gas phase mixing within the trap body to release the gas entrained in the mud; (3) the agitator motion causes rapid gas phase mixing of evolved gas and vent air so that the sample line gas is representative of the current gas content of the mud; (4) the agitator induced fluid flow acts to clear the trap body of mud cuttings with little operator maintenance needed; (5) the agitator design gives constant gas evolution for a given amount of gas in the mud, even with changes in the immersion level of the trap mud entry port in the mud; and (6) the agitator has means which prevent clogging due to the naturally occurring splashing of the mud within the trap.

Turning first to the vertical section of FIG. 1, the subject gas trap 10 has a cylindrical trap body 12 closed at its upper end by plate 14 and at its lower end by a plate 16 having a central annular aperture 18 which is coaxial with the housing 12. Intermediate the ends of the housing 12 is an annular plate 20 having a central annular opening 22 which also is coaxial with the housing 12. Plates 16 and 20 define a mixing chamber 24 therebetween.

A constant speed motor 26 is mounted coaxially on top plate 14 by means of spacers 28. A shaft 30 of the motor extends through gas tight feed-through 32 into the interior of the housing 12. A sample line 34 is connected to port 36 and a vent line 38 is connected to port 40. These ports have been shown in the top plate 14 but need not be so located. An agitator 42 is connected to the bottom of the shaft 30 and lies in the mixing chamber 24 defined between the plates 16 and 20. The embodiment of the agitator 42 shown in FIG. 1 consists of a plurality of legs 44, 46, 48 fixed at their upper ends to shaft 30 and downwardly diverting so that, in revolution, they define a conical configuration. A mud exit port 50 is formed in the housing 12 above the level of the intermediate plate 20. An annular plate 52 is fixed in the housing above the mud exit port 50 to define a splash chamber 54 between plates 20 and 52. The annular plate 52 has a central aperture 56 which is coaxial with housing 12 and through which shaft 30 passes. A splash disc 58 is mounted on the shaft 30 below and immediately adjacent to annular plate 52. The splash disc 58 has a plurality of integral, radially directed gas mixing vanes 60 directed towards plate 52. A mud exhaust line 62 is connected to the mud exit port 50 and is here shown with a first downwardly bent elbow 64, a straight intermediate portion 66, a second bent elbow 68 and a short straight extension 70.

The purpose of the mud exhaust line is two fold. First, by returning the mud to below the surface of the mud 72 in tank 74, it insures that there will be no uncontrolled dilution of the evolved gas within the housing 12 from outside air. Second, it insures that the spent mud exiting the trap 10 will be returned below the level of the mud at a point remote from and directed away from the entry of the mud to the subject gas trap through aperture 18 thereby assuring that the trap 10 will be constantly working on a fresh mud supply.

The trap 10 is mounted in a conventional mud tank 74 by known means 76 such that the external mud level 72 is about midway between the lower and intermediate plates 16, 20 when the rig pumps (not shown) are at their normal operating rate. This mounting of the subject trap 10 can be achieved by any of a number of known fixed and adjustable mounting means which have been schematically shown.

The length of the straight portion 66 of the mud exhaust line 62 is such that the diversion elbow 68 is located below the mud level, and preferably below the lower plate 16 as shown. The elbow 68 is spaced from and directed away from the intake aperture 18 of the trap. The trap orientation in the tank is such that the mud exit port 50 is downstream of the mud flowing past the trap. The mud enters the trap 10 via the opening 18 in the lower plate 16 at the trap bottom and is vigorously mixed by the agitator 42 in the mixing chamber 24 in order to release entrained gas. The centrifugal agitation motion causes the mud to exit the mixing chamber 24 through the opening 22 in the intermediate plate 20 and to be returned to the mud tank via mud exit port 50 and exhaust line 62. The action of the agitator 42 also causes rapid gas phase mixing of air admitted via the vent port 36 with gases released from the mud.

The purpose of the mud exit line assembly 62 and the sealed feed through 32 is to provide quantitative operation by eliminating mixing of the evolved gas with external air. Such mixing would act to dilute the evolved gas in an unpredictable fashion, particularly when the trap is subject to variable wind conditions. The diversion elbow 68 on the mud exit line assembly 62 assures that the spent mud, that is the mud having at least a portion of the entrained gas removed therefrom, is not recirculated through the trap body which, of course, would cause an erroneous reading by diluting the incoming drilling mud with processed mud from which the gas had been removed.

The air vent 40 is present for gas phase pressure equilibration and allows the suction rate of the sample line to be set at any desired level regardless of the actual gas evolution rate from the trap. The exact location of the vent port 40 in the trap body is not critical. The primary consideration for the location of the suction and vent ports is that there be good mixing of the air with the evolved gas and avoidance of plugging of the ports due to mud splashing. This latter feature is accomplished in the upper part of the trap gas sample mixing chamber 54 by fixed annular ring 52 in combination with splash disc 58 and vanes 60 mounted on the agitator shaft 30. The vent line diameter and its length are such that the end of the line away from the trap is in essentially gas free air and the line pressure drop is small at the suction flow rates of interest.

When the suction rate exceeds the total gas evolution rate, mass balance consideration show that for each gas component of interest the percentage gas by volume in the sample line is related to the evolution rate of that component by the equation

The operator will normally use a suction rate in excess of the largest total evolution rate whose precise measurement is of interest. When the total gas evolution rate exceeds the suction rate, the trap is saturated in that gas is lost via the vent and the above equation no longer applies. In practice a minor portion of the evolved gas may be lost via the mud exit port due to agitator created bubbles. This loss effectively increases the suction rate and may be accounted for by adding a correction term to the value for S in the equation.

The three pronged agitator detailed in FIGS. 1 and 3 and the intermediate plate 20 act to stabilize the gas evolution rate against changes in trap immersion level in the mud. In general the overall trap mud flow tends to increase with the immersion level. The agitator is designed to gradually lose its mud/air mixing effectiveness as it is more deeply submerged in the mud. As a result, the net evolution rate which is given by product of mud flow rate and the efficiency of mud gas removal tends to remain constant.

gas mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> free sample

Millions of years ago, algae and plants lived in shallow seas. After dying and sinking to the seafloor, the organic material mixed with other sediments and was buried. Over millions of years under high pressure and high temperature, the remains of these organisms transformed into what we know today as fossil fuels. Coal, natural gas, and petroleum are all fossil fuels that formed under similar conditions.

Petroleum is used to make gasoline, an important product in our everyday lives. It is also processed and part of thousands of different items, including tires, refrigerators, life jackets, and anesthetics.

When petroleum products such as gasoline are burned for energy, they release toxic gases and high amounts of carbon dioxide, a greenhouse gas. Carbon helps regulate Earth’s atmospheric temperature, and adding to the natural balance by burning fossil fuels adversely affects our climate.

However, petroleum, like coal and natural gas, is a nonrenewable source of energy. It took millions of years for it to form, and when it is extracted and consumed, there is no way for us to replace it.

With more heat, time, and pressure, the kerogen underwent a process called catagenesis, and transformed into hydrocarbons. Hydrocarbons are simply chemicals made up of hydrogen and carbon. Different combinations of heat and pressure can create different forms of hydrocarbons. Some other examples are coal, peat, and natural gas.

The gasoline we use to fuel our cars, the synthetic fabrics of our backpacks and shoes, and the thousands of different useful products made from petroleum come in forms that are consistent and reliable. However, the crude oil from which these items are produced is neither consistent nor uniform.

Due to this variation, crude oil that is pumped from the ground can consist of hundreds of different petroleum compounds. Light oils can contain up to 97 percent hydrocarbons, while heavier oils and bitumens might contain only 50 percent hydrocarbons and larger quantities of other elements. It is almost always necessary to refine crude oil in order to make useful products.

The American Petroleum Institute (API) is a trade association for businesses in the oil and natural gas industries. The API has established accepted systems of standards for a variety of oil- and gas-related products, such as gauges, pumps, and drilling machinery. The API has also established several units of measurement. The “API unit,” for instance, measures gamma radiation in a borehole (a shaft drilled into the ground).

Crude oil is frequently found in reservoirs along with natural gas. In the past, natural gas was either burned or allowed to escape into the atmosphere. Now, technology has been developed to capture the natural gas and either reinject it into the well or compress it into liquid natural gas (LNG). LNG is easily transportable and has versatile uses.

As the drill bit rotates and cuts through the earth, small pieces of rock are chipped off. A powerful flow of air is pumped down the center of the hollow drill, and comes out through the bottom of the drill bit. The air then rushes back toward the surface, carrying with it tiny chunks of rock. Geologists on site can study these pieces of pulverized rock to determine the different rock strata the drill encounters.

Pumps are used to extract oil. Most oil rigs have two sets of pumps: mud pumps and extraction pumps. “Mud” is the drilling fluid used to create boreholes for extracting oil and natural gas. Mud pumps circulate drilling fluid.

The petroleum industry uses a wide variety of extraction pumps. Which pump to use depends on the geography, quality, and position of the oil reservoir. Submersible pumps, for example, are submerged directly into the fluid. A gas pump, also called a bubble pump, uses compressed air to force the petroleum to the surface or well.

One of the most familiar types of extraction pumps is the pumpjack, the upper part of a piston pump. Pumpjacks are nicknamed “thirsty birds” or “nodding donkeys” for their controlled, regular dipping motion. A crank moves the large, hammer-shaped pumpjack up and down. Far below the surface, the motion of the pumpjack moves a hollow piston up and down, constantly carrying petroleum back to the surface or well.

Even after pumping, the vast majority (up to 90 percent) of the oil can remain tightly trapped in the underground reservoir. Other methods are necessary to extract this petroleum, a process called secondary recovery. Vacuuming the extra oil out was a method used in the 1800s and early 20th century, but it captured only thinner oil components, and left behind great stores of heavy oil.

The most prevalent secondary recovery method today is gas drive. During this process, a well is intentionally drilled deeper than the oil reservoir. The deeper well hits a natural gas reservoir, and the high-pressure gas rises, forcing the oil out of its reservoir.

Bitumen is about the consistency of cold molasses, and powerful hot steam has to be pumped into the well in order to melt the bitumen to extract it. Large quantities of water are then used to separate the bitumen from sand and clay. This process depletes nearby water supplies. Releasing the treated water back into the environment can further contaminate the remaining water supply.

Petroleum is an ingredient in thousands of everyday items. The gasoline that we depend on for transportation to school, work, or vacation comes from crude oil. A barrel of petroleum produces about 72 liters (19 gallons) of gasoline, and is used by people all over the world to power cars, boats, jets, and scooters.

Combusting gasoline, which is made from petroleum, is particularly harmful to the environment. Every 3.8 liters (one gallon) of ethanol-free gas that is combusted in a car’s engine releases about nine kilograms (20 pounds) of carbon dioxide into the environment. (Gasoline infused with 10 percent ethanol releases about eight kilograms (17 pounds.)) Diesel fuel releases about ten kilograms (22 pounds) of carbon dioxide, while biodiesel (diesel with 10 percent biofuel) emits about 9 kilograms (20 pounds).

The country of Sweden has made it a priority to drastically reduce its dependence on oil and other fossil fuel energy by 2020. Experts in agriculture, science, industry, forestry, and energy have come together to develop sources of sustainable energy, including geothermal heat pumps, wind farms, wave and solar energy, and domestic biofuel for hybrid vehicles. Changes in society’s habits, such as increasing public transportation and video-conferencing for businesses, are also part of the plan to decrease oil use.

gas mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> free sample

Oil/gas engineers looking for a next-generation air/gas flow meter to support mud logging operations will find that the future-ready ST100 Series thermal mass air/gas flow meter from Fluid Components International (FCI) offers the ability to measure flare gas flows under variable and low flow rate conditions.

Upstream oil/gas production companies around the globe depend on mud logging service companies to analyze mud samples that help them maintain the correct direction for their drilling field operations. In mud logging, samples of rock cuttings from bore holes are brought to the surface by recirculating drilling media (mud) for analysis by a mobile laboratory to determine the lithology and fluid content of the sample.

As the mud is returned to the surface from down the hole, it also contains natural gas that is vented to a flare stack and burned off at low flow rates typically from 15 to 20 fps. U.S. Environmental Protection Agency (EPA) Directive 40 CFR Part 98 requires measurement and reporting of these flare gas emissions from mud logging operations. To provide the U.S. EPA required flare gas data, mud logging service companies need an accurate, reliable gas flow meter able to measure gas flow at relatively low flow rates. FCI’s ST100 Series Thermal Mass Gas Flow Meter provides excellent accuracy at low flow rates combined with a turndown far in excess of 100:1, with an insertion style probe offering low pressure drop.

The ST100 Series Flow Meter sets a new industry benchmark in process and plant air/gas flow measurement, offering the most feature-rich and function-rich electronics available. The ST100’s performance delivers unsurpassed adaptability and value to meet plant gas flow measurement applications for today and tomorrow.

The user-friendly ST100 stores up to five unique calibration groups to accommodate broad flow ranges, differing mixtures of the same gas and multiple gases, and obtains up to 1000:1 turndown. Also standard is an on-board data logger with an easily accessible, removable 2-GB micro-SD memory card capable of storing 21 million readings.

The ST100 can be calibrated to measure virtually any process gas, including wet gas, mixed gases and dirty gases. The basic insertion style air/gas meter features a thermal flow sensing element that measures flow from 0.25 to 1000 SFPS (0.07 NMPS to 305 NMPS) with accuracy of ±0.75 percent of reading, ±0.5 percent of full scale.

Fluid Components International is a global company committed to meeting the needs of its customers through innovative solutions for the most challenging requirements for sensing, and measuring flow, pressure and temperature of gases. For more information, visit www.fluidcomponents.com.

gas mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> free sample

Drilling and well control equipment that are not designed for hydrogen sulfide use could suffer a loss of structural integrity following exposure, which could impede their function and operation during an emergency. Hydrogen sulfide is extremely toxic to humans at minute concentrations. At higher concentrations it is flammable, as well as corrosive to metals. A surface breakout of this gas, if not responded to and controlled immediately, can result in injuries and/or fatalities, fire and explosion. Hydrogen sulfide should be anticipated in all areas of the rig where drilling fluid and associated equipment is present. Those areas include the rig floor, substructure, shale shakers, mud cleaners, mud pit room, mud pump room and well test equipment. Being heavier than air, hydrogen sulfide will settle in low-lying and poorly ventilated areas and will dissolve in oil and water present in those areas.