head mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> free sample

Created specifically for drilling equipment inspectors and others in the oil and gas industry, the Oil Rig Mud Pump Inspection app allows you to easily document the status and safety of your oil rigs using just a mobile device. Quickly resolve any damage or needed maintenance with photos and GPS locations and sync to the cloud for easy access. The app is completely customizable to fit your inspection needs and works even without an internet signal.Try Template

head mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> free sample

When choosing a size and type of mud pump for your drilling project, there are several factors to consider. These would include not only cost and size of pump that best fits your drilling rig, but also the diameter, depth and hole conditions you are drilling through. I know that this sounds like a lot to consider, but if you are set up the right way before the job starts, you will thank me later.

Recommended practice is to maintain a minimum of 100 to 150 feet per minute of uphole velocity for drill cuttings. Larger diameter wells for irrigation, agriculture or municipalities may violate this rule, because it may not be economically feasible to pump this much mud for the job. Uphole velocity is determined by the flow rate of the mud system, diameter of the borehole and the diameter of the drill pipe. There are many tools, including handbooks, rule of thumb, slide rule calculators and now apps on your handheld device, to calculate velocity. It is always good to remember the time it takes to get the cuttings off the bottom of the well. If you are drilling at 200 feet, then a 100-foot-per-minute velocity means that it would take two minutes to get the cuttings out of the hole. This is always a good reminder of what you are drilling through and how long ago it was that you drilled it. Ground conditions and rock formations are ever changing as you go deeper. Wouldn’t it be nice if they all remained the same?

Centrifugal-style mud pumps are very popular in our industry due to their size and weight, as well as flow rate capacity for an affordable price. There are many models and brands out there, and most of them are very good value. How does a centrifugal mud pump work? The rotation of the impeller accelerates the fluid into the volute or diffuser chamber. The added energy from the acceleration increases the velocity and pressure of the fluid. These pumps are known to be very inefficient. This means that it takes more energy to increase the flow and pressure of the fluid when compared to a piston-style pump. However, you have a significant advantage in flow rates from a centrifugal pump versus a piston pump. If you are drilling deeper wells with heavier cuttings, you will be forced at some point to use a piston-style mud pump. They have much higher efficiencies in transferring the input energy into flow and pressure, therefore resulting in much higher pressure capabilities.

Piston-style mud pumps utilize a piston or plunger that travels back and forth in a chamber known as a cylinder. These pumps are also called “positive displacement” pumps because they literally push the fluid forward. This fluid builds up pressure and forces a spring-loaded valve to open and allow the fluid to escape into the discharge piping of the pump and then down the borehole. Since the expansion process is much smaller (almost insignificant) compared to a centrifugal pump, there is much lower energy loss. Plunger-style pumps can develop upwards of 15,000 psi for well treatments and hydraulic fracturing. Centrifugal pumps, in comparison, usually operate below 300 psi. If you are comparing most drilling pumps, centrifugal pumps operate from 60 to 125 psi and piston pumps operate around 150 to 300 psi. There are many exceptions and special applications for drilling, but these numbers should cover 80 percent of all equipment operating out there.

The restriction of putting a piston-style mud pump onto drilling rigs has always been the physical size and weight to provide adequate flow and pressure to your drilling fluid. Because of this, the industry needed a new solution to this age-old issue.

As the senior design engineer for Ingersoll-Rand’s Deephole Drilling Business Unit, I had the distinct pleasure of working with him and incorporating his Centerline Mud Pump into our drilling rig platforms.

In the late ’90s — and perhaps even earlier —  Ingersoll-Rand had tried several times to develop a hydraulic-driven mud pump that would last an acceptable life- and duty-cycle for a well drilling contractor. With all of our resources and design wisdom, we were unable to solve this problem. Not only did Miller provide a solution, thus saving the size and weight of a typical gear-driven mud pump, he also provided a new offering — a mono-cylinder mud pump. This double-acting piston pump provided as much mud flow and pressure as a standard 5 X 6 duplex pump with incredible size and weight savings.

The true innovation was providing the well driller a solution for their mud pump requirements that was the right size and weight to integrate into both existing and new drilling rigs. Regardless of drill rig manufacturer and hydraulic system design, Centerline has provided a mud pump integration on hundreds of customer’s drilling rigs. Both mono-cylinder and duplex-cylinder pumps can fit nicely on the deck, across the frame or even be configured for under-deck mounting. This would not be possible with conventional mud pump designs.

The second generation design for the Centerline Mud Pump is expected later this year, and I believe it will be a true game changer for this industry. It also will open up the application to many other industries that require a heavier-duty cycle for a piston pump application.

head mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> free sample

A wide variety of mud pump cylinder head options are available to you, such as 1 year, not available.You can also choose from new, mud pump cylinder head,As well as from energy & mining, construction works , and machinery repair shops. and whether mud pump cylinder head is 6 months, unavailable, or 3 months.

head mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> free sample

A wide variety of mud pump piston head options are available to you, You can also choose from new, mud pump piston head,As well as from energy & mining, construction works , and machinery repair shops. And whether mud pump piston head is 6 months, 3 months, or {3}.

head mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> free sample

The “pond” is actually a man made dam which covers an area of about 40ha and has rockfill embankments of up to 53m high along the southern side that forms the impoundment.  It initially constructed in 1959 to act as a tailings pond to take the bauxite residue (red mud) from the Ewarton Plant situated about 5km away and 300m lower.  The red mud was pumped as a slurry comprising about 20% solids to the pond over a period of about 32 years up to 1991 when the pond was replaced by the Charlemount Mud Stacking and Drying Facility.  During this period the pond embankments (referred to as dams), were raised up to 7 times providing a final crest elevation of 472m.  The pond was however never filled to its final design capacity and the mud beach level remained at about 469m and the central area about 458m leaving a concave depression which held about 1.4mil m3 of water with elevated pH and some caustic content.

The remediation plan for the pond includes the removal of the ponded water and then the regrading of the mud surface to be free draining so that it can be stabilised and vegetated.  About 500,000 m3 of mud will need to be moved over a distance of up to 1km in order to create the required profile.  Due to the very soft nature of the surface muds (shear strength of less than 3kPa) its bearing capacity is less than 20kPa hence it is not accessible using even modified earthworks equipment.  In addition, the muds are thyrotrophic and under any vibration or shear loading, rapidly liquefy resulting in significant reduction in shear strength and loss of bearing capacity.  Using conventional earthmoving equipment would therefore require extensive “floating” haul roads with a high risk of machinery getting stuck or entire plant loss and risk to personnel.  It was therefore decided to investigate the possibility of pumping the in-situ red mud.

A mud pumping trial was undertaken to assess the feasibility of using this technique to do the bulk mud moving.  Pumping red mud is not unusual and the muds were initially pumped up to Mt Rosser Pond.  However, the muds are usually pumped at a solids content of 30% or less.  Once deposited, they can take years to reconsolidate and firm up sufficiently to allow access for light earthworks and agricultural plant.

In addition to the mud pumping, the trial included infilling three small scale geotubes to assess their performance as these may be needed as part of the regrading works.

The main aim of the pump trial was to determine if the muds could be pumped in their insitu state, and if not, what amount of water is required and how the variations in water content affect pump rates.

The mud pumping trial was undertaken using a 4” EDDY Pump.  This pump was recommended due to its ability to handle variable solids and robust operating mechanism.  The pump unit incorporated a hydraulic drive and cutter head.  The unit was mounted onto the boom of a JCB 220 excavator which also supplied the hydraulic feed to power the pump for the required range of 30-40 GPM at 3,500 to 4,000 psi (2428MPa).  The cutter head was powered by a standalone hydraulic power unit capable of providing the required 30gpm at 200psi (1.9 l/s at 13.8MPa).  If mounted on a 30-ton excavator with a System 14 hydraulic system and dual auxiliary feeds to the boom, all necessary hydraulic power for the pump and cutter head can be supplied by the excavator.  This equipment was however not available at the time in Jamaica.

In addition to the pump mounted on the excavator a Long Reach excavator (CAT 325) was used to move muds towards the cutter head but also to loosen up the muds and mix in additional water to facilitate pumping.  Water was added by pumping it directly from the pond using a 3” diesel water pump.

Prior to pumping the muds, the mud pump would operate in recirculation mode in order to prime the pump.  When in recirculation (re-circ) mode, the material pumped would be diverted to a short discharge pipe mounted on the pump directed back parallel to the cutter head. This action would help agitate and stir the muds.

A geotechnical soils investigation was undertaken on the muds within Mt Rosser pond in 2004.  It showed the material to be predominantly clayey silt with approximately 13% sand, 29% clay and 58% silt using conventional sieve analysis and hydrometer.  Atterberg limits indicate that the material is an intermediate to high plasticity clay.  The muds do however vary across the lake and also vertically. This is mainly as a consequence of the deposition process and discharge location.  Close to the discharge location the courser materials would settle out first and the finer materials would disperse furthest and to the opposite end of the pond.  The results are presented in figure 4.1.

Earlier this year, additional mud samples were tested as it was evident that standard soil mechanics tests did not provide an accurate assessment of this fine material.  This was particularly evident in tests done with dry sieving which shows the material as well-graded sand (see results for samples 5300, 5301, 5302 on figure 4.2).  When dispersed in water, even with an agent, the ‘yield-pseudo-plastic’ rheology of the muds appeared to affect the hydrometer results with large variations between tests (see results of samples PFT4&5 taken during mud pumping trials on figure 4.2).

The additional testing comprised of undertaking gradings using a Laser Particle Analyzer. The results indicated that the muds are predominantly Silt although the silt % varied from 30% to 80% with the material being either more sandy or more clayey (up to 15% clay). See results of samples ending in “L” on figure 4.2 below.

Moisture content tests on the muds taken from within the mud pond but below the ponded water ranged from 100% to 150% (50% to 40% solids).  The muds at the pump test location were 137% (42% solids).

Shear strength was generally very low ranging from 1kPa to 6kPa increasing with depth.  Dynamic probes previously undertaken indicated that the muds are “very soft” to 5m increasing in strength slightly to “soft” at a depth of 9m after which they increase to firm becoming stiff.

The pH of the muds ranged from 10.3 to 11.7, (ave 11.2).  Previous testing indicated that the surface muds have the lower pH although once through the crust, the pH tends to be higher. When doing the trials, the muds up to a depth of about 2.5m was intermixed, hence any stratification in pH could not be determined.

Initially, pumping was problematic mainly due to the excavator being underpowered. This was diagnosed as a hydraulic pump problem and the excavator was replaced.  The cutter head (which also acts to protect the intake) tended to blind with mud (Photo 5.1) and was also not providing enough agitation to liquefy the muds.  This was partly resolved by adding “stirrers” (2 steel loops welded either side) to the rotating cutter head and also a “comb” (Photo 5.2) to keep the gaps within the cutter head open.

Mud pumping rates varied from 21 l/s to 52 l/s (332 – 824gpm) and it was clearly visible that the more liquid the muds were the higher the pump rate was.  Samples were taken at different discharge rates and moisture content and percent solids determined by laboratory testing.  The results are plotted in Figure 5.1 and although scattered, do give an indication of the effects of solids content on flow rates.  The natural moisture content of the muds (insitu) at the test location was 137%, or 42% solids.  This is shown in Figure 5.1 as a vertical line.  Pumping muds close to the percent solids was achieved although flow rates were low.

As mentioned previously, the long reach excavator was used to loosen up the muds.  Water was pumped from the pond using a 3” pump into the excavation and the long reach would then work the muds to mix the water in.  The mud pump would then be used in recirculation mode to further mix the muds into a more consistent state.  Even with this mixing and agitation, the water tended to concentrate on the surface. This aided the initial process of priming the pump and once primed thicker muds at 1m to 2m below the surface could be pumped.  However, it was found that the deeper muds tended to be lumpy and this would significantly reduce or stop the flow requiring the pump to be lifted into thinner muds or having to go back into re-circ mode or having to fully re-prime.  The pump discharge was therefore very inconsistent as the suction intake position constantly needed adjustment in an attempt to get adequate discharge but also pump the thickest muds possible.

Discharge of the pumped muds was through 30m of flexible hose then 60m of 4” HDPE pipe which had an internal diameter of about 87mm (3.5”).    The muds were discharged onto the original mud beach which lies at a gradient of about 9%. On deposition the muds slowly flowed down gradient.  At times the flow would stop and the muds would build up then flow again in a wave motion.  The natural angle of repose would therefore be a few degrees less than this – probably 5% to 6%.

Although the muds have very low shear strength, and on agitation liquefy, the sides of the excavation had sufficient strength to stand about 2m near vertical.  Even overnight, there was limited slumping and the bank could be undermined by about 0.5m with the cutter head/agitator before collapsing.

On termination of pumping, in order to flush the pipeline, thin watery muds were pumped until the line was clear. A “T” valve system was then used to connect the 3” water pump line and this was then used to flush the pipe with water.

Three geotubes (1m x 6m) were filled with red muds pumped using the 4” Eddy pump. Fill rates were about 30 to 40l/s although it was difficult to assess as the flow and mud consistence was not visible.

Tube 1 was filled initially with more runny mud and then thicker muds as the pump operator got a better feel for conditions.  The tube was filled until firm.  The second tube was filled with thicker muds and filling continued until the tube was taut.  These two tubes were positioned on the sloping beach in order to form a small “U” impoundment area that would later be filled with pumped muds.  Although the area was prepared, the sloping ground caused the first tube to rotate through about 20 degrees. The tube was staked and the downslope side backfilled.  A more defined bed was created for the second tube and the same rotational issue was limited.  The two filled tubes with the ponded mud are shown in Photos 5.7 and 5.8.  Other than a small leak at the contact between the two geotubes, the ponding of the muds was successful.

The third tube was positioned on level ground. It was filled with medium runny (but consistent thickness) muds and was filled until the tube was taut.

In all three cases, there was very little mud loss or seepage from the tubes.  When stood on, some red water would squeeze out around the pressure area.  Once filled taut, the entire bag would have small red water droplets form on the outside (visible in Photo 5.11) , but the seepage was in general nominal.

The tubes have been monitored and the most recent photo’s taken on 10 October 2011 (6 weeks after filling) show how the tubes have reduced in volume due to the dewatering of the contained muds.  Volume loss is estimated to be around 30%.  The anticipated moisture content would therefore be about 90% and the solids around 53%.

The muds pumped into the trial pond behind the geotubes were medium thick to thick, probably in the order of 37 – 40% solids.  After 6 weeks the mud has not only firmed-up but had dried out significantly with wide and deep surface cracks as are evident in Photo 5.14 and 5.15.

The muds can be pumped at close to their insitu moisture content and most likely at their in-situ moisture content if they were agitated more and the pipeline system was designed to reduce friction losses.

Be able to access the mud surface and move around efficiently and safely. The suggestion is to have the pump mounted on a pontoon that is positioned using high strength rope (dynema) or steel cable.  The pump system should be remotely controlled as this would limit regular movement of personnel on the muds.

Have sufficient power and volume capacity to pump the muds at close to or at in-situ moisture content and discharge them about 1000m through a flexible pipeline.

It was also evident from the trials that the muds do not slump and flow readily.  It will therefore be necessary to have an amphibious excavator to loosen up the muds in the area around the pump head.  This weakened and more liquid mud would also aid the movement of the pump pontoon.  To also limit the amount of movement the pontoon will need to do, the amphibious excavator could also move muds towards the pump location.

Using the capacity of the 4” mud pump, mud moving would take about 1.5 to 2 years, the pump will however need to be more suited to the task.  A target period of 1 year however seems reasonable.  However, prior to this, equipment will need to be procured and imported into Jamaica. The 6 and 10 inch Excavator Dredge Pump Attachments are also being considered as an option for higher GMP and a more aggressive completion timeline.  A preliminary programme is as follows:

head mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> free sample

The 2,200-hp mud pump for offshore applications is a single-acting reciprocating triplex mud pump designed for high fluid flow rates, even at low operating speeds, and with a long stroke design. These features reduce the number of load reversals in critical components and increase the life of fluid end parts.

The pump’s critical components are strategically placed to make maintenance and inspection far easier and safer. The two-piece, quick-release piston rod lets you remove the piston without disturbing the liner, minimizing downtime when you’re replacing fluid parts.

head mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> free sample

Discharge Head: This is the vertical distance that you are able to pump liquid. For example, if your pump is rated for a maximum head of 18 feet, this does not mean that you are restricted to 18 feet of pipe. You can use 300 feet, so long as the final discharge point is not higher than 18 feet above the liquid being pumped.

Suction Lift: This is the vertical distance that the pump can be above the liquid source. Typically, atmospheric pressure limits vertical suction lift of pumps to 25 feet at sea level. This does not mean that you are limited to 25 feet of pipe. You could use upwards of 300 feet of suction pipe, so long as the liquid source is not lower than 25 feet below the pump center line.

head mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> free sample

Advance augers with the 2 or 4-speed rotary head. Then use the machine hydraulics to slide the head over to position the hands-free automatic drop hammer for driving SPT samples between core runs. Or use the controls to slide the head the other way to conduct CPT logging using the integrated CPT head-feed rate controls complete with cone overload protection. Or use the GH63 direct push hammer to see the subsurface with Direct Image® tooling. No manipulating the drill mast position. No mobilizing multiple machines.

So forget the days of herding multiple rigs to a job site. Forge a brighter future using the centerline head side shift to simplify the process of traditional geotech techniques — augering, mud rotary, SPT, Shelby tubes, hard rock cores, CPT – and even direct push. A taller telescoping drill mast specifically designed for geotech work with heavier winch options, 105” head travel, and 36k push and 48k pull at the head-feed cylinder means greater pull back – ideal for drive and wash – and head travel.

All this within a smaller footprint than the relic you"ve been using, which still includes room for a separate hydraulic circuit for the mud pump (stabilizing mud flow) and space for accessories.

But don’t fret about having to break the bank to afford becoming an industry leader. The price point comes in lower than you might expect, and all the features minimize your operating costs. The end result – launching your drilling production and profit light years ahead.

head mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> free sample

When you"re seeking the field flexibility to complete your drilling faster, easier and safer, count on Geoprobe® drill rigs engineered for versatility and manufactured for reliability. Industry leaders depend on our ongoing commitment to innovation and industry-leading customer support to advance their business ahead of the competition. Digital readouts providing instant feedback, enhanced safety features, easy operation, and availability of training options mean veteran drillers find their jobs simplified while new drillers build confidence, making them productive as they"re quickly coming up the learning curve.

Whether you’re facing consolidated materials, glacial till, or backfill rubble, quickly complete complex holes to greater depths with the powerful GV5 50K sonic head on our line of sonic drill rigs. Engineered by Geoprobe® to advance up-to 12-inch tooling, the GV5 produces torque required to maintain rotation in tight formations – all backed by a 2-year warranty.

Save time and effort swiftly sliding the innovative centerline head side shift into position for rotary, automatic drop hammer, event CPT or direct push. No need to move the geotechnical drill or drill mast on the compact, off road drill rig.

Punch out power and pipe line projects with efficiency and performance of 31 series drill mast aligning all head and winch functions over the bore hole combined with creature comforts of a crawler carrier.

Maximize the value of your investment by choosing a CPT drilling platform best suited to your specific business model. Whether you’re seeking a dedicated CPT drilling rig or a versatile drilling rig to run a variety of applications, you’ll find the combination of features to push your business ahead.

With the necessary tophead rotation speed, head feed speed, and plenty of mud pump options to get the job done, complete your water well drilling, geothermal drilling, and cathodic protection drilling jobs with a single, compact water well drill.

Tophead offering both torque and speed to the impressive power to weight ratio make the DM450 well suited for water well, geothermal, and/or cathodic protection drilling while minimizing maintenance.

Outfit as down the hole drill or mud drill with the power of 28.5-foot stroke, 40,000 lb pullback, and 8,000 ft-lb torque to handle deeper wells along with weight of steel casing.

head mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> free sample

Pressure PumpsLeading Wholesale Trader of mud pump bt 32.2 tssp ( 5 hp ), mud pump bt 611 tssp ( 15 hp ), mud pump bt 43.7 tssp ( 7.5 hp ), mud pump bt 700 sspf ( 1 hp ) and self priming automatic pump ( bt 50 spap / 0.5 hp ) from Pune.

Dewatering pumps are centrifugal pumps installed in a building that is situated below the groundwater level, to reduce the water level and then maintain it at this level. One example is in underground mining in which water penetrating into the adits is pumped up to the surface.

Dewatering pumps are centrifugal pumps installed in a building that is situated below the groundwater level, to reduce the water level and then maintain it at this level. One example is in underground mining in which water penetrating into the adits is pumped up to the surface.

Dewatering pumps are centrifugal pumps installed in a building that is situated below the groundwater level, to reduce the water level and then maintain it at this level. One example is in underground mining in which water penetrating into the adits is pumped up to the surface.

Dewatering pumps are centrifugal pumps installed in a building that is situated below the groundwater level, to reduce the water level and then maintain it at this level. One example is in underground mining in which water penetrating into the adits is pumped up to the surface.

Self-priming pumps are used in various industrial and commercial facilities, from steel mills, power plants, and sewage treatment facilities to wineries, breweries, and more. Common applications include: Pumping water, fuels, clear or gray water, raw sewage, industrial wastewater, and more. Liquid transfer systems.

head mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> free sample

When two (or more) pumps are arranged in serial their resulting pump performance curve is obtained by adding theirheads at the same flow rate as indicated in the figure below.

Centrifugal pumps in series are used to overcome larger system head loss than one pump can handle alone. for two identical pumps in series the head will be twice the head of a single pump at the same flow rate - as indicated with point 2.

With a constant flowrate the combined head moves from 1 to 2 - BUTin practice the combined head and flow rate moves along the system curve to point 3. point 3 is where the system operates with both pumps running

When two or more pumps are arranged in parallel their resulting performance curve is obtained by adding the pumps flow rates at the same head as indicated in the figure below.

Centrifugal pumps in parallel are used to overcome larger volume flows than one pump can handle alone. for two identical pumps in parallel and the head kept constant - the flow rate doubles compared to a single pump as indicated with point 2

Note! In practice the combined head and volume flow moves along the system curve as indicated from 1 to 3. point 3 is where the system operates with both pumps running

In practice, if one of the pumps in parallel or series stops, the operation point moves along the system resistance curve from point 3 to point 1 - the head and flow rate are decreased.