mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> condition monitoring brands

The 2,200-hp mud pump for offshore applications is a single-acting reciprocating triplex mud pump designed for high fluid flow rates, even at low operating speeds, and with a long stroke design. These features reduce the number of load reversals in critical components and increase the life of fluid end parts.

The pump’s critical components are strategically placed to make maintenance and inspection far easier and safer. The two-piece, quick-release piston rod lets you remove the piston without disturbing the liner, minimizing downtime when you’re replacing fluid parts.

mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> condition monitoring brands

This week we’re working on another set of National 12P pumps on board a North Sea semi. We keep your mud pumps running in first class condition – providing onsite inspections, repairs and complete overhaul as well as all associated parts. We support all major brands and models and have team members standing by around the globe.

mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> condition monitoring brands

A mud pump is a reciprocating piston/plunger device designed to circulate drilling fluid under high pressure down the drill string and back up the annulus.

Mud pumps come in a variety of sizes and configurations, but for the typical petroleum drilling rig, the triplex (three piston/plunger) mud pump is the pump of choice. Duplex mud pumps (two piston/plungers) have generally been replaced by the triplex pump, but are still common in developing countries. A later development is the hex pump with six pistons/plungers.

The normal mud pump consists of two main sub-assemblies—the fluid end and the power end. The fluid end produces the pumping process with valves, pistons, and liners. Because these components are high-wear items, modern pumps are designed to allow for quick replacement.

To reduce severe vibration caused by the pumping process, mud pumps incorporate both suction and discharge pulsation dampeners. These are connected to the inlet and outlet of the fluid end.

The number of mud pumps varies per drilling rig depending on the size of the drilling rig. The larger the rig the more mud pumps that will be needed. The mud pumps are considered vital to the operation of the drilling rig. If the mud pumps fail it affects production and can be very costly to repair due to the downtime in production.

To avoid any failures of the pumps, an online monitoring system was selected to collect and transmit vibration data back to a software system for analysis. This online monitoring and diagnostic system can also be expanded by a series of program modules (MUXs) that are specific to the application:

mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> condition monitoring brands

Any drilling operations site that wants to optimize its process and preserve its equipment is well aware of its mud. Drilling fluid (what the layperson calls mud) is a vital part of the drilling process. Drilling mud is important for downhole drilling; cooling and lubricating the bit, removing debris from the well, controlling formation pressures and maintaining wellbore stability.

If a project is going to succeed, the drilling fluid system must be monitored, maintained and maximized. Go to any drilling site and someone there is keeping an eye on the mud.

There is no shortage of equipment, instruments and technologies that are used to maintain the drilling fluid process. Depending on site needs, drilling professionals might opt for flow meters, shakers, additives, centrifuges, degassers and any number of other technologies to monitor mud movement. The process can be further maximized for efficiency by using process instrumentation in the different phases of the mud system.

Radiometric sensors are a popular choice for pipeline mud flow. Maintaining the correct density profile of the mud traveling through the pipeline and ending down hole is important in maintaining stability and controlling formation pressures. The fluid also needs to be the correct density to both travel back up the annulus and carry away drilling debris. As a well is drilled, underground land formations change. That is just one of many factors that may affect the internal well pressure.

Continuous monitoring of the conditions inside the wellbore and the characteristics of the drilling fluid must be maintained to ensure well integrity. For an accurate account of those characteristics, users often trust radiometric density detectors.

The chief advantage of radiometric systems is that they operate without contacting the measured product. In a pipeline application, a secure source holder is mounted on one side of the pipe, and a detector is mounted on the other. The detector measures radioactive energy; the more energy it reads, the lower the inferred mud density. This noncontact design prevents the wear suffered by contact instruments abused by pipeline fluid. Additionally, because the system measures energy and not mud, the instruments do not need recalibration or adjustment to measure changing product. Radiometric sensors also offer durability in extreme heat and other adverse conditions. These instruments are rugged.

Through-air radar is noncontact and free from damage inflicted by corrosive products. These instruments are durable in challenging conditions and many models are sensitive enough to measure products of any chemical composition. Dielectric constant does not matter anymore. These sensors can measure virtually anything. If users considered through-air radar for level measurement and passed, now is the time to reevaluate radar, since the technology has advanced significantly in the last two years.

Drilling mud has to go somewhere and the tank that collects the spent mud also needs accurate process instruments. Product density is important to monitor and maintain in the mud tank. It is imperative that users maintain the correct formula of the fluid for downhole drilling propulsion and wellbore integrity. The mixture of additives and other products complicates the measurement, but an accurate reading of mud tank density measurement is necessary to controlling operations.

Electronic differential pressure (EDP) is a popular choice for measuring mud tank density. An EDP system consists of two independent instruments that deliver a differential pressure measurement without capillaries or impulse lines. EDP systems can be configured to output a number of values including density. EDP instruments are invulnerable to temperature changes that distort traditional DP measurements and optional ceramic measuring cells are resistant to abrasion and drift. These instruments also offer overload resistance. Maintenance free and relatively easy to install, there is a lot to like about EDP. However, not all EDP systems are created equal. Some EDP systems do not tolerate extreme heat, and metallic measurement diaphragms are susceptible to damage.

Every drilling project has to account for mud. From the pipeline to the storage tank and beyond, mud measurements are vital to a project’s success. Accurate measurements can help users optimize operations and make the most of materials and equipment. Selecting the right process instruments for mud measurement comes down to the realities of the project at hand.

Not all process needs are the same, and not all mud is either. Users should seek the counsel of their process instrumentation providers to select the mud measurement instrument that best suits their operation.

mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> condition monitoring brands

UDS International designs and manufactures heavy-duty centrifugal mud pump parts and equipment with innovative designs for optimum output and reliability.

Mud pumps are an important part of your drilling, tunneling and/or mining dynamics, helping to maintain drilling mud circulation through your drilling rig column, which improves the efficiency of drilling operations and reduces wear on your equipment.

UDS effective mud pump parts and equipment have the durability to meet the demands of high pressures, a range of ground conditions and are easy to maintain.

mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> condition monitoring brands

Distributor of engineered fluid handling pumps, packaged pumping systems, repairs, parts, & integrated pump control systems. Mud pumps, chiller/condenser pumps, plumbing pumps, boiler feed systems, in-line circulators, condensate systems, sump & sewage pumps, end suction pumps, submersible sump & sewage, non-clogs & grinders, self primers, packaged lift stations, variable speed pump systems, metering pumps, chemical injection systems, chemical mixing systems, peristaltic pumps for chemical feed, high viscous & shear sensitive fluids, self primers, stainless steel, trash pumps, hot oil pumps, vertical turbine pumps, sanitary pumps, marine pumps, industrial pumps, ANSI end suction, vertical cantilever, double suction, non-clogs, progressive cavity pumps, helical gear pumps, well pumps, lab pumps, hose pumps, control valves, check valves, air release valves, tanks, pressure vessels.

mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> condition monitoring brands

AfghanistanAlbaniaAlgeriaAmerican SamoaAndorraAngolaAnguillaAntarcticaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBoliviaBonaire, Sint Eustatius and SabaBosnia and HerzegovinaBotswanaBouvet IslandBrazilBritish Indian Ocean TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCabo VerdeCambodiaCameroonCanadaCayman IslandsCentral African RepublicChadChileChinaChristmas IslandCocos IslandsColombiaComorosCongoCongo, Democratic Republic of theCook IslandsCosta RicaCroatiaCubaCuraçaoCyprusCzechiaCôte d"IvoireDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEswatiniEthiopiaFalkland IslandsFaroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Southern TerritoriesGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuamGuatemalaGuernseyGuineaGuinea-BissauGuyanaHaitiHeard Island and McDonald IslandsHoly SeeHondurasHong KongHungaryIcelandIndiaIndonesiaIranIraqIrelandIsle of ManIsraelItalyJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKorea, Democratic People"s Republic ofKorea, Republic ofKuwaitKyrgyzstanLao People"s Democratic RepublicLatviaLebanonLesothoLiberiaLibyaLiechtensteinLithuaniaLuxembourgMacaoMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMexicoMicronesiaMoldovaMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorth MacedoniaNorthern Mariana IslandsNorwayOmanPakistanPalauPalestine, State ofPanamaPapua New GuineaParaguayPeruPhilippinesPitcairnPolandPortugalPuerto RicoQatarRomaniaRussian FederationRwandaRéunionSaint BarthélemySaint Helena, Ascension and Tristan da CunhaSaint Kitts and NevisSaint LuciaSaint MartinSaint Pierre and MiquelonSaint Vincent and the GrenadinesSamoaSan MarinoSao Tome and PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSint MaartenSlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Georgia and the South Sandwich IslandsSouth SudanSpainSri LankaSudanSurinameSvalbard and Jan MayenSwedenSwitzerlandSyria Arab RepublicTaiwanTajikistanTanzania, the United Republic ofThailandTimor-LesteTogoTokelauTongaTrinidad and TobagoTunisiaTurkmenistanTurks and Caicos IslandsTuvaluTürkiyeUS Minor Outlying IslandsUgandaUkraineUnited Arab EmiratesUnited KingdomUnited StatesUruguayUzbekistanVanuatuVenezuelaViet NamVirgin Islands, BritishVirgin Islands, U.S.Wallis and FutunaWestern SaharaYemenZambiaZimbabweÅland Islands

mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> condition monitoring brands

Both the EMP40™ and PITPUMP™ feature advanced telematics for active health monitoring in support of proactive preventative maintenance programs. The variable pump speed of PITPUMP™ allows it to work seamlessly with the smart generator architecture of the EMPOWER™ line. Current job site use has resulted in decreased fuel consumption of over 40% when the EMP40™ is used in tandem with PITPUMP™ across both entry- and exit-side operations.

mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> condition monitoring brands

Optimizing production under dynamic well conditions requires flexible and adaptive electrical submersible pumping (ESP) solutions. ESP pumps from Baker Hughes incorporate innovative hydraulic designs to expand the application range of your ESP systems.

Our flexible pumps have the broadest operating range in the industry to deliver unsurpassed levels of efficiency, reliability, and speed to your production operations. You get customized pumping solutions to improve your operating economics, regardless of your field application.

mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> condition monitoring brands

Essential machinery causing direct production downtime needs to be monitored 24/7 to get the earliest possible prewarning of deteriorating mechanical condition.

Set up to measure your equipment mechanical condition in the most optimal way, the Intellinova condition monitoring system offers a strong combination of techniques and signal optimization functions; our patented SPM HD technology for advanced bearing and gear condition monitoring at ultra-low rotational speeds, down to 0.1 rpm. Commonly used vibration analysis techniques like velocity, acceleration, HD ENV, FFT spectrum, time domain and phase analysis, Pseudo tach, time-synchronous averaging, and HD Order Tracking form a unique package of tools included in our condition monitoring solution to maximize pre-warning times of mechanical failures.

Our system solutions are suitable for land and offshore drilling rigs and cover the most critical equipment such as top drive, draw works, and mud pumps, and are the choice of many OEM companies.

Besides vibration condition monitoring, it is common to include our online oil condition monitoring solution to measure the contamination (particle counter) according to ISO or NAS class, water in oil detection, oil temperature, and oil quality.

mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> condition monitoring brands

This invention relates to mud pumps, and more specifically to detecting internal defect conditions of a mud pump and monitoring performance of the mud pump.

In a drilling operation, whether offshore or on land, teeth of a drill bit grind the rock and break it into small pieces. These rock pieces must be continuously removed from the path of the drill bit for the operation to continue. To that end, a mud pump injects drilling fluid or mud fluid in the form of a jet to remove the cut rock pieces from the path of the drill bit so that the operation may continue. Thus, the mud pump plays the role of heart in keeping the mud fluid flowing to remove the broken rocks and facilitate movement of the drill bit. In modern drilling operations, without the operational mud pump(s), the drilling comes to a halt.

A mud pump is a large heavy-duty, high-pressure reciprocating pump. A typical pump is a single- or double acting, two or three-cylinder piston pump whose pistons travel in replaceable liners and are driven by a crankshaft actuated by an engine or a motor. The pump is typically positioned on the drilling platform.

The lubricating fluid also called mud is continuously used for drilling operations. The mud is usually placed in steel tanks on a rig, where the mud is circulated through the wellbore during drilling and well workover operations. In addition to its function of bringing cuttings to the surface, drilling mud cools and lubricates the bit and drill stem, protects against blowouts by holding back subsurface pressures, and deposits a mud cake on the wall of the borehole to prevent loss of drilling fluids to the formation.

The pump forces the drilling mud through the drill pipe and drill collars and to the drill bit. The drilling mud jets out from the bit nozzles with great speed and moves the debris out of the path of the drill bit. The contaminated mud then moves back up to the surface for filtering and further processing for reuse. Since the pump interior parts come in contact with the mud including rock pieces of varying sizes, and experience harsh environment including an extensive vibratory environment, damage may occur to those parts. In general, the pump components, like liners, valves, seats, etc., degrade gradually and it is difficult to determine when the pump may be suffer functional failure.

These mud pumps are expensive pieces of machinery and are integral to a drilling operation. When the mud pump breaks, drilling operations must stop, and either the drilling contractor or operator has to bear the expenses for the associated downtime. At current prices, these costs may run from $2,000 to $20,000 per hour. Down times of a few days can be very expensive. Many groups have experimented with mud pump monitors, but have tried to solve the problem by mounting detection and monitoring sensors inside the pump itself. These attempts have failed for two main reasons. Firstly, the sensors are exposed to a hostile environment like high pressures (up to 7500 PSI), excessive heat, and corrosive fluids where the sensors are easily damaged and become useless. Secondly, machine tolerances are so small in high-pressure pumps, like mud pumps, that attaching an additional piece (in the form of a replaceable sensor) is not only impractical but also adversely affects pump performance.

Exemplary techniques for detecting internal defect conditions in a mud pump are illustrated. Acoustic signal(s) from the vicinity of at least one valve of the mud pump is sensed. The internal defect condition of the mud pump is determined according to pre-determined characteristics of the acoustic signal, which may be based on observation.

In other exemplary techniques for detecting and monitoring an internal defect condition in a mud pump is illustrated. Acoustic signal(s) from vicinity of at least one valve of the mud pump is sensed. The internal defect condition of the mud pump is determined according to pre-determined characteristics of the acoustic signal, which may be based on observation. The state of the pump valves is continuously monitored on display devices and/or recorded. When the defect condition occurs various communication means are utilized to inform the responsible personnel.

Apparatus for detecting and monitoring internal defect condition of a mud pump is illustrated. Acoustic transducer(s) are positioned in the proximity of valve(s) of the mud pump. Signal(s) from the acoustic transducer(s) are conditioned and processed to yield a number of relevant parameters. These relevant parameters are continuously monitored and/or recorded for post analysis. The condition of the pump is displayed on display devices and/or communicated to the responsible personnel.

FIG. 1 is an illustrative side view of the drilling system in which the mud pump is used for pumping the mud and recycling the mud for continuous operation of the system

FIG. 2 is an illustrative top view and a side view of the mud pump system of FIG. 1, indicating positioning of the sensor system according to the invention.

FIG. 3 is a top view and a side view of the mud pump system of FIG. 2, further illustrating positioning of the sensor(s) of the invention in proximity of the valve(s) of the mud pump.

FIG. 4 is a top view and a side view of the mud pump system of FIG. 3, further illustrating details of the sensor attachment according to the invention.

As noted above, there is a need for reliable diagnosis of mud pumps, and even more, there is a need for monitoring of mud pump operations where degradation of the pump"s performance occurs gradually over a period of time. Referring to FIG. 1, is shown an illustrative side view of the drilling system 100 in which the mud pump 110 is used for pumping the mud and recycling the mud for continuous operation of the system. A typical offshore drilling platform is supported on a number of legs 115. The mud pump 110 pumps the mud through drill pipe 125 and jets on the rock cut by a drill bit 120 from where the mud mixed with rock pieces is carried to the surface through an annulus 130.

Still referring to FIG. 1, the path of the mud inflow through the drill pipe 125 from the mud pump 110 is shown by arrows 135 aand 135 b. The return path of the mud from the drill pipe 125 to a mud shaker house 140 is shown by the arrow 135 c. The mud is filtered in the mud shaker house 140 where the rock debris is removed from the mud and it is sent to the mud pit 140 via the path of arrows labeled 135 dand 135 e. The mud pump 110 receives the mud from the mud pit 145 and pumps it again to the drill bit 120. Thus, the mud pumping and its recycling continues in the manner described.

Now referring to FIG. 2 is an illustrative top view 200 and a side view 230 of the mud pump system of FIG. 1, indicating positioning of the sensor system according to the invention. The top view illustrates a set of six valves of the mud pump 110. The mud pump may have a different number of valves. The side view 230 illustrates a shaft 240 driven by a motor or an engine (not shown) that causes a rod and piston 235 to reciprocate via eccentric gear in the pump piston linear cylinder 245. Each valve 210 has a valve cap 250. A centrifugal pump pumps mud from the mud tank 145 through a suction valve 255 into the mud pump 110. A discharge valve 257 is provided for discharge of the mud.

With reference to FIG. 3 is a top view 300 and a side view 330 of the mud pump system of FIG. 2, further illustrating positioning of the sensor(s) of the invention on the valve(s) of the mud pump 110. Each valve of the pump 110 may have a valve cap 305. A bracket 345 is attached to the valve and an acoustic sensor 335 is attached to the bracket 345 as explained below in more detail.

Referring now to FIG. 4, are a top view 400 and a side view 405 of the mud pump system of FIG. 3, further illustrating details of the sensor attachment according to the invention. The side view 405 shows only one nut 410 of the valve while the top view 400 shows all six nuts of the exemplary embodiment. In the exemplary embodiment, a bracket 415 (roughly 6″×2″) is positioned between the valve cap and the nut. The bracket 415 has a hole drilled in it that allows it to slide over the stud 420 that looks up at the nut. The nut 415 is tightened and the bracket 415 is secured. The sensor 335 is slid into a slot 425 cut at the opposite end of the bracket 415, and secured by a wing nut 340. This allows a quick and easy way to attach and remove the sensor 335, and encourages rig workers to remove the sensor while repairing pumps. The bracket 415 is non intrusive, and quick to install/remove. The bracket 415 transfers the acoustic signal from the valve cap 305 to the sensor 335.

Still referring to FIGS. 3 and 4, the bracket 415 may be permanently welded to the exterior of the pump as close as possible to the suction and discharge valves. The sensor 335 is attached to the bracket 415 with a wing nut as described above. Although the bracket 415 becomes permanently fixed, the sensor 335 is still easy to install/replace/or remove. Various modifications to the attachment may be made as would be apparent to those skilled in the art.

Referring to FIG. 5 is a top view 500 of the sensor attachments on all the bolts 540, 545, 550, 555, 560, and 565 of the mud pump according to one exemplary embodiment of the invention. Sensors 510, 515, 520, 525, 539, and 535 are attached to the bolts of each valve of the mud pump.

Referring to FIG. 6 is a schematic diagram of the sensor measurement and a monitoring control system and a technique 600 according to another exemplary embodiment of the invention. In block 610, an acoustic sensor 335, positioned in the proximity of at least one valve of the mud pump, senses an acoustic signal 615 from the vibration of the mud pump that is acquired across a load impedance RLor using any other technique. The signal 615 is then interpreted for determining the internal defect condition of the pump according to pre-determined characteristics as explained below in more detail. The signal 615, after processing, may be dynamically monitored on a real-time basis on monitoring devices 615, or may be recorded for later analysis in a laboratory or a similar place. The signal(s) may be recorded on magnetic media, optical media, and/or electronic memory media or combinations of media for delayed analysis/display and other purposes as would be apparent to those skilled in the art. Likewise, more than one acoustic sensors may be placed in the proximity of each valve and the detected signals may be combined together to improve signal to noise ratio, as would be apparent to those of skill in the art. In an exemplary embodiment, the acoustic sensor is a velocity loop powered sensor model number PC420V-20, manufactured by Wilcoxon Research of Gaithersburg, Md. This sensor is a 0=2.0 ips, peak sensor.

Still referring to FIG. 6, the signal 615 is sent to a Programmable Logic Controller PLC 620 where the signal 615 may be conditioned, e.g., filtered for unwanted noise, and/or amplified for further processing. The PLC 620 or any other commercially available auxiliary data storage memory device maintains a database of the time history of the signal level generated by each valve of the mud pump. Thus, the PLC may compute various parameters relating to the valve condition, for example, Alarm Set-points, Real-time Vibration values from each sensor, Pump “Strokes Per Minute”, Alarm Tags, Data Log Values of each analog signal. At the same time, the PLC compares the current values of the parameters of interest with the stored historical values of the corresponding parameters. When the monitored parameter values of one or more parameter reach or exceed the pre-determined threshold values of the corresponding parameters, an indication of an internal defect condition is displayed and/or communicated to the maintenance personnel. The internal defect condition may be displayed on a monitoring device like a visual display or a paper tape and/or may be communicated by audio alarms, video displays/alarms, radio transmission, and/or e-mail to system maintenance personnel. In an example embodiment, a variation of five percent of the output signal amplitude over the historical trend from the acoustic transducer is set as threshold for determining the internal defect condition of the mud pump. Likewise, a different criterion of variation of other parameters of the output signal, for example, output power, a shift in properties of certain frequency components of the signal which may be substantially predictable in normal operation but change noticeably when an internal defect condition of the mud pump occurs, certain signal frequencies generated due to cavitation produced due to internal defect, and other variations of the criteria may be used to detect internal mud pump discrepancies leading to detection of internal defect conditions, as may be apparent to those skilled in the art.

Still referring to FIG. 6, the output signal 625 from the PLC 620 is transmitted to a control panel 630. An operator may select any number of aforementioned or other output signals from the PLC 620 for monitoring. The control panel 630 may also be used to select modes of aforementioned communications, for example during critical periods of operation, the operator may select audio alarms, while during non-critical periods of operation the operator may select only e-mail communication. Thus, the control panel 630 provides choices of displaying the signals of interest on the monitoring devices 635 and/or using auxiliary communication devices 640, including recording devices, for communicating the internal defect condition and data recording. An off the shelf computer program, called RSLogix 500, Copyright 1995-2001, from the Rockwell Corporation is used for programming the PLC. Making such choices of displaying different parameters using a PLC and other variations thereof is well within the skills of those practicing the art. Similarly an off the shelf program from the Rockwell Corporation, called RSView32 Works version 6.30.16, is used for computing the parameters for displaying on the monitoring devices 635. These software packages provide essentially capabilities to select the desired parameters and to display the same.

High-pressure pumps (similar to mud pumps) are used to push fluids (oil and gas) through pipelines. These pumps face the same potential problems as mud pumps (i.e. ripped seals, washed out valves etc.). When these high-pressure pumps shut down due to pump failure, gas no longer flows through the pipeline and revenue is lost. As a result, pipeline companies face the same costly pump ‘downtime’ issues as drilling contractors. A monitoring system, based on same principle and acoustic sensor techniques illustrated for the mud pump, warns operators of impending pump problems before the situation becomes critical and allows the operator to monitor these remote pumping stations, via satellite, from a central office or other means illustrated in the context of the mud pump methods, apparatus, and the system for monitoring.