mud pump for dug well for sale
A mud pump is a reciprocating piston/plunger pump designed to circulate drilling fluid under high pressure (up to 7,500 psi (52,000 kPa)) down the drill string and back up the annulus. A duplex mud pump is an important part of the equipment used for oil well drilling.
Duplex mud pumps (two piston/plungers) have generally been replaced by the triplex pump, but are still common in developing countries. Two later developments are the hex pump with six vertical pistons/plungers, and various quintuplex’s with five horizontal piston/plungers. The advantages that Duplex mud pumps have over convention triplex pumps is a lower mud noise which assists with better Measurement while drilling and Logging while drilling decoding.
Use duplex mud pumps to make sure that the circulation of the mud being drilled or the supply of liquid reaches the bottom of the well from the mud cleaning system. Despite being older technology than the triplex mud pump, the duplex mud pumps can use either electricity or diesel, and maintenance is easy due to their binocular floating seals and safety valves.
A mud pump is composed of many parts including mud pump liner, mud pump piston, modules, hydraulic seat pullers, and other parts. Parts of a mud pump:housing itself
Duplex pumps are used to provide a secondary means of fuel transfer in the event of a failure of the primary pump. Each pump in a duplex set is sized to meet the full flow requirements of the system. Pump controllers can be set for any of the following common operating modes:Lead / Lag (Primary / Secondary): The lead (primary) pump is selected by the user and the lag (secondary pump operates when a failure of the primary pump is detected.
Alternating: Operates per Lead / Lag (Primary / Secondary) except that the operating pump and lead / lag status alternate on consecutive starts. A variation is to alternate the pumps based on the operating time (hour meter) of the lead pump.
Preferred Pump offers the best rewards program in the water well equipment industry. Check out our social media pictures to see what you"ve been missing!
Greetings Tim & Charlott, below is a GPS link and information on the well we just installed in the honor of Tim & Charlott King! Your love and commitment has allowed our Clean Water 4 Life ministry to sink over 500 water wells for those in need here in the Solomon Islands! Here is a link to read my current newsletter with lots of pictures! http://www.rickrupp.com/newsletter.php
Togokoba SSEC Church & Community is approx 58 kilometers east of Honiara. It was a long bumpy drive to this village. I had to walk a long way to get to the place where they lived. They explained that their source of drinking water was the stream. They were so happy when I explained that our CW4L team was going to come sink a well right in their village. I tasted the well water several weeks later after our team had blessed them with a water well. It tasted so good! It was nice clean & cold water! It never ceases to amaze me that there is such a nice water table here in the rural areas of the Guadnacanal plains! I counted 10 houses in this community and the population is approx 80 people. Now they finally have a source of clean drinking water! These people have suffered for many years either drinking from an open hand dug well or from the stream. Togokoba SSEC Church & Community is very grateful to our CW4L sponsors.
Typically, well pumps can be broken down into two categories: jet pumps and submersible pumps. Each design is built to fit the needs of various well sizes and conditions.
Most shallow well pumps are found in wells that are less than 25 feet deep and in areas with a high water table. These pumps have few running parts and require little maintenance.
This type of pump is located above the ground, typically just inside the well house, and generates high pressure to pull the water from the well and into the home using an inlet pipe. A tank or well booster pump is recommended to accompany this type of well pump to increase water pressure to the home.
Unlike its shallow counterpart, a deep well jet pump is located within the well, though its motor stays in the well house. This pump uses two pipes: one for drawing water out of the well and another for directing the water to the home. Deep well jet pumps are typically used in wells that are 110 feet deep.
A deep well submersible pump sits at the bottom of the well directly in the water. Using its motor, the pump draws water from the bottom and pushes it out of the well into your home’s water lines. These pumps can be used in wells up to 300 feet deep. The pumps work similar to sump pumps, which draw water and pump it out.
Although professional well pump replacement comes with high pump installation costs, you may have no choice but to call a professional depending on the well pump you have. Certain pumps, like deep well submersible pumps, require special equipment to get them out without damaging components or wiring. In addition to the fragility of the well’s components, removing a well pump can be very labor intensive, with some pumps weighing more than 100 pounds.
Even if you’re considering replacing your well pump on your own, call a plumber to confirm that the well pump is the issue with your system before removing it. This will prevent any unneeded work or unintentional damage to your well system.
Use the tool below to find a well service contractor who can diagnose your well pump problem and help you determine whether or not you can replace it yourself:
Your well pump is an essential component to ensuring your home has a steady source of fresh, clean water. With proper well maintenance, your well pump can last, on average of 8 to 15 years, though many homeowners report their pumps lasting far longer, often between 20 and 30 years!
However, owning a home with a well means that you"ll likely have to replace your well pump at some point, but how will you know when it"s time? To help you, we"re sharing the 5 signs you need a new well pump, and what those signs could mean instead!
If there is no water at all when you turn on a faucet or flush a toilet, that is a definite sign there is something wrong. Troubleshoot the issues below, and if those aren"t the problem, you may need to have your well pump repaired or replaced.
When you turn on your water, if there is a noticeable decrease in your typical water pressure, that is a sign that your pump is not able to draw as much water up because it"s beginning to fail. It could also mean your well pump is too small, perhaps caused by adding a new bathroom, installing a dishwasher, or adding a larger water heater.
If you turn on the faucet and it seems like there are air bubbles coming through the pipes and the water is not consistently flowing, the pump may be unable to pull water up and is pulling in air. Like a decrease in water pressure, this is a sign that the pump is not functioning efficiently and may be about to fail altogether.
A metallic smell or taste, or an egg smell coming from your water is generally a sign of harmless minerals in your well. However, if the water is actually coming out with dirt, sand, or sediment, it"s absolutely essential to get it fixed immediately. Most likely, this is an issue directly related to the pump itself.
The pump may be too large for your well, and it"s pulling silt and dirt up from the bottom, and it needs to be replaced. A repair may be necessary instead, if it"s placed too far down in the well and needs to be relocated, or the pump"s filter screen has gotten torn or damaged somehow. This is a fixable problem by a well pump repair specialist.
No matter what the issue might be, from harmless minerals to a broken well pump, don"t drink cloudy, muddy, or dirty water until the problem is solved and you have well water testing performed.
If you have high mineral content in your well, mineral deposits can break down and lead to sediment in your water. Having a well water filtration system will help keep your water fresh and clean.
If your well pump is running continuously, it is probably a sign that it needs to be replaced or, at the very least, repaired. If you have an above-ground jet pump system, the intake pipe needs to be primed, usually caused by a leak in the suction line. This means it needs to have water in the jet system in order to generate the suction needed to pull water up and into the water line. Otherwise, the pressure control switch is faulty, the pipe has a leak, or the pump may be wearing out and is unable to generate enough water pressure to trigger the cut-off.
Having a reliable source of clean water is an absolute necessity for your Raleigh home. If you are experiencing issues, from a sudden decrease in water quality to no water at all, reach out A & T Well and Pump immediately. We offer comprehensive well pump repair services, including replacement, testing, and maintenance and will work with you to get your water well up and running fast! Call us today at (919)-291-4063 or fill out our contact form to get started!
Each parcel of land has a history as old as the earth and sky. It is common for properties to have had many owners through the years. Among the land-use changes that may have occurred is the construction of one or more water wells.
Wells may have been constructed by drilling, augering, jetting, or even by digging a hole or excavating around a spring or seepage. Out-of-service wells of any type may pose potential safety hazards and threats to groundwater quality if not correctly maintained or abandoned (decommissioned).
There may also be liability issues to consider if an old well on your property is proved to be a conduit for contaminants that reach neighboring groundwater.
The biggest problem is that old wells can be forgotten. Casings may deteriorate and rust and new owners or property developers can build over the old well site or unknowingly create a hazardous land use. For example, wastes associated with stables, chicken houses, dumps, etc., that are located over an old out-of-service well hole may flow straight down to the aquifer.
In an area where wells penetrate more than one water-bearing layer, contaminants may reach the groundwater zone of the old well and then travel on to other portions of the aquifer. If the contamination connects with another abandoned well, it could impact other aquifers and threaten operating wells and water supply sources.
Abandoned dug wells do not typically lead to contamination risk for deep aquifers, but their wide diameter, usually 3 to 5 feet, creates a physical safety hazard for construction equipment in addition to a danger to people and animals that may be injured falling into the well.
Additions to an old home (in the past, wells were commonly constructed in basements or under porches to keep the water pumps from freezing and to ease access in the winter.)
Once a well is determined to have no current or potential future use, a water well contractor should be contacted to give advice about the most appropriate well decommission method. The water well professional will have knowledge of well decommissioning code requirements. Wells should be sealed from the bottom up. In most cases, only well contractors have the right equipment to do this. Any pumps, pipes, related equipment, or blockage should be removed from the well so that it may be filled in and sealed properly.
Approved backfilling and well sealing procedures vary from state to state. They generally require the use of special sealing material, usually cement-bentonite grout or bentonite clay chips. The use of straight Portland cement is usually discouraged because cement shrinks in volume during curing, which creates very small fractures and gaps through which water may continue to penetrate.
In most cases, homeowners are required to notify their local Department of Environmental Protection or Water Quality Division to document the decommissioning of the well. Homeowners are urged to contact these environmental agencies to learn what procedures are required in their region.
Mud pumps are the pumps deployed in the oil and gas industry, mainly to circulate drilling fluids and other kinds of fluids in and out of the drilled wells for exploration. The mud pumps transfer the fluids at a very high pressure inside the well using the piston arrangement. The number of pistons decides the displacement and efficiency of working of the mud pumps, originally only dual piston pumps and three-piston pumps were used, but the technological advancements have seen pumps with five and six pistons to come up. Currently the triplex pumps which have three pistons are used, but the duplex pumps having two pumps are still deployed in the developing countries.
Based on its types, global mud pump market can be segmented into duplex, triplex, and others. The triplex mud pumps will dominate the mud pump marking in the given forecast period owing to its advantages and ongoing replacement of duplex pumps with triplex pumps. Based on operation, the global mud pumps market can be segmented into electric and fuel engine.
The electric mud pumps will dominate the market during the given forecast period due to the advantage of eliminating the harmful carbon emission which is done in the case of fuel engine pumps. Based on its application, the global mud pumps market can be segmented into oil & gas, mining, construction, and others.
The major market driver for the global mud pumps market is the increasing exploration activities taking place in various regions of the world to satisfy the increased energy demand. The number of drilled wells has increased in recent years, which has certainly impacted the growth of the mud pumps market in both oil & gas and mining sectors.
Key market restraint for the global mud pumps market is the drift towards the cleaner sources of energy to reduce the carbon emissions, which will certainly decrease the demand for oil & gas and therefore will have a negative impact on the growth of the global mud pumps market.
Some of the notable companies in the global mud pump market are Mud King Products, Inc. Gardner Denver Pumps, Weatherford, Schlumberger, National Oilwell Varco, China National Petroleum Corporation, Flowserve Corporation, MHWirth, American Block, Herrenknecht Vertical Gmbh, Bentec GmbH Drilling & Oilfield Systems, Drillmec Inc, Sun Machinery Company, Shale Pumps, and Dhiraj Rigs.
The global mud pump market has been segmented into North America, Europe, Asia Pacific, Latin America, and Middle East & Africa. Owing to the well-established production sector and stable exploration industry North America holds the largest market for the mud pumps. The onshore exploration activities of oil & gas have increased at a good rate in the North America region, which has certainly boosted the growth of the mud pumps market in the region.
The demand from Europe and Asia Pacific has also increased due to exploration activities in both the regions owing to the increased energy demand. The energy demand specifically in the Asia Pacific has increased due to the increased population and urbanization. The Middle East and Africa also hold significant opportunities for the mud pumps market with increased exploration activities in the given forecast period.
In August 2018, Henderson which is a leading company in sales and service of drilling rigs, and capital drilling equipment in Texas signed a contract with Energy Drilling Company for the purchase and upgrade of oil field equipment’s which included three 1600hp × 7500psi mud pumps. This will be the first refurbishment completed at Henderson’s new service center and rig yard.
In January 2018, Koltek Energy Services launched the 99-acre facility for the testing of the oil field equipment in Oklahoma. This will allow the oil field equipment manufacturers to test their equipment at any given time. The company has deployed the MZ-9 pump which has a power rating of 1000Hp.
A modern drilled well is more than just a hole in the ground. To deliver an adequate supply of clean water to your tap, the well must be properly lined and sealed to prevent contaminated surface water from entering. In loose soils, the well must also have special screens at the bottom to maintain a good flow and filter out silt that could clog the well. Finally, a pump must be installed along with underground plumbing to a pressurized storage tank in the house.
If you buy a piece of land with a “well installed,” you will still need to pay for the pump, trenching, plumbing lines, and pressure tank – which may cost as much as the drilling itself.
The casing is a steel or PVC pipe, typically 6 inches in diameter, that extends from about a foot above grade to the bottom of the well or to the point where it hits solid rock. PVC is now commonly used for the casing as it is inexpensive and highly resistant to corrosion. However, steel is still common in some regions.
The casing keeps soil and rock fragments from collapsing into the well shaft, and provides protection for the wiring and water piping connected to the submersible pump near the bottom of the well. State codes often require a minimum of 18 feet of casing in unconsolidated soil (i.e., not solid rock).
The space between the casing and the borehole, called the annulus, is filled to prevent contaminated surface water from polluting the well. The filling or “grout” may be sand, gravel, cement or bentonite clay depending on the soil layers. Special porous sand is often used at the bottom around the screen and dense clay or cement is used in the upper section. At the point where the casing meets bedrock, it is sealed or “seated” into the rock using either cement, bentonite clay, or other techniques.
At the top of the casing is the visible well head, which is tightly capped to prevent contaminants from entering the well casing. The wiring for the submersible pump is protected at the well head by PVC piping. The well head should be inspected periodically for damage.
If the bottom of the well is in solid bedrock, pure water reaches it though narrow cracks and fissures in the rock. However, if the bottom of the well is in sand and gravel, it needs special filters to prevent sediment from entering the well, degrading water quality, and harming the pump.
Wells that terminate in loose material use a filtering device called a well screen, installed at the bottom of the well casing, to keep soil particles from entering the well. There are many types of screens available and designed with openings sized and shaped for the specific type of soil. Given the cost and difficultly of replacing the screen, it’s worth spending a little more for a high-quality screen that will resist damage during installation and corrosion during service.
In addition, a gravel pack several inches thick is usually placed around and above the well screen, unless the soil is already coarse sand and gravel. The gravel pack provides a prefilter to keep fine sand and sediment from reaching the screen and well. This allows the use of a screen with larger openings, improving the flow rate. The packing gravel must be carefully sized or it can get clogged with sediment and block the water flow.
Before the well is fully functional, it must first be “developed.” Web development removes the fine particles of clay, silt, and sand leftover from the drilling process, especially around the area of the well screen. This improves the quality and flow of water from the aquifer into the well, and helps protect the pump from being damaged by sand and silt intrusion.
A number of different methods are used, all involving forcing water or compressed air into the well at high speed, often with reversal of the flow, to effectively flush out the fine particles. Common techniques include overpumping, backwashing, and surging (with compressed air, bailer, or surge block). Depending on the well characteristics this can take from one to several hours.
If all is working properly and the well yield is acceptable, the “annular” space between the casing and borehole is “grouted” with cement to or bentonite clay to prevents contaminated surface water from draining into the aquifer. The well is then disinfected and capped at the top to provide sanitary conditions until the well is put into use.
Once the well is drilled, but before it is connected to the house, a yield test is done to determine how much water it can deliver continuously over an extended period of time. The test is typically done over 48 hours or more to see how quickly the well can be replenished from the aquifer and provide a “sustainable yield”.
How much water is needed depends on the size of the household and any special equipment or activities that use a lot of water. For an average household, a figure of 110 gallons per bedroom per day is often used. In addition to the total daily load, there is also the issue of peak load: can the supply meet the simultaneous demands of, say, the dishwasher running while someone is showering.
The minimum acceptable level for most single-family homes is 5 gallons per minute, the rate required by many mortgage companies. With some storage, this allows occupants to run two average fixtures or appliances at the same time, meeting typical peak demand. Rates above 10 gallons per minute will meet most household demands with no storage. However, wells with rates as low as 2 to 3 gallons per minute can provide adequate pressure and flow by adding a larger than normal pressure tank, a storage tank that used in most modern well systems.
If the well yield is still unacceptable, options include drilling deeper in the hope that you will get a better yield, drilling a second well on the property and either combining the yields of both or decommissioning the first well. Be aware that some municipalities stipulate a minimum well yield in order to sell a property
For wells drilled into bedrock, hydrofracking is a process that may increase the yield significantly. The technique, originally developed for oil and gas wells, injects water into the well under high pressure in order to enlarge or create new water-bearing fractures and fissures in the bedrock surrounding the well. Hydrofracking equipment is now pretty common in areas with a lot of bedrock wells.
The process is expensive, but usually less than drilling deeper or drilling a new well. If it works, the benefits of hydrofracking should be permanent. However, as with all well drilling, there is no guarantee that hydrofracking will work. Still, some well drillers now offer a written guarantee that hydrofracking will increase your well’s yield, subject to the small print of course, but certainly better than no guarantee at all.
If you buy a site with a well already drilled, it’s just a hole in the ground with a casing and cap. To complete the well, you will need a submersible pump, a pipe run from the well to the house, and a pressure tank installed in the home. Don’t skim on the well pump as it is an expensive item to replace and a top quality pump does not cost much more than a mediocre pump. The size of the pump is determined by the yield of the well, the daily use of water, and the amount of storage.
One of the leading causes of pump failure is lighting strikes as a well provides a good grounding source for lightning. Since replacing a pump can cost $1,500 or more, it may be worth considering a lightning protection system for the pump. This usually involves installing a grounding rod close to the well and other measures. Make sure the work is done by a professional electrician with experience in lightning protection.
Typical storage or “pressure” tanks for private residences range from 20 to 40 gallons, but may need to be larger for low-yield wells. The pressure tank provides pressurized water to the household between pump cycles, helps meet the household demand beyond the pump capacity, and also above helps prolong the life of the pump (by preventing rapid cycling).
The total storage volume is determined by the both the storage in the well casing itself, plus the storage in the tank. The deeper the well and the greater its diameter, the more water is stored in the well. The State of New York Dept. of Health recommends the following level of storage (combined pressure tank and well storage):
Ok! This is not an easy task, and I recommend that anyone thinking about doing it AT LEAST consider having the well pump identified as the failed component by a professional prior to undertaking it. In my case, the water in my house stopped working (on a Friday night, of course). I know my system pretty well and was able to determine that the fault in my system COULD NOT BE ANYTHING BUT my well pump motor before I took any action. Guess what? I called the plumber anyway. If nothing else, you"ll pay $60 to have your diagnosis confirmed and maybe even get an estimate that will provide you with the motivation to do the job on your own. (My estimate to pull and replace the well was $2400... By following these steps I was able to do the job myself for less than $400!)
So this is what we start with. The drawing is not to scale, but essentially most wells look a bit like this. There are several different variations on what ends up being pretty much the same thing. In my case, the casing (which is the steel pipe that everything fits into and goes into the ground) has a 6" diameter. Some casings can be as narrow as 4". If you"re doing something like this on your own, wider is better! A 6" well casing gives you plenty of room to work on your own. Narrower casings can make things... complicated.
The well used in this example is relatively shallow. It only runs about 100"-120" deep. Some wells can run to depths of hundreds (or thousands!) of feet. In the case of anything deeper than about 250" I would recommend that you have it pulled by a pro. Why? Because it"s HEAVY! And there are special tools that contractors have to lift the pump from that kind of depth. Look at it this way: Even if you have someone else pull the well, you can do the repair/replace action on your own once it"s out of the ground, and still save money. ;)
My well was dug about 25 years ago. One of the things that happens with older wells is that, over a period of several years, silt from the aquifer can seep into the bottom of the casing. That"s a bad thing. Why? Because the silt builds up to a depth that"s too close to the pump, and the pump ends up sucking up the silt and muck from the bottom of the well, and then pushes it into your house! (You"ll see the result of this kind of thing in the following pictures.)
The weight of the whole pump assembly hangs on the water hose that the pump uses to push water into the house. Up near the top the water tube hits what"s called a "pitless connector," where it makes a hard right turn toward the house.
See how the pump looks a bit like a bottle made of two pieces? The bottom part is the motor. The top part is the impeller that sucks the water out of the well and sends it to the house.
When one turns on the sink to wash one"s hands or when we flush a toilet, we tend to think that we"re pulling water directly from the well to do it. In actuality, we"re not! In a properly outfitted house, you"re pulling water from a pressurized tank that acts as sort of a "middle man." (Some artesian wells don"t have this set up, but let"s pretend they do!)
When you turn on the water to wash your hands or flush your toilet, the amount of water stored in the pressure tank is reduced. Reduced water in the tank means reduced pressure. The pressure switch on the tank is set up so that it knows what point to turn ON the pump (pulling water up from the well to replace what you"ve used), and what point to turn OFF the pump (to keep your system from exploding). Having a pressure tank does two things for you:
Ideally, your well pump should be able to push more water than above-average household use will require. (Most houses are recommended to have a pump that will support 5 gallons per minute.) That way, more water per minute is pushed up from the well than you can (normally) expect to be able to get out of a sink, or a shower. By having a pump that exceeds your practical use, the pressure tank is able to maintain steady flow. There will always be more water available to the tank than you can pull from the tap. With the right pump, you can have two showers, a sink and a toilet all flowing at the same time without any discernible drop in pressure.
In order to pull all of this stuff out of the well, you need a special tool called a "pitless adapter wrench." It"s basically made of three pieces of threaded, metal pipe that you can get from any hardware store. A "T" connector holds them together.
Once you"ve made your wrench, you just stick it down into the well, thread it into the connector and get ready to PULL. While you do that, make sure someone is holding onto the safety rope! If anything goes wrong, and your partner happens to NOT be holding the rope, the well pump will fall into the abyss... lost forever.
Well caps are usually secured by three or four bolts. Loosen the bolts to the point where they *almost* come off the cap. You want to leave them threaded a bit, so you don"t lose them. Then give the well cap a few "uppercut" swings with a medium-sized hammer. It should pop off without much trouble.
Once the cap is off, take a look down the well with a flashlight. You should see something that looks a little like this image (which I "borrowed" from a google search, because I forgot to take my own picture). You"ll see utter and complete darkness at the bottom of the well... maybe some water, if it"s shallow... and the pitless connector on the inside of the casing. You"ll also see your safety rope, and the electrical wires that power the motor.
As you can see, the pitless connector is where the water makes "a hard right turn" out of the well and toward your house. It"s a pressure fitting, and it"s usually made of brass. On most wells they"re about 4" down from the top of the well... which means they are usually BURIED... which is scary.
"Why are they buried?" You may be wondering. "It"s awfully inconvenient for them to be down so far in the well." Yes! It is... but that"s just the way it has to be. Pitless connectors have to be located BELOW the frost line for your area. If they aren"t, all it will take is one really cold night to freeze up. As I mentioned above, the connectors are usually brass. Brass is a soft metal. It doesn"t take much for it to split.
The environment inside of a well is inherently moist. This means that corrosion WILL occur, regardless of what kind of metal you"re dealing with. That corrosion means the pitless connector can/will fill up with gunk that will prevent you from being able to thread the wrench into the adapter easily. The trick is to turn the wrench *extremely slowly.* You"ll feel it bite. If, after it bites, it skips off the threads: You have corrosion.
Seriously. Very gentle taps with a hammer as you turn the wrench should do the trick. It will allow for you to thread the pipe fully. It worked beautifully for me.
B) Try to pull it up without being 100% confident that it"s got a good connection. Nice and snug! If you don"t have a snug connection, you take the chance of dropping everything down to the bottom of the well. If that happens, get yourself a shovel and a checkbook.
It"s very important that you NOT get any kinks in the water line (the black tube). So, pulling the pump is definitely a two person job. As one person pulls it up out of the well, the other person walks it (in a straight line or in a curve) away from the well.
Dogs are really helpful to have around when doing a job like this. Moral support is important. Especially when, after a couple of minutes pulling up the well pump, you realize that you"ve been making some very poor decisions about exercise and eating habits.
Keep in mind, the well pump (itself) usually weighs about 50 lbs. The water trapped in the tube also holds significant weight. The deeper the well, the more weight you"re dealing with. Plus, there"s that whole "physics and leverage" thing to deal with.
Bottom line: I"m guessing that I had to pull a 70lb weight, nearly 100 vertical feet. It"s quite a job. Forearms, back, hips, biceps... all of them hurt the next day.
Furthermore, up until this point, I had no idea what kind of well pump was down there. They come in various configurations of power, voltage, number of wires, and number of gallons per minute. Normally, the Horsepower Rating is written (as a courtesy) on the underside of the well cap. No such luck here. I had to pull it up just to find out what it was. You may be in the same boat when it"s time to do yours.
Turns out that mine was a 3/4 HP Jacuzzi. They sold out to a company called Franklin Electric years ago. Since it was just the motor that fried, it might have been possible to order a replacement motor (which would generate significant savings), but that might have taken days or weeks to find/deliver. I didn"t want to measure the amount of time I was without water in terms of "days or weeks." Plus, this pump was so clogged with gunk that it wasn"t worth taking the chance on another failure. A whole new pump was definitely required.
Note: This is one of those moments where it"s good to get along with your neighbors. Thanks to mine, we were able to hose off the motor to find out exactly what the specs were. (See, the source of my water was sitting on the ground... Hence I had no water with which to hose off the pump!) The worn out pump ran on about 8 amps, and pushed about 6.8 gallons per minute. It"s a 220V, two-wire motor. That"s exactly the sort of thing you need to know when you"re buying a replacement. Make notes or take pictures of this information and take it with you to the store.
Let"s take a look at the cleaned-off pump. You"ll note the two pieces, (like in my drawing). The far left is the electric motor. The dirty clyinder in the middle-left is the impeller. The black stuff in the middle is a WHOLE LOT of electrical tape, covering the spliced electrical connections for the motor and the check valve that keeps water from flowing back into the well. The thing that looks like a bulb (toward the right) is called a "torque arrestor." Remember how I told you that my well casing is 6" wide? Well... the well pump is only 4" wide. The Torque Arrestor rubs up against the well casing and keeps the pump from spinning at the bottom of the well.
Also, did you notice that everything is resting on a couple of saw horses? Yet another application in which such a simple tool can be incredibly useful. If you don"t have a set I highly recommend picking a couple up for the purpose of doing this job. The ones I"m using are quite inexpensive, lightweight and strong.
In most cases there are going to be salvageable components. For mine, the torque arrestor was in pretty good shape, as were the hose clamps that held them onto the water line. Once you get them all off, set them in a safe place for later.
Since I knew that the well pump had been sitting in muck for who knows how long, it seemed like a good idea to shorten the length of the water tube. As you can see, I walked off about 10" of tube length from the well pump and prepared to make my cut. (By the way, I used a set of ratcheting pipe cutters. If you don"t have a set of these, they go for about $11 at home depot and they make life SO much easier when you"re doing plumbing.) Making the tube shorter would result in a shallower suspension and (hopefully) preserve the life of the new pump.
YUCK! That"s a 1" tube so full of compacted muck that it really restricted the flow of water to my house. NO WONDER THE PUMP FAILED! Keep in mind, we"ve done testing for harmful bacteria and a slew of other things on our well and it"s always come up clean... but still. Ew!
What you"re seeing in this picture isn"t just silt. It"s residue from iron bacteria. These microorganisms live and multiply by oxidizing dissolved ferrous iron. They"re harmless to ingest, but they can tinge the flavor/color of water, and they impede the yield of the well if left unchecked. Toward the end of this instructible we"ll talk about the sanitation process, which can really help keep these little buggers in check.
Before we head to the store to buy the replacement pump, we needed to make sure that the shopping list included EVERYTHING. We already knew we needed the well pump and the water line, but what kind of shape was the pitless adapter in? I know it looks rough, but it"s actually not that bad. I gave it a quick scrub under the garden hose, and inspected the O-Ring.
I genuinely recommend that you do a little searching around on the web for a replacement pump before jumping in your car and assuming that Home Depot or Lowes will have the one you need, in stock. I got extremely lucky. I didn"t search before I got in the car. The nearest store happened to have the pump I needed. I later learned it was the only one in stock within 30 miles of me! As luck would have it, it also turns out that this one produces TEN gallons per minute at a lower rated amperage than the original. (Hooray for improvements in technology!)
This Flotec pump had a sticker price of under $340. Since it was Memorial day, they gave me the 10% Veteran"s discount at Home Depot, (shameless plug for businesses that respect military service). In the end, it wound up costing me a little over $300. GOOD DEAL!
Note: This model did not come with the check valve, or the reducer needed to get down to the 1" spur I would need for the water line. Sadly, home depot didn"t carry the right check valve, or spur, for this pump. I had to go somewhere else for that.... a place that did NOT offer the Veteran"s discount and hence shall not be named in this instructable.
I got everything home and started throwing it together. Note that I DID NOT use pipe dope. I used Teflon tape. Pipe dope isn"t always safe for potable water, so it"s recommended that you just stick with Teflon.
Looking at the close-up picture of the assembly, there"s a 1 1/4" stainless nipple threaded into the top of the well pump, a 1 1/4" check valve (brass) and a stainless steel reducer (aka "spur") that goes into the hose line. I used my salvaged hose clamps to secure the new water line to the reducer.
Some people may read this and wonder, "What is a check valve?" It"s basically a valve that only allows fluids to move in one direction. Water can flow into your house when the pump pushes it, but it can"t drain back into the well when the pump stops. This is a vital component, because when your system gets pressurized the check valve keeps all the water in your house from dumping back down into the well. Kind of a big deal.
While you"re at the hardware store make sure to pick up a set of crimp connectors for the electrical connections. It should come with two connectors and some heat-shrink material. Strip a clean bit off of the wires coming from the house and crimp the connectors with a good pair of pliers. Slide the heat-shrink material over the connection and then heat it with a heat-gun, or a butane torch. (A lighter doesn"t get hot enough to do a good job.)
Once you get to this point, you"re ready to make sure the well pump is working. I forgot to take a picture of that part, but it goes like this: Get a BIG bucket (like a 10-20 gallon plastic tub) and use your awesome neighbor"s hose to fill it up with water. Then submerge the assembled well pump into the water, making sure water covers the impeller intakes.
Then put your cell phones to good use. Have your assistant go down into the basement and flip the breaker that will turn on the pump. You should immediately see it sucking water out of the tub at a rapid rate. If it does, the pump is ready to go back down in the hole!
Feed the pump back into the casing slowly, using the safety rope. Line up the pitless connector, using a flashlight. Slide it into place and then seat it fully by giving it a couple of downward whacks with a hammer until you feel it seated properly.
For the pressure tank to work correctly, the ambient pressure (while completely drained) has to be -2lbs from the pressure at which you want the well pump switch to kick on. I like my water pressure to be between 55 and 75 psi. That means, the ideal air pressure for the bladder in the tank was about 53 psi. I hooked up an air compressor and filled it until it reached that point.
Not performing this step will cause a variety of problems, not the least of which is "short cycling." If you have too little (or too much) air in the tank it can throw off the actual volume of water the tank will hold. That can lead to the pump constantly switching on/off... which eventually burns out the pump, or the pump switch. Not good.
What you"re looking at here is a well pump switch. They come pre-set for 30/50 and 40/60. The first number is the psi at which the switch will sense the pressure in the system is too low, and it will turn the pump on. The second number is the number at which the pressure in the system makes the switch say "Okay... that"s enough."
This well switch is brand new. I bought it the night before I replaced the well pump, hoping that it would fix my well problem. Obviously, it didn"t.
Anyway, I don"t like it when my water pressure is set for 40/60. I like it to be at about 55/75. This particular model of well switch is adjustable. With a few turns of this nut, I can raise the ratio to the place where I want it.
You have to be VERY careful when you do this, and I don"t recommend that anyone try it. The reason I do it, is that it lets me make my adjustments without constantly having to reset the breaker. I tweak it, and let the pressure tank fill up. I then use the valve underneath to release water pressure. As I release the pressure, I watch the gauge to see what point the switch kicked on. Once I adjusted it to the point where the pump flipped on at 55 psi, I was good to go.
Whenever you open the well cap, or replace the piping, there"s a requirement to pour some bleach down there to kill off any harmful bacteria that may want to live in the water after being touched by your filthy human digits.
First, you have to calculate the volume of water that"s in the well. In my case, I"m going to guess that it"s about 70" of total water space in a 6" tube. Using the formula πr²h (3.14159x9x840) you get a total volume of about 23,750 cubic inches. That"s about 102 gallons of water occupying the well at its fullest point.
Proper chlorination requires 3 pints of 5% chlorine bleach per 100 gallons of water in the well, PLUS 3 pints of the same to sanitize the plumbing inside the house. That"s a total of 6 pints of 5% chlorine bleach. A gallon is 8 pints, so a single gallon will be enough to do the job AND sanitize the well cap before I put it back on.
Here"s what you do: Dump about 3/4 of the gallon of bleach in the well (with the water pump still on, so you can still use your hose). Then run your hose down the well to circulate the bleach. This process WILL pull bleach water into your house, so don"t plan on using the water during this process. Run the hose for about an hour to get the water from the bottom all the way back up to the top, ensuring that the chlorine mixes with ALL the water in the well. Then use the remaining 1/4 of the bottle to sanitize the well cap. Put the cap back on and go inside.
Repeat the process using the HOT water. It"s going to take a little longer for the bleach smell to show up, because the water from the well is going to have to make it through your water heater, and then up through the hot water pipes.
Go to sleep. It has to sit for at least 12 hours, undisturbed. No sinks. No flushies. No washies. The next day, hook up your hoses and start purging. DON"T SUCK THE WELL DRY WHILE YOU DO IT. Also, DON"T DRAIN THE BLEACH WATER INTO THE LEECH FIELD FOR YOUR SEPTIC SYSTEM. Remember, there were about 100 gallons in the well, so figure out how many gallons per minute you push through the hoses and stop when you hit about 150 gallons through the system. In my case, that was about an hour and a half.
Make sure you dump the water someplace safe. Run each tap for a couple of minutes. Give the toilets a flush or two. Then test the water for chlorine content to make sure it"s safe to drink with a kit you can get from the hardware or pool supplies store. Keep running the water until the test comes back at safe levels to drink.
Thanks for reading! I really hope that this instructible is helpful for those of you that find yourself in a spot of trouble, and for anyone that"s just curious about how this process works. It was my first time going through it, and the main reason I put this together was that I couldn"t find a really good resource that guided me through the whole thing, step-by-step. This is my way of paying the world back for all of the little kindnesses I"ve experienced in life. If you ever find yourself in a similar position, regardless of the topic, I would ask that you consider doing the same. You never know who you might be helping!
This is just a follow on note to capture a lesson learned... I wrote this ible in May of 2015. It is now October of 2017. Late last night, the well cut out on me. It was the first time we"ve had any issue since I did the installation.
I"ll spare you all the details of what I went through to figure out the problem. Bottom line: When I replaced the well pump, I probably should have replaced the electrical wiring going down to the pump. Two reasons for this:
1) The wire I inherited was some kind of specialized, 12 gauge, submersible pump wire. Old school. Prone to problems. It didn"t have a ground wire, which I thought was weird at the time but figured the previous pump had been working for years without it... so... made due with what I had.
2) That old school wire can go bad on you. Even with a torque arrestor in place the pumps can spin inside of the casing, which twist the power line. If given enough time, the wire will eventually break... which is what happened to me.
The moral of the story: Replacing your electrical wiring only costs about $150 (if you go with the high-end, 12 gauge, no-casing, submersible wiring you can get at places like Lowe"s). The good thing about the newer stuff is that it doesn"t tend to break when it gets twisted up. If you don"t want to have to pull your well pump up out of the casing again, just to change the wiring three years after you did the job, maybe take care of it while you have it out of the ground the first time.
Just looking at the pictures of the slimy red gunk in your pipe and around your pump makes me think you should do some googling on "Iron Bacteria". I can"t be certain but it could be a possible cause of your issues.
When selecting the replacement pump don"t just assume that the last guy chose the perfect pump for the job. After all there could be a reason the original pump failed. I would recommend going back to basics and select a pump based on:
Pump ends are made up of a stack of impellers. Each impeller increases the pressure developed by the impellers below it (without increasing flow). So a shallow well might need a six impeller pump, while a deep one will need more. Perhaps twenty or more. The upshot of this is that there are hundreds of motor/pump end combinations to choose from, and while it"s not a particularly exact science it"s important to choose one that will operate happily in your application. You should be able to find pressure/flow charts on pump company websites and catalogues.
Sorry, got a bit carried away there. My brother and I used to own a pump company (Pumpmaster Australia) so pumps have played an important role in my life.
I just realized there was an accidental "?" after "WELL done". It wasn"t meant to be there. There is no doubt - the Instructable is definitely a good one.0
Iron bacteria! Thank you for the tip. We"re in a situation here where the house had two owners before we bought it in 2011. The first owners were amazing. The second owners were really nice folks, but the word around the neighborhood (and the evidence we"ve seen around the house) is that they were not "maintenance people." We"ve gradually been replacing the big-ticket items as they fail from the years of neglect. I"ve already replaced most of the plumbing between the well pump switch and the house, including the water softener and neutralizer. They were both so clogged up with gunk that the valve systems failed. (Nothing like a mouth full of salt water after a regeneration!)
We"ve had the well checked for harmful bacteria a couple of times. It always comes up clean. I don"t know for sure if they test for stuff that isn"t particularly harmful. Now that you"ve mentioned it, it"s definitely on my radar. I had never considered that bacteria might be the cause of the sediment sticking to the plumbing.
Hi. I don"t have a solution for cleaning out your pipe, but I"m not a plumber. I"m sure there must be a way. Maybe you could put the question to the Instructables community via a forum topic.
I guess you live in a place with cold winters. I"ve never seen a pipe buried so deep. That must really complicate things. Bores in Australia just have the pipe coming straight out the top of the well. No need for that pitless connector.
I don"t need to fix a well nor do i own a house or a well but this was so well written and interesting I had to read the whole thing it"s interesting how these things work look forward to more instructabels from u in the future thanks for the great ible
2) This was my first "ible." It has been so well received that I think I am now hooked. You will definitely be seeing more from me, and I hope they are as entertaining and informative as it appears this one has been.
3) Service is as service does. I"m just glad to be useful. Whether it was in uniform, or in my own back yard, it"s all the same: A little bit of effort can make the world better, often in ways we did not anticipate.
Yep, works fine....Started out knowing jack shit about well pumps, about to call a pro for a emergency repair in a rural area...sent your instructable to my brother, mom, and dad...we all reviewed it, made notes, shopping list...printed/saved it to have on hand...got it done no problem....like seriously a life saverReplyUpvote
Side note for those reading this. Your probably passed this point and its a rare case but possibly note for the future. The other night we were struck by lightning. After a little over a $1000 of repairs to my electrical system ( not including labor, im an electrician) i got power restored but didnt think of testing my well pump. It was only running on one leg (120 v not the 240v its supposed to) . It was operating at a severely reduced rate and potentially energized my water. I dont think i need to get into why its bad and unsafe but if this happens make sure you mention to a qualified electrician doing the damage inspection that you have a well. There is alot of components to an electrical system and your well can be easily overlooked. Make sure you well pump gets megared ( insulation tested) before its put back into service. It also a good test for suspected pump failure aswell. Its a pass or fail test. If its within specs your safe if its not it needs to be replaced
You sir, are a scholar and a gentleman! Thanks to your amazing and detailed description, I felt confident enough to tackle this task, which I managed to do, start to finish. I’m now enjoying the amazing water pressure and volume of a brand new deep well pump! I owe you a big debt of gratitude.
In my well casing I have a metal plate with two crescent holes on opposite sides one has the power lines running through it the other is empty. The pitiless fighting is under plate how do I get plate out
Hey, my DIY husband is attempting this on a 95° day with high humidity. Just wanna thank you for the great instructions/images. He"s not in the mood to answer questions, yet I"m the one running to the hardware store. Especially helpful was the pictures of the gunk in the pipes. Instead of gagging and running away, I simply nodded my head and agreed to get more pipe. Another marriage saved!
I, for the first time, just completed this project too. I however had a bad tank that I replaced as well. The tank is likely what took the pump out. Anyway, between watching dozens of YouTube videos and a lot of reading, I was confident enough to tackle this. Just for those that are wondering, total cost was $950, and I got 2 different quotes of $2800 and another at $3100 to do this job! The whole project took about 12 hours total, 2 days off from work, and some help from my awesome brother! Lastly, and I should have led with this, but this instructable is seriously the absolute best one for this project out on the internet that I found. He really covers everything! Thanks for sharing. It truly helped to give me the confidence needed to tackle this. I saved $2,000! Full disclosure though, I am an extremely accomplished DIYer, I own many, many tools, and have a strong knowledge of plumbing, electrical, and carpentry. I occasionally help a good friend with his home improvement business.More CommentsPost Comment