mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> preventive maintenance in stock

Many things go into getting the most life out of your mud pump and its components — all important to extend the usage of this vital piece of equipment on an HDD jobsite. Some of the most important key points are covered below.

The most important thing you can do is service your pump, per the manufacturer’s requirements. We get plenty of pumps in the shop for service work that look like they have been abused for years without having basic maintenance,  such as regular oil changes. You wouldn’t dream of treating your personal vehicle like that, so why would you treat your pump like that.

Check the oil daily and change the oil regularly. If you find water or drilling mud contamination in the oil, change the oil as soon as possible. Failure to do so will most likely leave you a substantial bill to rebuild the gear end, which could have been avoided if proper maintenance procedures would have been followed. Water in the oil does not allow the oil to perform correctly, which will burn up your gear end. Drilling mud in your gear end will act as a lapping compound and will wear out all of the bearing surfaces in your pump. Either way it will be costly. The main reasons for having water or drilling mud in the gear end of your pump is because your pony rod packing is failing and/or you have let your liners and pistons get severely worn. Indication of this is fluid that should be contained inside the fluid end of your pump is now moving past your piston and spraying into the cradle of the pump, which forces its way past the pony rod packing. Pony rod packing is meant to keep the oil in the gear end and the liner wash fluid out of the gear end. Even with brand new packing, you can have water or drilling fluid enter the gear end if it is sprayed with sufficient force, because a piston or liner is worn out.

There is also usually a valve on the inlet of the spray bar. This valve should be closed enough so that liner wash fluid does not spray all over the top of the pump and other components.

Liner wash fluid can be comprised of different fluids, but we recommend just using clean water. In extremely cold conditions, you can use RV antifreeze. The liner wash or rod wash system is usually a closed loop type of system, consisting of a tank, a small pump and a spray bar. The pump will move fluid from the tank through the spray bar, and onto the inside of the liner to cool the liner, preventing scorching. The fluid will then collect in the bottom of the cradle of the pump and drain back down into the collection tank below the cradle and repeat the cycle. It is important to have clean fluid no matter what fluid you use. If your liners are leaking and the tank is full of drilling fluid, you will not cool the liners properly — which will just make the situation worse. There is also usually a valve on the inlet of the spray bar. This valve should be closed enough so that liner wash fluid does not spray all over the top of the pump and other components. Ensure that the water is spraying inside the liner and that any overspray is not traveling out of the pump onto the ground or onto the pony rod packing where it could be pulled into the gear end. If the fluid is spraying out of the cradle area and falling onto the ground, it won’t be long before your liner wash tank is empty. It only takes a minute without the cooling fluid being sprayed before the liners become scorched. You will then need to replace the pistons and liners, which is an avoidable costly repair. Make a point to check the liner wash fluid level several times a day.

Drilling fluid — whether pumping drilling mud, straight water or some combination of fluid — needs to be clean. Clean meaning free of solids. If you are recycling your fluid, make sure you are using a quality mud recycling system and check the solids content often throughout the day to make sure the system is doing its job. A quality mud system being run correctly should be able to keep your solids content down to one quarter of 1 percent or lower. When filling your mud recycling system, be sure to screen the fluid coming into the tanks. If it is a mud recycling system, simply make sure the fluid is going over the scalping shaker with screens in the shaker. If using some other type of tank, use an inline filter or some other method of filtering. Pumping out of creeks, rivers, lakes and ponds can introduce plenty of solids into your tanks if you are not filtering this fluid. When obtaining water out of a fire hydrant, there can be a lot of sand in the line, so don’t assume it’s clean and ensure it’s filtered before use.

Cavitation is a whole other detailed discussion, but all triplex pumps have a minimum amount of suction pressure that is required to run properly. Make sure this suction pressure is maintained at all times or your pump may cavitate. If you run a pump that is cavitating, it will shorten the life of all fluid end expendables and, in severe cases, can lead to gear end and fluid end destruction. If the pump is experiencing cavitation issues, the problem must be identified and corrected immediately.

The long and the short of it is to use clean drilling fluid and you will extend the life of your pumps expendables and downhole tooling, and keep up with your maintenance on the gear end of your pump. Avoid pump cavitation at all times. Taking a few minutes a day to inspect and maintain your pump can save you downtime and costly repair bills.

mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> preventive maintenance in stock

Everyone agrees that reactive maintenance is probably the worst pump reliability strategy. Maintaining equipment only after it breaks can mean unexpected downtime, emergencies, rush charges, overtime, and replacement of expensive parts.

The best pump reliability strategy is not either preventive or predictive maintenance, it’s a combination of the two, strategically applied. In this post, we’ll discuss the differences between predictive and preventive maintenance and when it’s best to use them.

Many operators rely heavily on “reactive” maintenance rather than preventing and planning for future repairs. As discussed in our eBook, 36 Ways to Kill Your Pump, “reactive” maintenance accounts for unplanned equipment downtime and increased costs.

Preventive and predictive maintenance programs extend the overall life of the equipment and result in fewer unplanned breakdowns. The choice is not one or the other, it’s a combination of the two.

Preventative maintenance is any variety of scheduled maintenance to a pump or other piece of equipment. Generally, it includes scheduled routine maintenance, such as equipment calibration, greasing, oil change, and analysis.

One of the biggest ways to prevent failures is to make sure your equipment is properly aligned and balanced. Misalignment and pump unbalance are the two most common reliability problems for rotating equipment. Laser alignment also fits within this category since its a service completed upon installation, setting the pump up for success.

These programs are designed to keep your maintenance costs low by preventing costly failures before they happen. If you need a preventative maintenance checklist, you can download one here.

Up to 50% of damage to rotating machinery is directly related to misalignment. Misalignment can cause increased vibration, premature seal and bearing failure, and increased power consumption. An unbalanced pump causes similar issues, such as vibration, which can be easily avoided with the right preventative maintenance measures.

Predictive maintenance services are used to monitor the condition of equipment over time. Vibration analysis, for example, measures the vibration of the equipment while it is still in service. This allows the technician to see the change in vibrations over time to predict when a problem may occur, and why.

Predictive maintenance should be part of routine maintenance for pumps and rotating equipment that absolutely can NOT go down. Operators and maintenance managers get a glimpse into the future life of the pump as it"s running today. This allows them to plan for repairs and avoid unexpected downtime.

Not all pumps are equally important in a manufacturing process, so not all pumps should receive the same maintenance plan. It wouldn’t make sense to spend time and money on vibration analysis for a pump in a non-essential application.

Before creating a maintenance plan, place the pumps into categories. This will help determine how much time and money to invest in each one. Use these categories to get started:

Regularly maintaining pumps will extend the life of your pump. When a pump is properly maintained, the parts that need replacing are usually the less expensive wear parts.

Check shaft alignment – believe it or not, shaft alignment can change! Thermal growth and machine movement due to load shifts can cause pumps to move out of alignment.

Up to 50% of damage to rotating machinery is directly related to misalignment. That’s huge. Machine vibration, bearing damage, premature seal wear, and coupling damage are all examples of issues pumps experience when misaligned.

For the most accurate alignment, we always recommend laser alignment. It’s the most accurate method available (to .0001), and once familiar, an operator can align a pump/motor very quickly. It is the most expensive method to get into if doing alignments in-house and can be difficult to learn at first. But when looking for long-term results, the laser align method is the better choice.

Precision rebuild or precision maintenance is the practice of rebuilding a pump as close to OEM specifications as possible. Attention to detail is required for precision rebuilds.

Precision rebuilds are proven to reduce failures and should be a central piece of a pump reliability strategy. If the team lacks capacity, tools, or expertise to rebuild pumps to OEM standards, look for a capable local shop.

Add taps with isolating ball valves into piping on the suction and discharge sides of the pump. Use these to mount pressure indicators to ensure the pump is performing properly.

Read the pump manual and follow each step in the procedure. The procedures therein give the best possible instruction for long and trouble-free life for the pump.

Upon start-up, record the pump performance baseline data – amps, suction pressure, discharge pressure. This is handy when troubleshooting issues, should they arise.

Vibration monitoring is a very helpful tool for predicting pump failures. Some manufacturing facilities have a vibration technician on staff to take readings on critical pumps. These technicians may read the results themselves or send them to a firm that can interpret the readings and provide a report.

Unfortunately, this is not a skill easily attained by a maintenance team. It requires expensive equipment and a great deal of training to be an effective vibration technician. Unless the facility has a large population of critical equipment, this is a service best hired out.

Arguably the most important piece of a preventative/predictive maintenance plan... The TRAINING! Training isn’t just for the maintenance team, it’s for everyone in contact with pumps, operators especially! Failure prevention is everyone’s responsibility.

The maintenance team is the keeper and protector of equipment in the facility. Train operators on the signs of failure so they can report it quickly. Show them how to properly start-up or shut down a pump and how their actions will affect other parts of the system.

If all these steps were do-able by a maintenance team alone, everyone’s reliability goals would be already met. Some of the steps we’ve laid out require specialized training, tools, or specialized training on tools to make them effective. It’s likely the team doesn’t possess all these as they’re expected to know how to fix every machine in the plant. Hire outside help where it makes sense.

Look to a preventative maintenance program and predictive maintenance measures to save on annual maintenance costs and unscheduled downtime. We recommend working with your local equipment supplier to schedule a preventative or predictive maintenance program for your pumps.

Need more information about our preventative and predictive maintenance services? We are happy to help businesses in Wisconsin and upper Michigan. Got a noisy, underperforming pump? Consider our FREE Bad Actor Pump Assessment!

mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> preventive maintenance in stock

Pumps are often designed to operate at a single point known as the Best Efficiency Point (BEP). As components begin to wear, a pumps performance begins to decline, with operation away from this point leading to issues such as accelerated bearing or seal wear, vibration, excess temperature rise or cavitation. Quite often declining performance can start gradually, before quickly accelerating until failure if performance issues are not addressed in a timely fashion.

Corrective Maintenance is undertaken when failure has occurred. The unit may be leaking, efficiency reduced, pump stopped or motor tripped, leading to loss of production resulting in an urgent situation where parts must be sourced and fitted quicky.

Preventative Maintenance is inspection and repair scheduled at specific intervals (daily, weekly, monthly, yearly) or based on the number of hours run. Visual inspections are made externally and internally by dismantling the unit, replacing seals such as gaskets and mechanical seals, with pump parts checked for wear.

Differential Pressure:Check the operating pressure by calculating the difference between the inlet and outlet pressure of the pump ensuring it is operating on curve.

The “6 to 1 Rule” discovered by John Day Jr, (Manager of Engineering & Maintenance at Alumax South Carolina stated that the ideal ratio of Proactive Maintenance (PM) to Corrective Maintenance (CM) should be 6 to 1 - 6 PM checks to 1 RM check. If your ratio is below this then according to his theory it is being inspected too infrequently, above and inspections are too frequent.

Although Proactive Maintenance can seem to avoid the urgent costs and downtime associated with reactive maintenance, PM maintenance costs can be high due to the cost of labour in dismantling of complicated designs such as Progressing Cavity, or Triplex Plunger pumps which are often time consuming to maintain with more than one person required to undertake work.

On dismantling units, some seals require replacing regardless of condition, and excess spares can be required in case of gasket entrapment during assembly. Rental of specialist lifting equipment may be required and there can be situations where when inspected, pump parts do not require replacement.

This can be achieved through a monitoring device, where when the right data is collected, pump failure can be anticipated between 3 and 12 months in advance with an 80-95% accuracy.

With the average lead time on DN100 pumps, and units over 5 years old being 3 months or more, it is essential that spares are either on the shelf or failure is anticipated through advance ordering.

There are hazards during any maintenance activity. Always ensure the correct PPE is worn before attempting repair, that sufficient expertise is on hand and chemical data sheets of any fluid being pumped are checked prior to undertaking work. A full risk assessment should be completed in advance.

Hazardous FluidsIrritation, Chemical burns, ignitionEnsure when pump is opened the unit is cool, not pressurized, ignition sources are not present, and any fluids spilt are contained.

If inspection has been neglected for some time, then additional parts may require replacing than had the unit been inspected earlier, with some pump parts becoming beyond economical repair.

Enables planned work to be undertaken during lower activity levels and at lowest cost & risk.Pump has to be crucial within a process or above a certain size for monitoring to be cost effective

Thread Sealant –The use of semi-permanent thread sealant will ensure vitality important threaded fasteners such as bolts or screws on shafts, couplings or pump casings do not self-loosen due to vibration and become disengaged.

Interchangeable Spares –Our range of pumps are modular in design utilizing interchangeable spares, meaning on site stock holding of parts can be reduced by up to 80% further reducing slow moving stock.

Repair & Replace –Choosing to repair an existing pump within a process of vital importance, as well as replace, is a strategy we recommend for maximizing plant efficiencies and reducing downtime. Should unexpected pump failure occur, your process can be restored quickly.

Checklists & Logs –The use of checklists and logs ensures a fully repeatable process ensuring important maintenance intervals are not missed. Logs can provide valuable insight and reveal a pattern before failure occurs enabling easier troubleshooting.

indicates which areas should be checked, but note that a units maintenance routine is dependent on several factors such as hours of operation, duty, aggressiveness of pump medium, rpm of motor, temperature, inlet conditions and location of equipment.

mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> preventive maintenance in stock

Centrifugal pumps are one of the most popular pumping solutions in the world due to their highly efficient and simple design. However, just like any other pump, they can also suffer from pump failure and damage if preventive maintenance is neglected. So if you have invested in a centrifugal pump for your site, you need to ensure that you have a maintenance schedule in place, that will not only extend your system"s life but also reduce operating costs.

Even if you have invested in a high-quality centrifugal pump like Azcue, which means that you have a great pump solution in place, preventive maintenance is essential to keep your process running smoothly and prevent any unexpected downtime and costs. Centrifugal water pumps have hundreds of components that keep them running smoothly and are integral to providing effective pump operation. Therefore, consistent maintenance can not only prevent pump failures but also help your engineers to identify the source of the problem faster, as they will have enough maintenance history recorded to refer back to. To help you put together your centrifugal pump maintenance schedule, we asked our technical sales engineer for a good preventive maintenance strategy…

Don"t have time to read the whole article. Download our helpful infographic that you can use to implement a centrifugal pump maintenance schedule.Click here

If you have a centrifugal pump on-site and don"t already have a maintenance programme in place, then you are probably asking yourself all of these questions: How often do you need to perform routine maintenance or replace parts? Which pump components must be checked more often, and when should you schedule the pump maintenance? What spare parts do you need to stock to prevent any pump downtime?

Planning preventive maintenance of centrifugal pumps can be confusing, especially if you don"t know where to start. So we asked our technical sales engineers to give us their recommendations for a centrifugal pump maintenance schedule. Here is their advice and an example of a maintenance plan…

Best practice is to carry out a visual inspection of the pump installation on a daily basis. Spotting an issue early is one of the best troubleshooting methods and can preventing pump breakdowns. Here are some of the things to look out for:

Just like the daily inspection, you should look for any abnormalities but this time, pay close attention to the following centrifugal water pump components:

Carry out a visual inspection for any signs of leakage from the pump or pipework. If standby pumps are installed, turn on and run for at least 5 minutes to ensure operation.

Check for a sudden decrease in the efficiency of your centrifugal pump. This may be due to a broken shaft seal. Inspect the shaft seals for any physical signs of damage/leakage and replace the seal where necessary.

Following our centrifugal pump maintenance schedule, you will need to check the following pump components once a month to ensure that your pump is running efficiently and prevent any potential failure or damage:

Check coupling alignment. If significant misalignment is found, check seals and bearings for wear. Clean the pump and motor, so it"s free of oil and debris to allow ventilation and prevent overheating.

Less often but very important is to thoroughly inspect the whole centrifugal pump and consider changing some of the spare parts to ensure that the pump operates in optimal conditions. Here are our recommendations:

Dismantle the pump, inspect the wearing parts and replace them if necessary. Typical parts include: mechanical seal, wear rings, impeller, o-ring, gasket, shaft. Remove all auxiliary parts, including gauges and valves, clean and inspect.

Replace certain components such as the mechanical seals and impellers to prevent leaking and other issues. The best practice is to hold stock of typical wearing parts on-site to prevent any delay in maintaining your pump if any components fail.

Always make sure to create a maintenance schedule that is consistent with the manufacturer"s guidelines and keep in mind that certain components need to be maintained based on their service intervals:

Lubricate the bearing as per the service intervals (usually in operating hours) found in the pump manual. This may be required more regularly in high-temperature or dusty environments.

mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> preventive maintenance in stock

Cavitation is an undesirable condition that reduces pump efficiency and leads to excessive wear and damage to pump components. Factors that can contribute to cavitation, such as fluid velocity and pressure, can sometimes be attributed to an inadequate mud system design and/or the diminishing performance of the mud pump’s feed system.

Although cavitation is avoidable, without proper inspection of the feed system, it can accelerate the wear of fluid end parts. Over time, cavitation can also lead to expensive maintenance issues and a potentially catastrophic failure.

When a mud pump has entered full cavitation, rig crews and field service technicians will see the equipment shaking and hear the pump “knocking,” which typically sounds like marbles and stones being thrown around inside the equipment. However, the process of cavitation starts long before audible signs reveal themselves – hence the name “the silent killer.”

Mild cavitation begins to occur when the mud pump is starved for fluid. While the pump itself may not be making noise, damage is still being done to the internal components of the fluid end. In the early stages, cavitation can damage a pump’s module, piston and valve assembly.

The imperceptible but intense shock waves generated by cavitation travel directly from the fluid end to the pump’s power end, causing premature vibrational damage to the crosshead slides. The vibrations are then passed onto the shaft, bull gear and into the main bearings.

If not corrected, the vibrations caused by cavitation will work their way directly to critical power end components, which will result in the premature failure of the mud pump. A busted mud pump means expensive downtime and repair costs.

To stop cavitation before it starts, install and tune high-speed pressure sensors on the mud suction line set to sound an alarm if the pressure falls below 30 psi.

Although the pump may not be knocking loudly when cavitation first presents, regular inspections by a properly trained field technician may be able to detect moderate vibrations and slight knocking sounds.

Gardner Denver offers Pump University, a mobile classroom that travels to facilities and/or drilling rigs and trains rig crews on best practices for pumping equipment maintenance.

Program participants have found that, by improving their maintenance skills, they have extended the life of fluid end expendables on their sites. They have also reported decreases in both production and repair costs, as well as reductions in workplace hazards.

Severe cavitation will drastically decrease module life and will eventually lead to catastrophic pump failure. Along with downtime and repair costs, the failure of the drilling pump can also cause damage to the suction and discharge piping.

When a mud pump has entered full cavitation, rig crews and field service technicians will see the equipment shaking and hear the pump ‘knocking’… However, the process of cavitation starts long before audible signs reveal themselves – hence the name ‘the silent killer.’In 2017, a leading North American drilling contractor was encountering chronic mud system issues on multiple rigs. The contractor engaged in more than 25 premature module washes in one year and suffered a major power-end failure.

Gardner Denver’s engineering team spent time on the contractor’s rigs, observing the pumps during operation and surveying the mud system’s design and configuration.

The engineering team discovered that the suction systems were undersized, feed lines were too small and there was no dampening on the suction side of the pump.

There were also issues with feed line maintenance – lines weren’t cleaned out on a regular basis, resulting in solids from the fluid forming a thick cake on the bottom of the pipe, which further reduced its diameter.

Following the implementation of these recommendations, the contractor saw significant performance improvements from the drilling pumps. Consumables life was extended significantly, and module washes were reduced by nearly 85%.

Although pump age does not affect its susceptibility to cavitation, the age of the rig can. An older rig’s mud systems may not be equipped for the way pumps are run today – at maximum horsepower.

mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> preventive maintenance in stock

Repairing your pumps quickly and efficiently to get your operations back up and running is GD Energy Products’ top priority. If your pump requires immediate attention, our field engineers and service technicians can be deployed to your job site or facility. Our experienced technicians are trained to identify and inspect your pumping issue and conduct as-needed service, repairs and preventative maintenance at your preferred location.

GDEP offers a full range of 24/7 on-site pump maintenance and repair offerings tailored to your individual needs. We offer comprehensive repairs for fracking pumps, drilling pumps, well service pumps, fluid ends and modules. Additionally, our customers have access to 24/7 service, ongoing parts support and product maintenance.

GDEP’s inspection program offers a comprehensive and proactive approach to solving your pump issues. Our field service technicians can utilize advanced troubleshooting procedures to uncover various underlining issues with the capability of performing onsite repairs using genuine, high-quality OEM replacement parts to guarantee maximum performance

If you have a large fleet or pumps that simply require more attention, we can provide you with a dedicated field service technician with either half-day or full 24/7 coverage.

Our state-of-the-art repair facilities operate in a constant state of readiness to provide your pumps with the most comprehensive and cutting-edge repair and maintenance services. With facilities strategically located in all major shale plays throughout the United States, we are able to provide our customers with efficient service on a local level.

If you have a large-scale repair that cannot be completed in the field, bring your pump to any one of our repair facilities and expect the same level of service and expertise. A highly trained and experienced team of field engineers, service technicians and repair mechanics possess all the necessary skills and insights required to overhaul any pump, all under one roof. Backed by our satisfaction guarantee, you can have the confidence your pumps will operate at peak performance after it leaves our facility.

Our team of experts is available 24/7 to service and repair any brand of pump. Whatever your repair needs, GDEP will bring the proper experience, tools and equipment needed to get the job done.

mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> preventive maintenance in stock

If the slurry pump is driven by a belt, please check the tension of the rope at least once a quarter. Too tight belts will cause damage to the motor bearing and once the bearing is broken the bearings will start to fail inside the pump. Belt that is operated when it is too loose will cause poor performance and cause slip damage to the belt.

If your dredge pump is using lubricant for cooling, please check it periodically to make sure there is no water or other impurities in the oil. If the pump seal remains stable, changing the oil periodically will increase the life of any pump.

Best performance is achieved by occasionally checking the out-of-wing clearance. Refer to instructions to check gaps appropriately. When checking the clearance, it is also necessary to check the impeller wear and other parts of the dredge pump.

For this problem, the best solution is to install pressure gauges and flowmeters on the discharge lines of the pumps. You can take the display pressure and multiply it by 2.31 to get the relative TDH (total dynamic head). You can then take that TDH along with the measured flow and see if your pump runs near the BEP (best efficiency point) on the pump’s baseline. If not, please contact your provider.

Temperature sensors are provided with our submersible pumps for engine protection. Each guide provided with the pump will outline how to connect and monitor the temperature sensors for the maximum life cycle.

If the engine is overheated, the sensors will automatically shut off and the pump will stop working until the engine cools down. If there is no sensor, or the sensor is not connected to the pump, there is a risk of engine fire.

Horizontal and vertical pump cantilever need to check the temperature of the bearing weekly while the pump is in operation. Use a temperature gun to check the bearing housing temperature closest to the bearing.

While most pump bearings run in the range of 140 to 170 degrees Fahrenheit, it is recommended that users never allow temperatures in excess of 200 degrees Fahrenheit (about 94 degrees Celsius). High bearing temperatures may be a sign of excessive lubrication or a problem with the bearing.

Proper vibration monitoring will provide the operating team with useful information that can increase MTBF (mean time between failures) and improve pump performance. Refer to the Hydraulic Institute’s vibration monitoring guide (American Hydraulic Institute) for vertical, horizontal and submersible pumps for appropriate limits.

Currently Thai Khuong Pump is representing the pump brand Schuro Slurry in Vietnam specializes in providing products with large capacity US brand mud pump (you can refer to the productshere).

If you have not yet selected a suitable mud pump product, or have any questions need advice or provide technical information, product prices. Let’s contact right with us.

mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> preventive maintenance in stock

I wrote a series of columns last year and into January this year on well and pump rehabilitation and methods to improve the operating efficiency in both. This month, as a start to a two-part series and a logical continuation to the topic, I’ll expand the discussion outlining my concept of a well and pump preventive maintenance program with suggested procedures and recommended intervals.

As we launched this new enterprise, we decided to offer a preventive maintenance program on a trial basis. This would be our way of introducing and acquainting ourselves to a previously unknown base of new clients, introducing our new division to our existing clients, and as a way of gaining a full understanding of each water system’s particular needs.

Many of these newly discovered clients, especially local smaller water districts and cities, informed me they had wanted to implement some type of preventive maintenance program for their facility, but didn’t know where to start.

The new preventive maintenance program was more than a method of gaining new business for our firm, especially since the late 1970s were also somewhat sluggish in the local irrigation business. Diversifying and expanding into the municipal and commercial water systems market not only provided badly needed revenue, but allowed us to keep current personnel who might otherwise have been laid off or assigned reduced hours during long winter periods.

Since we were already a long-established water systems firm, moving into this larger and slightly different market did not require substantial retraining or expansion of our service staff. We were also able to use our existing equipment and rolling stock, particularly our service vehicles and pump hoists.

As we moved cautiously into developing a preventive maintenance program for the various clients, one thing became rapidly apparent. The program was going to have to be customized and tailored for each client and the specific needs and number of pumps for each water purveyor. For systems with multiple well and pump stations, this meant we had to individualize the program for each client.

Although I was in charge and responsible for this new division—which included my cultivating new clients, submitting bids and proposals, and performing engineering and design—I was still young and didn’t wish to simply come out of the field and into the office to assign the maintenance and troubleshooting to the other employees. So, for the first four years of this new enterprise I alternated between field work and office work.

This not only helped me expand my skills in field work and troubleshooting, but allowed me the opportunity to visit and work with many of the new and diverse water system clients we gained throughout western Oregon. Eventually, the time and effort required to split my duties became more than I could reasonably handle, but those years were instrumental as they allowed me to learn new techniques, expand my troubleshooting skills, and increase my knowledge of water wells, pumps, and electrical and hydraulic theory.

Before actually embarking on a new preventive maintenance (PM) program, we first had to decide how often to recommend individual site visits and develop some type of database to routinely document each individual client and their water system facilities, as well as track each PM and service procedure conducted at each site and for each unit.

As far as building a database, after considering various methods of record keeping I settled on using a single master file for each client. Each file included information on each separate well and pump station. Each was assigned a unique identification code with the specific details of each facility recorded on “master data sheets” (Figures 1, 2, 3).

The PM program was originally envisioned, structured, and priced to be a fairly rapid “in and out” to gather and record the most critical information such as static and operating (pumping water level) conditions of each well and pump and to conduct general maintenance on individual pump and driver units within a pumping plant. Therefore, it was important to provide a uniform set of tasks and criteria to follow and evaluate what was needed without spending unnecessary time or effort on less important or trivial tasks.

Determining and maintaining a reasonable, uniform cost for a PM program was also vital since we could not effectively sell the program to most clients solely from harping on the advantages gained from potential energy savings and improving pump efficiency—at least not in 1979.

To effectively sell and conduct the program to many water systems, it was important to stress we would keep each site visit meaningful and the cost to a minimum by concentrating on just the primary elements of an effective PM program. These elements included: (1) performing necessary routine maintenance at appropriate intervals; (2) determining the current efficiency and operating condition of each pump and motor; (3) identifying and heading off any serious situations with an individual unit that could result in significant downtime and higher repair costs if not addressed soon; and (4) maintaining the inspection reports and records as a collection of current and past data within a master file.

The site visit field form was developed specifically to act as a guideline of the tasks the technician was expected to perform on each unit, each in a fundamental order. By using this initial form over the first to three months of the trial PM program, we were able to quickly determine the typical cost for a single pump station inspection and thereafter apply that unit cost to pump stations with multiple units.

Since many municipal or industrial pumping plants or stations consist of three to four separate units in total, especially those found in water booster or wastewater pump stations, we were able to expand the horizontal use of each form to permit entering up to four separate units on a single sheet.

As important to booster pump stations as this program was, the primary selling point was made to those clients with wells and well pumps or wastewater pumps. Since many wells and well pumps can exhibit a sudden failure due to years of ignorance or lack of maintenance, this program permitted a routine examination and tracking of the well’s pumping water level and the operating condition of the well pump and driver (usually an electric motor).

For example, by checking the static and pumping levels of each well during each visit around the same time each year, we were able to quickly develop an accurate, in-house database on seasonal water levels in most regions of western Oregon and the Willamette Valley.

This type of inspection was particularly important for installations using submersible pump motors since periodic examination of the motor’s insulation resistance often provided a yardstick of a motor’s current condition, or more importantly, any progressive decline.

Although we were generally careful to require all field data and information be vetted and approved by the engineering department before contacting the client, we did demonstrate to each technician how to determine and record a few basic field observations and calculations. These included static and pumping water levels from wells along with water horsepower, input horsepower, and plant efficiency from pumping units. These were often requested by the clients, particularly when the they were present for the inspections.

Although our original PM program was developed and implemented for both potable and wastewater pumping systems, since Water Well Journal primarily focuses on wells and well pump systems, we will limit this discussion to this group.

This means each field technician must be properly trained and observant in electrical, mechanical, and confined space safety. The most basic of these is always observing OSHA’s mandated “lock out/tag out” procedures for protection against errant automatic or manual starting of electrical motors or engines (drivers) used to drive pumps. This not only protects from possible electrical shocks, but additional forms of injury that could occur. An example that could occur is a pump starting while the tech is repacking or greasing it or changing the motor oil.

Finally, many water systems use potentially harmful chemicals and feed systems in their facilities (high-strength chlorine, acids, or caustics) or other ancillary systems interconnected to the pump start/run signal. Even though locking out the pump motor may prevent its start and operation, it may not necessarily disconnect or disable these other systems.

To help meet your professional needs, this column covers skills and competencies found in DACUM charts for drillers, pump installers, and geothermal contractors. PI refers to the pumps chart. The letter and number immediately following is the skill on the chart covered by the column. This column covers: PIE-18, 22: PIF-2, 3, 4, 5, 6, 7: PIG-3, 8, 10 More information on DACUM and the charts are available at www.NGWA.org/Certification and click on “Exam Information.”

The next area with a type of hazard occurs from exposure to confined spaces. Although most potable water pumping units are not located in regulated confined spaces, many control valves and other equipment are commonly situated in tanks or underground vaults or chambers. Accumulated or released vapors or gases within these environments, especially those heavier than air in underground vaults or facilities, can overcome a worker within seconds. Recognizing these potential hazards and equipping each employee with a gas sniffer or alarm to notify the tech should hazardous or flammable gases or a low oxygen level exist and an approved breathing mask/tank is recommended.

In conclusion, it is vitally important anyone charged with conducting preventive maintenance and service be fully trained and capable in understanding and performing the procedural and safety measures required for each unit in each pumping station and observe the proper shutdown (lockout/tagout), service, and reactivation protocols.

This concludes this first installment on setting up a well and pump maintenance program. Next month, we’ll wrap up with an overview on setting up the forms and performing the field work.

mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> preventive maintenance in stock

The maintenance checklist, implemented a few months ago, covers equipment to monitor on a daily, weekly, and monthly basis. An area is devoted to tracking service truck miles, rig miles and hours, as well as welder hours to know when an oil change is needed. The goal is to not let any maintenance task fall by the wayside.

“It’s kind of brought about them (drilling crews) thinking of other things, recognizing other things, and having a mindset towards maintaining their equipment,” says Baker, owner of Apex Drilling LLC in Burley, Idaho, “and that’s the most important thing—having that mindset towards maintenance.”

Baker, president of the Idaho Ground Water Association, worked as a maintenance mechanic for nearly nine years at a potato processing plant before entering the water well industry. He worked at the plant under the supervision of a 20-year Air Force veteran who previously was a maintenance manager of intercontinental ballistic missile sites in the Midwest. Baker credits those years for helping him get keyed in on being proactive with equipment maintenance.

“I learned a lot about preventative maintenance and things you start looking for,” Baker says. “If you know about some of these small things before they become big things, then you don’t have downtime on the jobsites.”

Months into implementing the maintenance checklist, Baker is seeing his drill crews take ownership by noticing minor issues on their four drill rigs and making note of them. The crews then look at the list and fix the issues during half a day in the shop while they’re in between jobs, or at a jobsite when time allows for it.

Factoring into the maintenance of his equipment is the fact that Baker is using a higher-grade oil and additives package rather than what the manufacturer recommends. Also, every 200 to 300 hours of use, he has equipment oil samples (engine, hydraulic, and compressor oils) sent and analyzed by a lab in Salt Lake City, Utah. The lab runs an International Organization for Standardization (ISO) cleanliness analysis and designates a code to how clean the oil is and the results dictate when Baker needs to change the oil in his equipment.

“Hydraulics, pumps, and motors have an ISO cleanliness code on the oil,” Baker explains. “If you run that hydraulic system within that cleanliness code at 70 degrees in a controlled environment, you’re going to get 10,000 hours out of your pumps.

“When putting the pumps on mobile equipment, it cuts it in half, so you get 5000 hours on pumps because they’re working in the extreme heat, cold, and dirt. As long as you maintain that cleanliness code in your oil, you can expect 5000 hours, but as soon as you go one code dirtier in your oil, you cut that in half. If you can operate one code cleanlier you can double it, and so we’re trying to operate in a manner that is not necessarily normal in an effort to try and get our equipment to last longer. Ultimately, it reduces our cost of maintenance.”

Sprowls, president of the Ohio Water Well Association, also shared how hydraulic oil in the GEFCO 40K came back with elevated metal content. He says nothing indicated that the hydraulics were acting up, but the oil sample prompted further investigation which revealed a hydraulic pump failed prematurely.

Sprowls stresses that maintenance needs to be intentional where time is made for it. He makes a point that being proactive is less stressful than reacting to an engine replacement in a customer’s front yard. After all, it’s much easier to work on the machines in a climate-controlled shop or gravel lot with no mud.

“What I’ve done for routine items is put a value on them that is relevant to our industry,” he shares. “Most drilling is accounted for by the foot, so I will analyze what kind of drilling I’m doing and put a footage on it. For example, I grease the rig every so many feet of overall drilling. If I’m mud drilling, the mud pump and swivel get greased very well, no matter the footage. Air drilling may be more frequent on the swivel due to the temperatures.

“The main reason Layne is dedicated to a robust equipment inspection/maintenance program is the safety of our employees,” Snelten says. “If we can keep our equipment safe to operate, it reduces the hazards to our employees and helps prevent injuries. They go home to their families at the end of the day in the same condition they came to work.

“We’ve made incredible strides in our safety performance over the past four years, and we see equipment maintenance as a required component to our continued safety evolution to not just maintain industry leading safety performance, but achieve true world-class safety.”

Beyond improved safety, Layne sees additional benefits of an aggressive maintenance and repair program achieving increased employee engagement, client appreciation and recognition, decreased maintenance costs, decreased downtime, increased productivity and profitability, and differentiation from the competition.

Layne rolled out a new maintenance program in 2021 for its several thousand pieces of equipment—drill rigs, pump rigs, trucks, trailers, and support equipment—and for the roughly 350 field staff who operate them.

The program consists of daily, monthly, and annual inspections of the drill rigs, pump rigs, and service trucks. Inspection items include fluid levels, wire ropes, sheaves, frame welds, controls, emergency stops, etc. A copy of the inspection goes to the field superintendent and mechanic and repairs

The program also presents Layne with information to determine action steps for a piece of equipment. If a piece of equipment continues to have persistent maintenance issues, and its records show maintenance costs are excessive, the question becomes: Is it better to perform a mid-life rebuild where another seven to 10 years can be gained, or is it better to replace it?

mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> preventive maintenance in stock

Prior check to the start of a mud pump for clear water inlet and outlet pipes, buttered front and rear bearings and a filled packing. The China mud pump should be equipped with a high-pressure water pump, which pumps water to the sealing fill with a pressure greater than that of the mud pump. As a protection to the fill, never turn off the water pump while the mud pump is in its working state. Otherwise, the sealing part is of immediate wear.

The service life of the mud pump depends on the clearance between the impeller and the guard plate. An unreasonable clearance is responsible for the vibration and the noise of the pump and the damage of overflowing parts. Therefore, when it comes to the impeller replacement, the clearance shall meet the requirements of the design drawing by adjusting screws on the rear bearing. Take the suction capacity of mud into account for the allowable suction range of the mud pump is determined by water transported.

The Construction Department shall have some professional person responsible for the maintenance and repair of the construction machinery. Regular check and maintenance of the mud pump and other machinery, such as the drilling mud pump parts, are useful for the early detection and a prompt solution.

Pay attention to the size of sediment particles, among which the large ones are prone to wear the vulnerable parts of the China mud pumpsuch as pump shells, bearings, impellers, and so on. Timely maintain the use and replace the damaged. Take advanced anti-wear measures to lengthen the service life of vulnerable parts, which can downturn the cost and up forward the efficiency. Meanwhile, keep backup vulnerable parts in stock in case of unexpected replacement needs.

mud <a href='https://www.ruidapetroleum.com/product/49'>pump</a> preventive maintenance in stock

Keeping pumps operating successfully for long periods of time requires careful pump design selection, proper installation, careful operation, the ability to observe changes in performance over time, and in the event of a failure, the capacity to thoroughly investigate the cause of the failure and take measures to prevent the problem from re-occurring. Pumps that have been: properly sized, are dynamically balanced, that sit on stable foundations with good shaft alignment, with proper lubrication, where operators start, run, and stop the machinery with care and where the maintenance personnel observe for unhealthy trends that begin to appear and act on them usually never experience a catastrophic failure.

This is true with a large percentage of pumping systems but, it is definitely not true with all of them. Frequently pumps are asked to operate way off their best efficiency point, or are perched on unstable baseplates, or run under moderate to severe misalignment conditions, or were lubricated at the factory and never see another drop until the bearings seize, and vibrate to the point where bolts come loose. When the unit finally stops pumping, new parts are thrown on the machine and the deterioration process starts again with no conjecture as to why the failure occurred.

If you work long enough in industry, you may get an opportunity to observe all the different “styles” of maintenance. How maintenance organizations operate usually fall into four different categories:

The disadvantages are that the maintenance department perpetually operates in unplanned / ‘crisis management’ maintenance activities with unexpected production interruptions and the plant must have a high inventory of spare parts to react quickly. Without a doubt, it is the most inefficient way to maintain a facility. Futile attempts are made to reduce costs by purchasing “cheap” parts and hiring “cheap” labor further aggravating the problem. Frequently the personnel are overworked and understaffed arriving at work each day to be confronted with a long list of unfinished work and a half dozen new “emergency” jobs that occurred while they were at home in the evening. It is not uncommon to send someone out to work on an emergency job first thing in the morning and by 10 o’clock, half way through the job, stop their progress and send them on a new “higher priority” emergency job.

This philosophy consists of scheduling maintenance activities at predetermined time intervals where you repair or replace damaged equipment before obvious problems occur. Done correctly, studies have shown that the costs to operate in this fashion are about $13 per horsepower per year. The advantages of this approach is that it works well for equipment that does not run continuously and the personnel have enough knowledge, skill, and time to perform the preventive maintenance work.

The disadvantages are that the scheduled maintenance may be done too early or too late. It is quite possible that reduced production could occur due to potentially unnecessary maintenance. In many cases there is a possibility of diminished performance through incorrect repair methods. I have witnessed perfectly good machines disassembled, good parts removed and discarded, and then new parts improperly installed. For some, squirting grease into bearings every month is their idea of a preventive maintenance program.

This philosophy consists of scheduling maintenance activities only if and when mechanical or operational conditions warrant by periodically monitoring the machinery for excessive vibration, temperature, lubrication degradation or observing any other unhealthy trends that occur over time. When the condition gets to a predetermined unacceptable level then the equipment is shut down to repair or replace damaged components in the equipment to prevent a more costly failure from occurring. In other words “DonÕt fix what is not broke”. Done correctly, studies have shown that the costs to operate in this fashion are about $9 per horsepower per year. The advantages of this approach is that it works very well if personnel have enough knowledge, skill, and time to perform the predictive maintenance work. The repairs to equipment can be scheduled in an orderly fashion and it allows you some lead time to purchase materials for the necessary repairs reducing the need for a high parts inventory. Since maintenance work is only performed when it is needed, there is a likely increase in production capacity.

The disadvantages are that maintenance work may actually increase if the personnel improperly asses the level of degradation in the equipment. To observe the unhealthy trends in vibration, temperature, or lubrication, this approach requires the facility to procure equipment to monitor these parameters and provide training to in-house personnel. The alternative is to outsource this work to a knowledgeable contractor to perform predictive / condition based duties. If an organization had been running in the breakdown / run to failure mode and / or the preventive maintenance style, the production and maintenance management must conform to this new philosophy which can be problematic if the maintenance department is not allowed to purchase the necessary equipment, provide adequate training to the people to learn the new techniques, are not given the time to collect the data, or are not permitted to shut down the machinery when problems are identified.

This philosophy utilizes all of the predictive / preventive maintenance techniques discussed above in concert with with root cause failure analysis to not only detect and pinpoint the precise problems that occur but to insure that advanced installation and repair techniques are performed including potential equipment redesign or modification to avoid or eliminate problems from occurring. Done correctly, studies have shown that the costs to operate in this fashion are about $6 per horsepower per year. The advantages of this approach is that it works extremely well if personnel have enough knowledge, skill, and time to perform all of the required activities. As in the predictive based program, repairs to equipment can be scheduled in an orderly fashion but then additional efforts are made to provide improvements to reduce or eliminate potential problems from repetitively occurring. Again, repairs to equipment can be scheduled in an orderly fashion and it allows lead time to purchase materials for the necessary repairs reducing the need for a high parts inventory. Since maintenance work is only performed when it is needed, and extra efforts are put forth to thoroughly investigate the cause of the failure and then determine ways to improve the reliability of the machinery, there can be a substantial increase in production capacity.

The disadvantages are that this requires extremely knowledgeable employees in preventive, predictive, and prevention/pro-active maintenance practices or to outsource this work to a knowledgeable contractor who works closely with the maintenance personnel in the root cause failure analysis phase and then assist in the repairs or design modifications. This also requires procurement of equipment and properly training personnel to perform these duties. If an organization had been running in the breakdown / run to failure mode and / or the preventive maintenance style, the production and maintenance management must conform to this new philosophy which again can be problematic if the maintenance department is not allowed to purchase the necessary equipment, provide adequate training to the people to learn the new techniques, are not given the time to collect the data, are not permitted to shut down the machinery when problems are identified, are not given the time and resources to conduct the failure analysis, and then do not modify the component or procedure to increase the reliability.

Effective problem identification and problem avoidance requires a rigorous investigation process. When a pump failure occurs, it is very tempting to remove the pump, replace the defective parts (or the entire pump), install the new or rebuilt unit, and get the unit back on line as quickly as possible. However if several checks are not made during the removal and disassembly process, important clues as to the cause of the problem will be overlooked. Below is a recommended checklist that should be done when any pump is removed from service to assist in identifying the source of the failure. In fact, it may not be a bad idea to preform many of these checks on an annual basis.

2. For mechanically flexible couplings (e.g. gear, metal ribbon, chain), is there grease or oil on the inside of the coupling guard and on the baseplate? If so, did it come from the coupling, the bearings on the motor or the pump, or someplace else?

4. Prior to disassembling the coupling, capture a set of shaft alignment measurements. It really does not matter what type of alignment method or tool is used to capture the measurements. What is the the amount of misalignment in mils per inch? Was the pump being subjected to run under a slight (0.1 to 2 mils/inch), moderate (2.1 to 10 mils/inch) or severe (10+ mils/inch) misalignment condition? Since a good Pro-Active maintenance program requires that you keep records of alignment on all the rotating machinery in your facility, compare the as found alignment to the last final alignment on the unit. Has the alignment shifted? If so, how much and what caused the shift? (easy question to ask, but usually quite difficult to answer).

6. Visually inspect the pump for any obvious problems such as loose foot bolts, loose pump casing bolts, cracked casing, low lubricant level, loose shim packs or missing shims, leaking mechanical seal, leaking oil seals, or discoloration in the shaft.

7. Determine if there is an excessive amount of shaft “freeplay”. This is fairly easy to do and can tell you if there are potential bearing problems in the pump or driver. Attach a fixture on the driver shaft, span across the coupling (engaged or disengaged) and place a dial indicator on the top of the pump shaft (or coupling hub) and zero the indicator. Lift the shaft from underneath and observe the dial indicator. If the pump shaft is supported in rolling element bearings, you should not see any more than 1 mil of movement (of course if you use too much force when lifting the shaft, it is quite possible to elastically flex the shaft giving you a false reading of the looseness of the assembly). If the pump is supported in sliding type bearings, the amount of shaft movement should be within the radial bearing clearance range.

9. Determine if there is an excessive amount of piping stress on the pump. There are several ways to determine this. One way is to attach a fixture on the driver shaft, span across the coupling (engaged or disengaged) and place a dial indicator on the top and one side of the pump shaft and zero the indicators. Loosen the pump base bolts one at a time observing the indicator as you loosen each bolt. If the pump shaft does not shift vertically or laterally more than 5 mils, there is probably not an excessive amount of piping stress on the pump. If the pump shifts more than that amount, you should seriously consider providing adequate piping supports on the suction and / or discharge piping to reduce or eliminate the stresses. If the movement is severe (i.e. 20+ mils either direction) you may have to cut and re-fit the piping. Sorry!

10. Disconnect the piping and check for excessive “soft foot” problems. Soft foot conditions can be detected fairly easily using magnetic bases and dial indicators placed near each tightened foot bolt and then successively loosening each bolt to see if the foot lifts up or drops away. If more than 2 mils of movement is observed at any foot, further investigation in warranted. The amount of lift (or drop) seen by the dial indicator is only an indication that a problem exists and is not necessarily an indication of how the soft foot should be corrected. Soft foot checks can also be made with just about any alignment measurement system by setting up the tooling on the shafts, zeroing the instruments in the 12 o’clock position, and loosening the foot bolts up one at a time, noting any changes that occur as each bolt is loosened. Again, the amount of lift (or drop) seen by the alignment measurement system is only an indication that a problem exists and is not necessarily an indication of how the soft foot should be corrected. Since many pumps are driven by motors and the personnel who install and align these system frequently call the motor as the movable machine in the alignment process, soft foot problems are often corrected on the motors but since the pump was named as the stationary machine, it is incorrectly assumed that it does not have a soft foot problem. Be aware that soft foot on pumps can be as severe as on any other piece of rotating machinery.

The above ten “pre-removal” steps can give you valuable information on the source of the problem with the pump you are about to overhaul or replace. A Pro-Active / Prevention based maintenance program requires that you thoroughly investigate each failure to determine the ro