mud pump that gives sufficient flowrate but not enough pressure pricelist
This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.
The 2,200-hp mud pump for offshore applications is a single-acting reciprocating triplex mud pump designed for high fluid flow rates, even at low operating speeds, and with a long stroke design. These features reduce the number of load reversals in critical components and increase the life of fluid end parts.
The pump’s critical components are strategically placed to make maintenance and inspection far easier and safer. The two-piece, quick-release piston rod lets you remove the piston without disturbing the liner, minimizing downtime when you’re replacing fluid parts.
AfghanistanAlbaniaAlgeriaAmerican SamoaAndorraAngolaAnguillaAntarcticaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBoliviaBonaire, Sint Eustatius and SabaBosnia and HerzegovinaBotswanaBouvet IslandBrazilBritish Indian Ocean TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCabo VerdeCambodiaCameroonCanadaCayman IslandsCentral African RepublicChadChileChinaChristmas IslandCocos IslandsColombiaComorosCongoCongo, Democratic Republic of theCook IslandsCosta RicaCroatiaCubaCuraçaoCyprusCzechiaCôte d"IvoireDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEswatiniEthiopiaFalkland IslandsFaroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Southern TerritoriesGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuamGuatemalaGuernseyGuineaGuinea-BissauGuyanaHaitiHeard Island and McDonald IslandsHoly SeeHondurasHong KongHungaryIcelandIndiaIndonesiaIranIraqIrelandIsle of ManIsraelItalyJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKorea, Democratic People"s Republic ofKorea, Republic ofKuwaitKyrgyzstanLao People"s Democratic RepublicLatviaLebanonLesothoLiberiaLibyaLiechtensteinLithuaniaLuxembourgMacaoMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMexicoMicronesiaMoldovaMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorth MacedoniaNorthern Mariana IslandsNorwayOmanPakistanPalauPalestine, State ofPanamaPapua New GuineaParaguayPeruPhilippinesPitcairnPolandPortugalPuerto RicoQatarRomaniaRussian FederationRwandaRéunionSaint BarthélemySaint Helena, Ascension and Tristan da CunhaSaint Kitts and NevisSaint LuciaSaint MartinSaint Pierre and MiquelonSaint Vincent and the GrenadinesSamoaSan MarinoSao Tome and PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSint MaartenSlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Georgia and the South Sandwich IslandsSouth SudanSpainSri LankaSudanSurinameSvalbard and Jan MayenSwedenSwitzerlandSyria Arab RepublicTaiwanTajikistanTanzania, the United Republic ofThailandTimor-LesteTogoTokelauTongaTrinidad and TobagoTunisiaTurkmenistanTurks and Caicos IslandsTuvaluTürkiyeUS Minor Outlying IslandsUgandaUkraineUnited Arab EmiratesUnited KingdomUnited StatesUruguayUzbekistanVanuatuVenezuelaViet NamVirgin Islands, BritishVirgin Islands, U.S.Wallis and FutunaWestern SaharaYemenZambiaZimbabweÅland Islands
GDEP is the original creator of the drilling pump and continues to set the standard for durable, high-quality drilling pumps that can withstand the world’s toughest drilling environments. Starting with our PZ7 and rounding out with the market"s most popular pump, the PZ1600, our PZ Series of pumps are the perfect choice for today"s high-pressure drilling applications.
When choosing a size and type of mud pump for your drilling project, there are several factors to consider. These would include not only cost and size of pump that best fits your drilling rig, but also the diameter, depth and hole conditions you are drilling through. I know that this sounds like a lot to consider, but if you are set up the right way before the job starts, you will thank me later.
Recommended practice is to maintain a minimum of 100 to 150 feet per minute of uphole velocity for drill cuttings. Larger diameter wells for irrigation, agriculture or municipalities may violate this rule, because it may not be economically feasible to pump this much mud for the job. Uphole velocity is determined by the flow rate of the mud system, diameter of the borehole and the diameter of the drill pipe. There are many tools, including handbooks, rule of thumb, slide rule calculators and now apps on your handheld device, to calculate velocity. It is always good to remember the time it takes to get the cuttings off the bottom of the well. If you are drilling at 200 feet, then a 100-foot-per-minute velocity means that it would take two minutes to get the cuttings out of the hole. This is always a good reminder of what you are drilling through and how long ago it was that you drilled it. Ground conditions and rock formations are ever changing as you go deeper. Wouldn’t it be nice if they all remained the same?
Centrifugal-style mud pumps are very popular in our industry due to their size and weight, as well as flow rate capacity for an affordable price. There are many models and brands out there, and most of them are very good value. How does a centrifugal mud pump work? The rotation of the impeller accelerates the fluid into the volute or diffuser chamber. The added energy from the acceleration increases the velocity and pressure of the fluid. These pumps are known to be very inefficient. This means that it takes more energy to increase the flow and pressure of the fluid when compared to a piston-style pump. However, you have a significant advantage in flow rates from a centrifugal pump versus a piston pump. If you are drilling deeper wells with heavier cuttings, you will be forced at some point to use a piston-style mud pump. They have much higher efficiencies in transferring the input energy into flow and pressure, therefore resulting in much higher pressure capabilities.
Piston-style mud pumps utilize a piston or plunger that travels back and forth in a chamber known as a cylinder. These pumps are also called “positive displacement” pumps because they literally push the fluid forward. This fluid builds up pressure and forces a spring-loaded valve to open and allow the fluid to escape into the discharge piping of the pump and then down the borehole. Since the expansion process is much smaller (almost insignificant) compared to a centrifugal pump, there is much lower energy loss. Plunger-style pumps can develop upwards of 15,000 psi for well treatments and hydraulic fracturing. Centrifugal pumps, in comparison, usually operate below 300 psi. If you are comparing most drilling pumps, centrifugal pumps operate from 60 to 125 psi and piston pumps operate around 150 to 300 psi. There are many exceptions and special applications for drilling, but these numbers should cover 80 percent of all equipment operating out there.
The restriction of putting a piston-style mud pump onto drilling rigs has always been the physical size and weight to provide adequate flow and pressure to your drilling fluid. Because of this, the industry needed a new solution to this age-old issue.
Enter Cory Miller of Centerline Manufacturing, who I recently recommended for recognition by the National Ground Water Association (NGWA) for significant contributions to the industry.
As the senior design engineer for Ingersoll-Rand’s Deephole Drilling Business Unit, I had the distinct pleasure of working with him and incorporating his Centerline Mud Pump into our drilling rig platforms.
In the late ’90s — and perhaps even earlier — Ingersoll-Rand had tried several times to develop a hydraulic-driven mud pump that would last an acceptable life- and duty-cycle for a well drilling contractor. With all of our resources and design wisdom, we were unable to solve this problem. Not only did Miller provide a solution, thus saving the size and weight of a typical gear-driven mud pump, he also provided a new offering — a mono-cylinder mud pump. This double-acting piston pump provided as much mud flow and pressure as a standard 5 X 6 duplex pump with incredible size and weight savings.
The true innovation was providing the well driller a solution for their mud pump requirements that was the right size and weight to integrate into both existing and new drilling rigs. Regardless of drill rig manufacturer and hydraulic system design, Centerline has provided a mud pump integration on hundreds of customer’s drilling rigs. Both mono-cylinder and duplex-cylinder pumps can fit nicely on the deck, across the frame or even be configured for under-deck mounting. This would not be possible with conventional mud pump designs.
Centerline stuck with their original design through all of the typical trials and tribulations that come with a new product integration. Over the course of the first several years, Miller found out that even the best of the highest quality hydraulic cylinders, valves and seals were not truly what they were represented to be. He then set off on an endeavor to bring everything in-house and began manufacturing all of his own components, including hydraulic valves. This gave him complete control over the quality of components that go into the finished product.
The second generation design for the Centerline Mud Pump is expected later this year, and I believe it will be a true game changer for this industry. It also will open up the application to many other industries that require a heavier-duty cycle for a piston pump application.
Land users in remote areas often have two options: run an electric well pump using a distant grid, or use a fuel-powered pump to pump water from a pond or river.
With solar power, pumps become much easier to install, maintain and use, whether you are giving your garden a fountain or you want to power your irrigation system without increasing your electric bill.
Solar water pumps can provide an economical and energy efficient solution for remote watering needs. With just a few simple components, solar pumps can be used in a variety of environments.
Works during power outages. Solar pumps are resilient to power outages. Plus, when the sun isn’t shining, that’s when the garden needs water the least. Or, as needed, invest in batteries to store power at night or on cloudy days.
Suitable for slow recovery wells. The slower pumping of solar systems reduces the decline of water in wells that are slow to recharge (i.e., the water table slowly refills relative to the pumping demand).
Portable systems without batteries. Pumps can be used with or without batteries. This option makes some solar designs easy to transport. Of course, no batteries means lower cost.
In order to take full advantage of the potential of solar energy, it is important to understand the function of a solar pumping system. Let’s start with the sun.
The output of each panel is not as important as the total output of all the panels used in the array. For example, a 300-watt array can be made with three 100-watt panels, two 150-watt panels, or one 300-watt panel.
In our case, a pump is a tool that mechanically pumps water from a water source and delivers it to a desired location. There are many types of pumps used for this purpose, but some are better suited for solar energy.
In particular, pumps that require less power to operate at maximum efficiency are ideal. For deep wells, positive displacement pumps are recommended. These pumps move a fixed amount of water in each rotation cycle, and they pump an amount proportional to the amount of power supplied.
Compare these to centrifugal pumps that typically use AC power. If you have a deep well supplying water to your house and you are on the utility grid, then you are probably using a centrifugal pump.
Centrifugal pumps draw a lot of power to pump as fast as possible. However, at lower power levels, they do not perform well. For example, at half power, a centrifugal pump can only pump at a quarter of its maximum pressure.
In contrast, submersible D/C pumps use only 20 to 50 percent of the energy required by an A/C centrifugal pump to deliver the same amount of water. That’s why solar energy works so well with D/C pumps.
The head or the vertical distance that water must be pulled or pushed from the water source largely determines the power demand. For example, the head of water pumped from a surface pond is usually much smaller than that of a deep well.
While pumps rated for solar may take longer to meet water demand each day, they pump as much water as a standard air conditioning pump in a full day of solar exposure, but at a fraction of the cost.
The reason for the solar advantage is that, by comparison, air conditioning pumps consume a lot of electricity to pump quickly and then shut down. But solar pumps work at the same rate as solar energy is converted.
In other words, it will pump water as long as there is sunlight, and the good news is that the cost of the solar pump will balance out at the end of the day.
Such a setup does not require batteries, and when the sun is shining, the solar pump system can fill an auxiliary tank to pump water on days when the sun is hidden behind clouds.
The energy and cost advantages of pumps for solar applications are due to the lower power requirements. While lower power translates into lower overall output, most pumps can provide 75 to 350 feet of vertical lift.
For sites not connected to the grid, the cost of extending power lines can be high. Additional costs may be incurred if dense vegetation, unfavorable soil conditions, or elevation changes result in reduced accessibility.
Costs also depend on the water source. Surface water systems, such as those drawn from a pond or river, tend to be cheaper because the energy demand is lower than a pump buried deep in a well.
Solar water pump is composed of many parts, each part has an important purpose. Components including pipe size, voltage, flow rate, fountains, style, entrance/out.
For any situation where an electric utility’s infrastructure must be extended more than a quarter mile, solar water pumping offers a clear cost advantage.
One drawback of many solar pump setups is that they may require maintenance and periodic replacement of components. For example, smaller well pumps may need to be serviced every two to four years, while larger well and ground pumps will need to be serviced about every 15 years.
Ensuring that equipment is adequately installed and maintained for its intended use will offset some of these problems. However, the replacement of solar cells and pump components is inevitable.
In an era when the entire world is converting to solar energy, the use of solar energy in pumping systems can greatly help and accelerate agricultural development in African countries and many other poor and remote areas. This concept is known as solar irrigation and is being used in many areas today.
The truth is that solar energy is probably the easiest way for farmers to produce energy, especially for those who live near the grid with poor household infrastructure. As a result, the use of solar pumps in agriculture is becoming increasingly common. The concept of solar irrigation represents a virtuous cycle – when the sun shines, it irrigates the irrigation system and feeds the crops that depend on water in sunny weather. Thus, a lot of energy is released just when it is needed most.
Solar pumps are easier to set up, especially if a unit has all the necessary parts and has an online resource that can help with assembly. It also requires less maintenance, as they run in the sun and use DC current, which requires fewer parts while being more efficient than their electric counterparts. Best of all, solar power allows you to pay no electricity bills!
The disadvantage of solar pumps, however, is the high initial cost, as solar components are still more expensive than electrical and mechanical alternatives.
Above ground pumps are simple to apply. In any body of water, these pumps can provide an average flow rate of 4 to 10 gallons per minute and do not consume much power.
The question is, how deep into the ground do you need to go and how much water do you need? The deeper it goes, the more it costs, a fact that applies to all wells, not just solar pumping wells.
However, as mentioned earlier, there is a limit to the vertical height at which a solar pump can move water. Most pumps have a maximum head between 75 and 350 feet, and while some pumps can go deeper, the higher design requirements will increase the price of the pump and reduce cost savings.
In most applications, it is not necessary to sink the well deeper than the upper edge of the water table. For plants and livestock, the safety of domestic water is not a necessity, so shallow wells are usually sufficient. The lower flow rates of these pumps supplement shallow and slowly recovering wells.
Solar pumps are also well suited for areas where other power sources are not available or where access costs are too high. The most relevant applications include crop irrigation, recharge of livestock ponds, and reservoir regulation of ponds and lakes.
Solar pumps sacrifice boosting power for pumping efficiency, and even at peak solar intensities, there are limits to the rate at which solar energy can be converted to electricity.
For very deep water or high flow requirements, solar pumps are no longer economically competitive. Even if functioning properly, using a system near its upper limit increases wear and tear on the pump assembly, which only accelerates the need to repair or replace the system.
The X-series mud pump type PD X-3.004 SG HDD manufactured by PRIME DRILLING impresses with its robust and low-wear design. The 7-fold bearing mounted drive shaft, which is equipped with 3 eccentric wheels, replaces the conventional crankshaft. Due to the revolution of these shafts and their maximum 230 rotations per minute operational wear of rubbers and liners are reduced to a minimum.
The pump is driven by a 470 kW CAT engine. This type of mud pump is exclusively manufactured in our Wenden plant, i.e. „made in Germany“. Its electronic gearshift in combination with eccentric wheels used instead of a crankshaft make it a high- power but low- maintenance product. All valves and plungers also comply with API standards.
I’ve run into several instances of insufficient suction stabilization on rigs where a “standpipe” is installed off the suction manifold. The thought behind this design was to create a gas-over-fluid column for the reciprocating pump and eliminate cavitation.
When the standpipe is installed on the suction manifold’s deadhead side, there’s little opportunity to get fluid into all the cylinders to prevent cavitation. Also, the reciprocating pump and charge pump are not isolated.
Another benefit of installing a suction stabilizer is eliminating the negative energies in fluids caused by the water hammer effect from valves quickly closing and opening.
The suction stabilizer’s compressible feature is designed to absorb the negative energies and promote smooth fluid flow. As a result, pump isolation is achieved between the charge pump and the reciprocating pump.
The isolation eliminates pump chatter, and because the reciprocating pump’s negative energies never reach the charge pump, the pump’s expendable life is extended.
Investing in suction stabilizers will ensure your pumps operate consistently and efficiently. They can also prevent most challenges related to pressure surges or pulsations in the most difficult piping environments.
Sigma Drilling Technologies’ Charge Free Suction Stabilizer is recommended for installation. If rigs have gas-charged cartridges installed in the suction stabilizers on the rig, another suggested upgrade is the Charge Free Conversion Kits.