liu rongsheng free sample
9. Guoli Xiong, Yue Zhao, Lu Liu, Zhongye Ma, Aiping Lu, Yan Cheng, Tingjun Hou*, Dongsheng Cao*, Computational bioactivity fingerprint similarities to navigate the discovery of novel scaffolds, Journal of Medicinal Chemistry, 2021, 64, 7544-7554.
10. Xueping Hu, Liu Yang, Xin Chai, Yixuan Lei, Md Shah Alam, Lu Liu, Chao Shen, Dejun Jiang, Zhe Wang, Zhiyong Liu, Lei Xu, Kanglin Wan, Tianyu Zhang, Yuelan Yin, Dongsheng Cao*, Dan Li*, Tingjun Hou*, Discovery of novel DprE1 inhibitors via computational bioactivity fingerprints and structure-based virtual screening, Acta Pharmacologica Sinica, 2022, in press.
12. 12. Tailong Lei, Huiyong Sun, Yu Kang, Feng Zhu. Hui Liu, Wenfang Zhou, Zhe Wang, Dan Li, Youyong Li, Tingjun Hou*, ADMET evaluation in drug discovery. 18. Reliable prediction of chemical-induced urinary tract toxicity by boosting machine learning approaches, Molecular Pharmaceutics,2017, 14, 3935-3953.
13. Tailong Lei, Fu Chen, Hui Liu, Huiyong Sun, Yu Kang, Dan Li, Youyong Li, Tingjun Hou*, ADMET evaluation in drug discovery. 17. Development of quantitative and qualitative prediction models for chemical-induced respiratory toxicity, Molecular Pharmaceutics, 2017, 14, 2407-2421.
16. Tailong Lei, Huiyong Sun, Yu Kang, Feng Zhu. Hui Liu, Wenfang Zhou, Zhe Wang, Dan Li, Youyong Li, Tingjun Hou*, ADMET evaluation in drug discovery. 18. Reliable prediction of chemical-induced urinary tract toxicity by boosting machine learning approaches, Molecular Pharmaceutics, 2017, 14, 3935-3953.
1. Ercheng Wang, Huiyong Sun, Junmei Wang, Zhe Wang, Hui Liu, John Z.H. Zhang*, Tingjun Hou*, End-Point binding free energy calculation with MM/PBSA and MM/GBSA: strategies and applications in drug design, Chemical Reviews, 2019, 119, 9478-9508.
4. Fu Chen, Huiyong Sun, Junmei Wang, Feng Zhu, Hui Liu, Zhe Wang, Tailong Lei, Youyong Li, Tingjun Hou*, Assessing the performance of MM/PBSA and MM/GBSA methods. 8. Predicting binding free energies and poses of protein-RNA complexes, RNA, 2018, 24, 1183-1194.
5. Huiyong Sun, Lili Duan, Fu Chen, Hui Liu, Zhe Wang, Peichen Pan, Feng Zhu, John Z. H. Zhang, Tingjun Hou*, Assessing the performance of MM/PBSA and MM/GBSA methods. 7. Entropy effects on the performance of end-point binding free energy calculation approaches, Physical Chemistry Chemical Physics, 2018, 20, 14450-14460.
6. Fu Chen, Hui Liu, Huiyong Sun, Peichen Pan, Youyong Li, Dan Li, Tingjing Hou*, Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein-protein binding free energies and re-rank binding poses generated by protein-protein docking, Physical Chemistry Chemical Physics, 2016, 18, 22129-22139.
12. Ercheng Wang, Weitao Fu, Dejun Jiang, Huiyong Sun, Junmei Wang, Xujun Zhang, Gaoqi Weng, Hui Liu, Peng Tao, and Tingjun Hou*, VAD-MM/GBSA: A Variable Atomic Dielectric MM/GBSA Model for Improved Accuracy in Protein–Ligand Binding Free Energy Calculations, Journal of Chemical Information and Modeling, 2021, 61, 2844-2856.
13. Ercheng Wang, Hui Liu, Junmei Wang, Gaoqi Weng, Huiyong Sun, Zhe Wang, Yu Kang, Tingjun Hou*, Development and Evaluation of MM/GBSA Based on a Variable Dielectric GB Model for Predicting Protein-Ligand Binding Affinities, Journal of Chemical Information and Modeling, 2020, 60, 5353-5365.
14. Gaoqi Weng, Ercheng Wang, Zhe Wang, Hui Liu, Feng Zhu, Dan Li, Tingjun Hou*, HawkDock: a web server to predict and analyze the protein-protein complex based on computational docking and MM/GBSA, Nucleic Acids Research, 2019, 47, W322-W330.
1. Rui Shi, Peichen Pan, Rui Lv, Chongqing Ma, Enhui Wu, Ruochen Guo, Zhihao Zhao, Hexing Song, Joe Zhou, Yang Liu, Guoqiang Xu, Tingjun Hou*, Zhenhui Kang*, Jian Liu*, High-throughput glycolytic inhibitor discovery targeting glioblastoma by graphite dots-assisted LDI mass spectrometry, Science Advances, 2022, 8, eabl4923.
2. Xin Chai, Huiyong Sun, Wenfang Zhou, Changwei Chen, Luhu Shan, Yuhui Yang, Junzhao He, Jinping Pang, Liu Yang, Xinyue Wang, Sunliang Cui, Yaqin Fu, Xiaohong Xu, Lei Xu, Xiaojun Yao, Dan Li*, Tingjun Hou*, Discovery of N-(4-(Benzyloxy)-phenyl)-sulfonamide Derivatives as novel antagonists of the human androgen receptor targeting the activation function 2, Journal of Medicinal Chemistry, 2022, 65, 2507-2521.
8. Weitao Fu, Ercheng Wang, Di Ke, Hao Yang, Lingfeng Chen, Jingjing Shao, Xueping Hu, Lei Xu, Na Liu*, Tingjun Hou*, Discovery of a novel Fusarium Graminearum Mitogen-activated Protein Kinase (FgGpmk1) inhibitor for the treatment of fusarium head blight, Journal of Medicinal Chemistry, 2021, 64, 13841-13852.
9. Yuan Wang, ZheWang, Jiacheng Liu, Yunwen Wang, Rui Wu, Rong Sheng*, Tingjun Hou*, Discovery of novel HBV capsid assembly modulators by structure-based virtual screening and bioassays, Bioorganic & Medicinal Chemistry, 2021, 36, 116096.
12. Peichen Pan, Huidong Yu, Qinglan Liu, Xiaotian Kong, Hu Chen, Jiean Chen, Qi Liu, Dan Li, Yu Kang, Huiyong Sun, Wenfang Zhou, Sheng Tian, Sunliang Cui, Feng Zhu, Youyong Li, Yong Huang*, Tingjun Hou*, Combating drug-resistant mutants of ALK with potent and selective Type-I1/2 inhibitors by stabilizing unique DFG-shifted loop conformation, ACS Central Science, 2017, 3, 1208-1220.
13. Peichen Pan, Jiean Chen, Xijian Li, Miyang Li, Huidong Yu, Jean J Zhao, Jing Ni, Xuwen Wang, Huiyong Sun, Sheng Tian, Feng Zhu, Feng Liu, Yong Huang*, Tingjun Hou*, Structure-based Drug Design and Identification of H2O-soluble and Low Toxic Hexacyclic Camptothecin Derivatives with Improved Efficacy in both Cancer and Lethal Inflammation Models In Vivo, Journal of Medicinal Chemistry, 2018, 61,8613–8624.
4. Ye Jin, Mojie Duan, Xuwen Wang, Xiaotian Kong, Wenfang Zhou, Huiyong Sun, Hui Liu, Dan Li, Huidong Yu, Youyong Li*, Tingjun Hou*, Communication between the ligand-binding pocket (LBP) and the activation function-2 (AF2) domain of androgen receptor revealed by molecular dynamics simulations, Journal of Chemical Information and Modeling, 2019, 59, 842-857.
5. Na Liu, Wenfang Zhou, Yue Guo, Junmei Wang, Weitao Fu, Huiyong Sun, Dan Li, Mojie Duan*, Tingjun Hou*, Molecular Dynamics Simulations Revealed the Regulation of Ligands to the Interactions between Androgen Receptor and Its Coactivator, Journal of Chemical Information and Modeling, 2018, 58, 1652-1661.
7. Mojie Duan, Na Liu, Wenfang Zhou, Dan Li, Minghui Yang*, Tingjun Hou*, Structural diversity of ligand-binding androgen receptors revealed by microsecond long molecular dynamics simulations and enhanced sampling, Journal of Chemical Theory and Computation, 2016, 12, 4611-4619.
9. Hui Liu, Dan Li, Youyong Li, Tingjun Hou*, Atomistic molecular dynamics simulations of ATP-binding cassette transporters, WIREs Computational Molecular Science, 2016, 6, 255-265.
15. Jing Zhang#, Tingjun Hou# (Co-first author), Wei Wang, Jun S. Liu, Detecting and understanding combinatorial mutation patterns responsible for HIV drug resistance, Proceedings of the National Academy of Sciences, 2010, 107, 1321-1326.
Fan, L. L., Yong, M. L., Li, D. Y., Liu, Y. J., Lai, C. H., Chen, H. M., Cheng, F. M., and Hu, D. W. 2016. Effect of temperature on the development of sclerotia in Villosiclava virens. J. Integr. Agric. 15:2550-2555. https://doi.org/10.1016/S2095-3119(16)61400-4 Crossref, ISI
Fan, R. H., Wang, Y. Q., Liu, B., Zhang, J. Z., and Hu, D. W. 2010. The process of asexual spore formation and examination of chlamydospore germination of Ustilaginodea virens. Mycosystema 29:188-192.
Pan, X. Y., Cao, H. J., Yu, J. J., Yu, M. N., Qi, Z. Q., Song, T. Q., Du, Y., Yong, M. L., Zhang, R. S., Yin, X. L., and Liu, Y. F. 2020. Monitoring and analysis of rice pathogen Ustilaginoidea virens isolates with resistance to sterol demethylation inhibitors in China. Phytopathol. Res. 2:24. https://doi.org/10.1186/s42483-020-00062-x Crossref
Yang, B. Y., Liu, X. L., Wei, Y. M., Wang, J. Q., He, X. Q., Jin, Y., and Wang, Z. J. 2014. Rapid and sensitive detection of human astrovirus in water samples by loop-mediated isothermal amplification with hydroxynaphthol blue dye. BMC Microbiol. 14:38. https://doi.org/10.1186/1471-2180-14-38 Crossref, ISI
Yang, L. M., Chen, L., Xu, J., Liu, J. C., and Ding, K. J. 2012. Estimation of yield loss caused by rice false smut. J. Anhui Agric. Univ. 39:474-477.
Yong, M. L., Yu, J. J., Pan, X. Y., Yu, M. N., Cao, H. J., Qi, Z. Q., Du, Y., Zhang, R. S., Song, T. Q., Yin, X. L., Chen, Z. Y., Liu, W. D., and Liu, Y. F. 2020a. MAT1-1-3, a mating type gene in the Villosiclava virens, is required for fruiting bodies and sclerotia formation, asexual development and pathogenicity. Front. Microbiol. 11:1337. https://doi.org/10.3389/fmicb.2020.01337 Crossref, ISI
Yong, M. L., Yu, J. J., Pan, X. Y., Yu, M. N., Cao, H. J., Song, T. Q., Qi, Z. Q., Du, Y., Zhang, R. S., Yin, X. L., Liu, W. D., and Liu, Y. F. 2020b. Two mating-type genes MAT1-1-1 and MAT1-1-2 with significant functions in conidiation, stress response, sexual development, and pathogenicity of rice false smut fungus Villosiclava virens. Curr. Genet. 66:989-1002. https://doi.org/10.1007/s00294-020-01085-9 Crossref, ISI
Yu, J. J., Sun, W. X., Yu, M. N., Yin, X. L., Meng, X. K., Zhao, J., Huang, L., Huang, L., and Liu, Y. F. 2015. Characterization of mating-type loci in rice false smut fungus Villosiclava virens. FEMS Microbiol. Lett. 362:9. https://doi.org/10.1093/femsle/fnv014 Crossref, ISI
Zhang, Y., Zhang, K., Fang, A. F., Han, Y. Q., Yang, J., Xue, M. F., Bao, J. D., Hu, D. W., Zhou, B., Sun, X. Y., Li, S. J., Wen, M., Yao, N., Ma, L. J., Liu, Y. F., Zhang, M., Huang, F., Luo, C. X., Zhou, L. G., Li, J. Q., Chen, Z. Y., Miao, J. K., Wang, S., Lai, J. S., Xu, J. R., Hsiang, T., Peng, Y. L., and Sun, W. Y. 2014. Specific adaptation of Ustilaginoidea virens in occupying host florets revealed by comparative and functional genomics. Nat. Commun. 5:3849. https://doi.org/10.1038/ncomms4849 Crossref, ISI
Zhou, Y. X., Yu, J. J., Pan, X. Y., Yu, M. N., Qi, Z. Q., Song, T. Q., Du, Y., Yong, M. L., Zhang, R. S., Yin, X. L., and Liu, Y. F. 2019. Characterization of propiconazole field-resistant isolates of Ustilaginoidea virens. Pestic. Biochem. Physiol. 153:144-151. https://doi.org/10.1016/j.pestbp.2018.11.013 Crossref, ISI
In recent years, the role of catalyst and minerals in biomass pyrolysis was investigated. Lu et al. [53] reported that ZnCl2 could catalyze fast pyrolysis of corn cob with the main products of furfural and acetic acid. Du et al. [54] used 1-butyl-3-methylimidazolium chloride and 1-butyl-3-methylimidazolium boron tetrafluoride as the catalysts in MAP of straw and sawdust.
37.Wei, D.; Liu, L.J. Optimization of culture medium for heterotrophic Chlorella Protothecoides producing total fatty acids. Chem. Bioeng. 2008, 25, 35-40.
52.Du, Z.Y.; Li, Y.C.; Wang, X.Q.; Wan, Y.Q.; Chen, Q.; Wang, C.G.; Lin, X.Y.; Liu, Y.H.; Chen, P.; Ruan, R. Microwave-assisted pyrolysis of microalgae for biofuel production. Bioresour. Technol. 2011, 102, 4890-4896.
54.Du, J.; Liu, P.; Liu, Z.H.; Sun, D.G.; Tao, C.Y. Fast pyrolysis of biomass for bio-oil with ionic liquid and microwave irradiation. J. Fuel Chem. Technol. 2010, 5, 554-559.
72.Zhou, W.G.; Cheng, Y.L.; Li, Y.; Wan, Y.Q.; Liu, Y.H.; Lin, X.Y.; Ruan, R. Novel fungal pelletization assisted technology for algae harvesting and wastewater treatment. Appl. Biochem. Biotechnol. 2012, 167, 214-228.