3d printed rotary table made in china

Rotary table in market mainly includes 4 kinds of mechanism that is worm gear, roller cam, DD driver and harmonic structure. The following is the introduction:

1. worm gear: it’s one of  the most popular structrue in NC rotary table  because of its irreversibility and costs.The worm is generally made of bronze, but the wear resistance is poor. In order to improve the service life, some manufacturers use the alloy steel.

3.DD motor: it’s the most efficient rotary table with the highest precision. It has the highest precision because it has no mechanical structure, which is directly driven by motor , no reducer. It has high technical difficulty and high price. It is generally used for five axis machine tools.

3d printed rotary table made in china

I decided to make this clock as a challenge to myself. I am not either a designer or an engineer, so it was really challenging for me! All the pieces were designed with 123D Design, very simple yet powerful tool.

The programming part is very easy. If you don"t know how to program your Arduino Mini, you should just search here on Instructables, there"s a ton of examples.

3d printed rotary table made in china

* pL SOLUTIONS Shanghai Co. Ltd is part of a network of locally owned, independent representatives and service specialists dedicated exclusively to the sales, service, and support of CNC rotary tables designed and manufactured by the Swiss firm Peter Lehmann AG (pL)

* pL SOLUTIONS India/SEAis part of a network of locally owned, independent distributors and service specialists dedicated exclusively to the sales, service, and support of CNC rotary tables designed and manufactured by the Swiss firm Peter Lehmann AG (pL)

* pL SOLUTIONS Italia is part of a network of locally owned, independent distributors and service specialists dedicated exclusively to the sales, service, and support of CNC rotary tables designed and manufactured by the Swiss firm Peter Lehmann AG (pL)

* pL SOLUTIONS Japan is part of a network of locally owned, independent distributors and service specialists dedicated exclusively to the sales, service, and support of CNC rotary tables designed and manufactured by the Swiss firm Peter Lehmann AG (pL)

* pL SOLUTIONS USAis part of a network of locally owned, independent distributors and service specialists dedicated exclusively to the sales, service, and support of CNC rotary tables designed and manufactured by the Swiss firm Peter Lehmann AG (pL)

* pL SOLUTIONS India/SEA is part of a network of locally owned, independent distributors and service specialists dedicated exclusively to the sales, service, and support of CNC rotary tables designed and manufactured by the Swiss firm Peter Lehmann AG (pL)

* pL SOLUTIONS USA is part of a network of locally owned, independent distributors and service specialists dedicated exclusively to the sales, service, and support of CNC rotary tables designed and manufactured by the Swiss firm Peter Lehmann AG (pL)

* pL SOLUTIONS India/SEAis part of a network of locally owned, independent distributors and service specialists dedicated exclusively to the sales, service, and support of CNC rotary tables designed and manufactured by the Swiss firm Peter Lehmann AG (pL)

* pL SOLUTIONS South Korea is part of a network of locally owned, independent distributors and service specialists dedicated exclusively to the sales, service, and support of CNC rotary tables designed and manufactured by the Swiss firm Peter Lehmann AG (pL)

* pL SOLUTIONS India/SEA is part of a network of locally owned, independent distributors and service specialists dedicated exclusively to the sales, service, and support of CNC rotary tables designed and manufactured by the Swiss firm Peter Lehmann AG (pL)

* pL SOLUTIONS USAis part of a network of locally owned, independent distributors and service specialists dedicated exclusively to the sales, service, and support of CNC rotary tables designed and manufactured by the Swiss firm Peter Lehmann AG (pL)

* pL SOLUTIONS India/SEAis part of a network of locally owned, independent distributors and service specialists dedicated exclusively to the sales, service, and support of CNC rotary tables designed and manufactured by the Swiss firm Peter Lehmann AG (pL)

3d printed rotary table made in china

The rapid development of three-dimensional (3D) printing makes it familiar in daily life, especially the fused deposition modeling 3D printers. The process planning of traditional flat layer printing includes slicing and path planning to obtain the boundaries and the filling paths for each layer along the vertical direction. There is a clear division line through the whole fabricated part, inherited in the flat-layer-based printed parts. This problem is brought about by the seam of the boundary in each layer. Hence, the purpose of this paper is to propose a novel helical filling path generation with the ideal surface-plane intersection for a rotary 3D printer.

The detailed algorithm and implementation steps are given with several worked examples to enable readers to understand it better. The adjacent points obtained from the planar slicing are combined to generate each layer"s helical points. The contours of all layers are traversed to obtain the helical surface layer and helical path. Meanwhile, the novel rotary four-degree of freedom 3D printer is briefly introduced.

As a proof of concept, this paper presents several examples based on the rotary 3D printer designed in the authors’ previous research and the algorithms illustrated in this paper. The preliminary experiments successfully verify the feasibility and versatility of the proposed slicing method based on a rotary 3D printer.

This paper provides a novel and feasible slicing method for multi-axis rotary 3D printers, making manufacturing thin-wall and complex parts possible. To further broaden the proposed slicing method’s application in further research, adaptive tool path generation for flat and curved layer printing could be applied with a combination of flat and curved layers in the same layer, different layers or even different parts of structures.