diaphragm safety valve factory

The S50 Safety Shut Off valve is mainly used to avoid any damage to components as well as to avoid too high or too low pressure in the gas train. This could cause high financial losses and/or injured ...

The S100 Safety Shut Off valve is mainly used to avoid any damage to components as well as to avoid too high or too low pressure in the gas train. This could cause high financial losses and/or injured ...

The safety relief valve SL10 is mainly used to blow off a small amount of gas when the pressure is slowly increasing and to avoid that the safety shut-off valves releases.

... Board of Boiler and Pressure Vessel Inspectors. B&G diaphragm operated cast iron, and diaphragm-assist operated bronze ASME Safety Relief Valves, are designed to protect ...

diaphragm safety valve factory

... Pressure Relief Valves are the last safety net when abnormal pressure conditions endanger the silo structure. This is why sudden excess or suction pressure inside the silo have to be dealt with instantly. ...

... Series relief valves are ideal for low-pressure settings due to the increased sensitivity provided by a large diaphragm area. 289 Series relief valves ...

The BERMAD Quick Pressure Relief Valve is a hydraulically operated, diaphragm actuated control valve that relieves excessive line pressure when it rises above the preset ...

The BERMAD Quick Pressure Relief Valve is a hydraulically operated, diaphragm actuated control valve that relieves excessive line pressure when it rises above the preset ...

Beswick presents RV2 series miniature piston relief valve. It is ideal for applications demanding valves opening on pressure increase. The RV2 comes factory set for required relief ...

For applications needing a valve which opens on rising pressure, Beswick"s miniature diaphragm relief valve is ideal. The compact valve has a lightweight ...

Beswick"s manifold mount RVD8 series miniature diaphragm relief valve is an excellent choice for applications requiring a valve which opens on rising pressure. The design ...

Relief valves open the input port to the exhaust port when a specific pressure differential (ie. setpoint) is achieved. A diaphragm provides area for pressure supplied from the input ...

The RAF 83B are piloted hydraulic valves activated by line pressure. The pilot valve has a spring-loaded membrane, which is exposed to the upstream pressure. The valve is normally closed. ...

... piloted hydraulic valves activated by line pressure. The two-way pilot valve has a spring-loaded membrane, which is sensitive to upstream pressure. The RAF 80Q is normally closed. As line pressure rises ...

The RAF 80/82 are piloted hydraulic valves activated by line pressure. The pilot valve has a spring-loaded membrane, which is exposed to the upstream pressure. The valve is normally closed. ...

The RV-5200 and RV-5300 Series operate as either a relief valve or low flow back pressure regulators. Adjustments are made through a non-rising stem available with an attractive knob, plain to allow insulation ...

... outlet ball valve, paint filter blockage or paint line restriction. The Pressure relief valve is a purely mechanical device and intended to complement the primary electrical safety device which must ...

A relief valve automatically releases excessive pressure that occurs in the discharge-side piping due to issues such as clogged foreign matter and valve ...

The Stubbe DHV718 is a pressure relief valve that possess a simple construction and functionality for utilization in oscillating pumps. It can exhibit pressure range of 0.5 up to 8 bar in its DN8 nominal ...

Ligao safety relief valve and back pressure valve help to relieve excess pressure on the pump system or maintain pressure at a setted point .Safety relief valve ...

diaphragm safety valve factory

Diaphragm valves are popular in a wide variety of industries, including agriculture, biopharmaceuticals, chemical processing, energy production, food processing, irrigation, medicine, mining, plumbing, pulp and paper, and water treatment.

The earliest diaphragm valves were made by the Greeks and Romans. They used them to regulate the flow and temperature of water used in hot baths. Early Greek and Roman diaphragm valves consisted of a leather diaphragm that sealed when an operator manually pressed the diaphragm into a raised section called a weir.

The diaphragm valves of these ancient societies were largely forgotten until the turn of the 20th century, when a South African mining engineer, P.K. Saunders, read about them while studying ancient history for fun. At the same time, he was attempting to design an improved underground mining valve system. This was because the ones people worked with bled money from leaky valves and frequently lost power. Inspired by the Greeks and Romans, Saunders fixed this problem by designing his own diaphragm valve. Recognizing that he had come up with something great, Saunders took it upon himself to take out several patents on his valve. Eventually, he licensed a number of different companies, allowing them to produce the diaphragm valve. The first American company to produce the diaphragm valve was the Hills McCanna Company, which started distributing them in 1931.

The next step in the journey of diaphragm valves was their union with new materials, like advanced elastomers and improved plastics. For a long time, diaphragm valves were operated manually, but eventually manufacturers largely switched over to automated valves. To make this happen, manufacturers began manufacturing diaphragm valves with actuators. Actuators made diaphragm valves more reliable and efficient.

Today diaphragm valve manufacturers make their products using a wide range of configurations and materials. Diaphragm valves are more well-made, trustworthy, and diverse than ever. For example, engineers have developed diaphragm valves so much that many are suitable for use in the bio-pharmaceutical industry. Only time will tell where engineers will take them next.

The materials with which manufacturers make a diaphragm valve must be chemically compatible with the material flowing through the valve. They must also be durable. If the materials are not, the valve will likely sustain damage that can lead to product contamination. Materials and compositions they may encounter include adhesives, chemicals, cleaners, coatings, colorants, fuel, paints, silicones, and water.

Manufacturers most often make diaphragm valve bodies from materials such as brass, cast iron, CPVC, PVC, stainless steel, and steel. They favor materials like stainless steel for the valve body because such materials are corrosion resistant, durable, and strong.

The actual diaphragm is made of various elastomers, like polyethylene and polypropylene, and others like those used to line the valve mechanism. If the diaphragm will encounter highly abrasive materials, manufacturers can reinforce it with mesh fibers.

When designing a diaphragm valve, manufacturers consider factors such as projected space and application diameter and dimensions, frequency of operation, media type, temperature and pressure ratings, process stream velocity, and required end connections. Based on these considerations, they can select the right type of valve, valve material, diaphragm material, valve shape and size, and valve controls. Manufacturers can customize any and all of these valve details to fit your application.

Valves may be manual, automatic, pneumatic, electric, or hydraulic. Typically, they feature a body, piping, an actuating device (actuator), a stem, and a diaphragm. The body is spherical or cylindrical and contains both the actuating device and stem. The stem is a rod or piston.

The diaphragm sits in front of the stem. The piping, which is connected to the valve body, features a raised bump. Hydraulic fluid, compressed air, or manual turning action causes the stem to press down against the diaphragm. This causes the diaphragm to expand to a new depth, blocking the piping and the fluids that pass through it. This is the closed position. In the open position, the stem retracts, so that the diaphragm goes back to its original position and fluid can pass by.

Something to note about the actuator is the fact that it boosts the capabilities of clean valve operation because of the broad possibilities they offer. Clean valve operations are important to many of the applications for which diaphragm valves are used, and so many of them require enhanced valves, such as hygienic valves, biotech valves, or sanitary diaphragm valves.

Diaphragm control valves allow manufacturers to modify pressure, temperature flow rates, and liquid levels as they go along. They do so with the assistance of a diaphragm made of an elastomer film or membrane.

In turn, check valves and control valves are further divided into two configuration groups: seat valves and saddle valves, or straight-way and weir valves, respectively.

Both of these valve types feature two or more ports through which materials flow. With both, one port serves as an inlet and at least one other serves as a place for exhaust to escape from the body. When the valve is not engaged, materials will simply flow in one port and out the other, but when it is, flow becomes restricted or completely repressed.

Seat valve bodies use a 90° bend to cause the directional change of a process stream as it moves around a corner. Essentially, seat valves create a nonlinear stream path. Most often, seat valves are used to facilitate angled flow in cistern or tank bottoms.

Saddle valves, on the other hand, direct flow with two ports that are located opposite one another. Essentially, saddle valves create and regulate a linear stream path. Typically, they assist pre-existing flow lines.

Aside from the difference in piping or tubing angle, seat valves and saddle valves are essentially the same. To begin with, they both consist of a spherical or cylindrical body, attached to the tubing or tank that requires the valve, which contains the actuation device and diaphragm. They both also have the same type of diaphragm. The diaphragm of both is thin at the edges and thick in the middle, a feature that permits easy stretching. It lifts up when the valve is opened, allowing for gases or fluids to pass. When the valve is closed, the stem engages the diaphragm by applying pressure. This pressure forces the diaphragm to move towards the opposite wall of the piping to create a flexible but effective flow barrier.

Other diaphragm valve types include process valves, zero static valves, sanitary diaphragm valves, diaphragm solenoid valves, direct acting diaphragm solenoid valves, indirect acting diaphragm solenoid valves, shut-off valves, pneumatic diaphragm valves, and diaphragm actuated gate valves.

Zero static valves are another diaphragm valve type that are great for clean operations, because they eliminate the opportunities for bacterial growth and flow stagnation.

Diaphragm solenoid valves are a variation on the regular solenoid valve, which is an electromechanical valve used for flow control. Along with a solenoid coil, diaphragm solenoid valves usually feature rubber diaphragms situated inside of the valve body. They open and close against a hard seat. They may be direct acting or indirect acting.

Direct acting diaphragm solenoid valves change their diaphragm position only when the solenoid coil energizes. When this happens, the diaphragm opens or closes, depending if the valve is normally open or normally closed.

Indirect acting diaphragm solenoid valves, also known as pilot operated diaphragm solenoid valves, require diaphragm pressure to work. They change their diaphragm position when the fluid flowing through a valve gathers enough pressure. In other words, the media pressure acts as a pilot, directing the diaphragm position.

Pneumatic diaphragm valves are automated diaphragm valves that use pneumatic controls with an elastomeric membrane. They are popular because they only require the compressed air to expand and contract the diaphragm materials.

Diaphragm actuated gate valves are bi-directional flow safety valves. They combine the strategies used by diaphragm and gate valves to create an extremely reliable hybrid. They feature two floating seats, a slab gate, and a spring return diaphragm actuator.

Diaphragm valves offer their users a wide variety of advantages. First, they are easy to install. Second, they are reliable and easy to maintain. Another benefit of diaphragm valves is the fact that they can resist corrosion and other damage from both harsh chemicals and radioactive fluids. Also, unlike some other valves, slurries, solids and the like will not get caught in air pockets. So, they are more efficient than others and they are less likely to catch and transport impurities.

Manufacturers may recommend any number of accessories for use with your diaphragm valve, depending on your application. Examples of some common diaphragm valve accessories include o-ring sealed bonnets, direct loaded bonnets, extended stems, gear boxes, positioners, solenoids, mounting brackets, and more.

To maintain the health of their diaphragm valve, customers must conduct routine cleaning and maintenance. Doing so ensures efficiency and a lack of leakage.

If you are in the market for diaphragm valves, you get the results you want by pairing with a high-quality valve manufacturer or supplier. To assist you in locating such an entity, we have put together a comprehensive list of those diaphragm valve manufacturers we trust most. You will find company information, complete with profiles, wedged in between the industry info.

Before you start looking at manufacturers, though, we recommend you take some time to jot down your specifications. Make sure to include not only your technical specifications, but also things like your budget, your timeline, your delivery preferences, and your post-delivery support preferences (installation assistance, parts replacement, etc.). Once you have done that, you are ready to start looking for your manufacturer. As you browse, keep your specifications at the forefront of your mind. Select three or four diaphragm valve manufacturing companies in which you are most interested, and then reach out to each of them. Discuss your application at length; don’t be afraid to ask a lot of questions. One of the many signs of a good company is a helpful and engaging sales staff. If they are impatient with your questions, you might not want to work with them. Once you have spoken with each manufacturer, compare and contrast their services and offerings, and pick the right one for you.

diaphragm safety valve factory

The Simtech SBR Series Diaphragm Pressure Relief Valve is designed to protect piping and equipment from pressure changes where a rapid release of excess pressure is required. Prevents pumps from dead heading, over pressurization, pressure surge conditions, and maintains back pressure in closed loop systems. Adjustable screw and lock-nut makes it easy to accurately preset desired relief pressure.

diaphragm safety valve factory

Emergency situations are not the only times relief valves are active; once installed they continuously regulate the flow of substance. They can also be pre-set to open when the pressure or temperature gets to a certain point that may be dangerous. Generally valves are placed on or near the pump head of the hose, pipe or tube. A wide variety of relief valve designs exist, although most resemble ball-check valves, swing check valves or diaphragm valves.

This last is particularly useful when controlling a flow of fluids that contains suspended solids. Most relief valves are spring operated, as are the majority of check valves. One specialized type of relief valve is known as a vacuum relief valve. As opposed to a normal relief valve, which relieves high pressure, a vacuum relief valve is used to relieve dangerously low pressures, or vacuums, by inserting air or an inert gas.

Like every other type of check valve, relief valves may be constructed from a variety of materials, including PVC, brass, ductile iron, copper, polyethylene, polypropylene, aluminum, steel, stainless steel and rubber. Which raw substance is used to produce each relief valve depends on the environment said relief valve will be in. The wrong product could result in erosion or contamination of the process stream. However, as long as research is done, finding the appropriate type of relief valve is possible. Every plumbing or fluid transfer application in the industrial, commercial and domestic arenas employ or will employ check valves. In fact, check valves of all kinds are an essential part of every day life. Because they need not be supervised to function and prevent product malfunction, check valves are not only desirable but often required by law to ensure the safety of water, gas and pressure applications.

diaphragm safety valve factory

For sealed heating systems as per TRD 721; VdTÜV sheet Safety Valve 100 and 100/4 sheet 1; EN 12828. Also for water heating systems as per DIN 4751-2 with flow temperatures up to 120 °C and DIN 4751-3 with flow temperatures up to 95 °C. Suitable for water, water/glycol mixtures (max. 50 % glycol) and liquids of fluid groups 1 and 2 (Pressure Equipment Directive, Art. 9).

diaphragm safety valve factory

It uses a diaphragm structure with only highly inert wetted materials such as PTFE, PPS, and FFKM and can handle severe media with strong acids and strong alkalis.

The valve opens, and the media flows to the secondary port when the primary pressure exceeds the relief pressure, preventing the flow channel from rising further.

diaphragm safety valve factory

Taylor Valve Technology® is a manufacturer leader in high-quality industrial valves. We deliver safety relief, high-pressure relief, and back pressure relief valves. Our wide array of choke and control valves and pilot-operated valve products are second to none. Products are designed for demanding industrial needs, meeting quality API and ASME Code requirements. High-demand oil & gas industry, chemical plants, power generators, and the processing industry depend on our valves for consistency and durability. Get effective flow control of liquid, steam, and gas. Valves ship from the Taylor Valve Technology, Inc. United States facility. Delivering worldwide, you can depend on quick turnaround times.

diaphragm safety valve factory

Industry leading pressure and safety relief valve designs with over 140 years of technical and application expertise providing custom engineered solutions for O&G, Refining, Chemical, Petrochemical, Process and Power applications. Our designs meet global and local codes and standards (API 526; ASME Section I, IV & VIII; EN ISO 4126; PED & more). Gain insight into the performance of your pressure relief valves with wireless monitoring.

diaphragm safety valve factory

Diaphragm safety valve for solar systems. Body and cap of brass CW617N, EN 12165-99. Elastomeric diaphragm. Discharge pressure factory set and with sealed knob. Suitable for water, also water mixtures (glycol up to 50%). Max operating temperature : -10 ÷ 160 °C TÜV SOLAR certified.

diaphragm safety valve factory

1 Piece Ball Valve1 Piece Cast Iron Screwed Ball Valve1 Piece Flanged Ball Valve1 Piece Screwed Ball Valve2 Piece Ball valve2 Piece Cast Steel Ball Valve2 Piece Flanged Ball Valve2 Piece Forged Steel Ball Valve2 Piece Screwed Ball Valve3 Piece Ball Valve3 Piece Cast Iron Ball Valve3 Piece Cast Steel Ball Valve3 Piece Flanged Ball Valve3 Piece Forged Steel Ball Valve3 Piece Reduced Port Ball Valve3 Piece Screwed Ball Valve3 Way Converging and Diverging Control Valve3 Way Plug Valve3 Way Pneumatic Diaphragm Control ValveAir ValveAlloy 20 2 Piece Ball ValveAlloy 20 2 Piece Screwed Ball ValveAlloy 20 3 Piece Ball ValveAlloy 20 3 Piece Screwed Ball ValveAlloy 20 Ball ValveAlloy 20 Dual Plate Lug Type Check ValveAlloy 20 Floating Ball ValveAlloy 20 Swing Check ValveAlloy 20 Trunnion Mounted Ball ValveAlloy 20 ValvesAlloy 20 Wafer Butterfly ValveAlloy Butterfly ValveAlloy Check valveAlloy Dual Plate Wafer Check ValveAlloy Flanged Gate ValveAlloy Flanged Globe ValveAlloy Gate ValveAlloy Gate ValvesAlloy Globe ValvesAlloy Lug Butterfly ValveAlloy Plug ValveAlloy Pressure Seal Globe ValveAluminium Bronze 3 Piece Ball ValveAluminium Bronze Ball ValveAluminium Bronze Butterfly ValveAluminium Bronze Check ValveAluminium Bronze Floating Ball ValveAluminium Bronze Gate ValveAluminium Bronze Lug Butterfly ValveAluminium Bronze Swing Check ValveAluminium Bronze Triple offset Lug Butterfly ValveAluminium Bronze Trunnion Ball ValveAluminium Bronze valvesAluminium Bronze Wafer Butterfly ValveAluminium Dual Plate Wafer Check ValveAluminum Bronze Globe ValveAngle Globe ValveANSI Gate ValveANSI Globe ValveAPI Aluminium Bronze Triple offset Lug Butterfly ValveAPI Gate ValveAPI Globe ValveAustenitic Steel Big Size Ball ValveAustenitic Steel ValvesAWWA Butterfly ValveAWWA Gate ValveAWWA Non Rising Stem Gate ValveAWWA OS&Y Gate ValveAWWA StrainerAWWA Wafer Butterfly ValveAWWA Y StrainerBalancing ValveBall Float Steam TrapBall ValveBellow Seal Globe ValveBi Directional Knife Gate ValveBimetallic Steam TrapBlock and Bleed valveBrass Ball ValveBrass Ball ValvesBrass Check ValvesBrass Flanged Ball ValveBrass Flanged Gate ValveBrass Flanged Globe ValveBrass Gate ValveBrass Gate ValvesBrass Globe ValveBrass Globe ValvesBrass Safety ValveBrass Swing Check ValveBrass ValveBrass Vertical Check ValveBrass Y StrainerBronze Butterfly ValveBronze Check ValveBronze Flanged Gate ValveBronze Flanged Globe ValveBronze Floating Ball ValveBronze Gate ValveBronze Gate ValvesBronze Globe ValveBronze Globe ValvesBronze Swing Check ValveBronze ValveBronze Wafer Butterfly ValveBronze Wafer Check ValveBS Cast Iron Gate valveBS Cast Steel Gate ValveBS Ductile Iron Gate ValveBS Globe ValveBS Non Rising Stem Gate ValveBS NRS Carbon Steel Gate ValveBS NRS Cast Iron Gate ValveBS NRS Ductile Iron Gate ValveBS Rising Stem Gate ValveBS Soft Seat Gate ValveBS Stainless Steel Gate ValveButterfly ValveCarbon Steel Bellow Seal Globe ValveCast Floating Ball ValveCast Iron And Cast Steel Ball ValveCast Iron Diaphragm ValveCasting Trunnion Ball Valvecheck valveConnection Lift Plug ValveControl ValveCryogenic Ball ValveCryogenic Check ValveCryogenic Emergency Cut off ValveCryogenic Gate ValveCryogenic Globe ValveCryogenic Long Stem Globe ValveCryogenic Pneumatic Actuated Globe ValveCryogenic Short Stem Globe ValveCryogenic Steam Jacket Globe ValveCryogenic ValveDiaphragm ValveDIN Globe ValveDIN Non Rising Stem Ductile Iron Gate ValveDIN Non Rising Stem Gate ValveDIN NRS Cast Iron Gate ValveDIN Rising Stem Cast Iron Gate ValveDIN Rising Stem Ductile Iron Gate ValveDIN Rising Stem Gate ValveDIN Soft Seat Gate ValveDirect Acting Pressure Reducing ValveDouble Block and Bleed Ball ValveDouble Disc Gate ValveDouble Eccentric Butterfly ValveDouble Offset Butterfly ValveDouble Orifice Air Release ValveDouble Orifice Kinetic Air ValveDual Plate Lug Check ValveDual Plate Wafer Check ValveDuctile Iron Diaphragm ValveDuplex 1B 3 PC Ball ValveDuplex 3 Piece Ball ValveDuplex Basket StrainerDuplex Butterfly ValveDuplex Check ValveDuplex Dual Plate Lug Type Check ValveDuplex Dual Plate Wafer Check ValveDuplex Floating Ball ValveDuplex Gate ValveDuplex Globe ValveDuplex High Pressure Ball ValveDuplex Lug Type Butterfly ValveDuplex Steel Ball ValveDuplex steel ValveDuplex Swing Check ValveDuplex Top Entry Ball ValveDuplex Trunnion Mounted Ball ValveDuplex Wafer Butterfly ValveEccentric Plug ValveElectric 3 Way Control ValveElectric Actuated 2 Piece Ball ValveElectric Actuated 2 Piece Flanged Ball ValveElectric Actuated 2 Piece Screwed Ball ValveElectric Actuated Ball ValveElectric Actuated Butterfly ValveElectric Actuated Flanged Ball ValveElectric Actuated Floating Forged Ball ValveElectric Actuated Gate ValveElectric Actuated Globe Control ValveElectric Actuated Globe ValveElectric Actuated High Pressure Ball ValvesElectric Actuated High Pressure Direct Mounting Ball ValvesElectric Actuated Lug Butterfly ValveElectric Actuated Metal-Seated Trunnion-Mounted Forged Ball ValveElectric Actuated Three Piece Ball ValveElectric Actuated Three Way Ball ValveElectric Actuated Trunnion-Mounted Casting Ball ValveElectric Actuated ValvesElectric Actuated Wafer Butterfly ValveElectric Cage Type Control ValveElectric Control ValveElectric Double Seat Control ValveElectric O-type Shut-off Control ValveElectric Single Seat Control ValveF22/Alloy Steel Pressure Seal Globe ValveF317L Gate ValveF317L Globe ValveF317L ValvesF321 Gate ValveF321 Globe ValveF321 ValvesF347 3 Piece Ball ValveF347 Ball ValveF347 Butterfly ValveF347 Check ValveF347 Dual Plate Lug Type Check ValveF347 Dual Plate Wafer Check ValveF347 Floating Ball ValveF347 Gate ValveF347 Globe ValveF347 Lug Type Butterfly ValveF347 Swing Check ValveF347 Trunnion Mounted Ball ValveF347 ValvesF347 Wafer Butterfly ValveF44 Gate ValveF44 Globe valvesF44 ValvesF51 Super Duplex Ball ValveF53/F55 Super Duplex Globe ValveFeed Water Control ValveFlanged Butterfly ValveFlanged Knife gate ValveFloat Control ValveFloating Ball ValveFluorine Lined Single Seat Control ValveFoot ValveForged Cryogenic Trunnion Ball ValveForged Floating Ball ValveForged Steel Ball ValveForged Steel Gate ValveForged Steel Globe ValveForged Steel Swing Check ValveForged Trunnion Ball ValveFull Lift Pressure Safety ValveFull Lift Safety ValveFully Welded Ball ValveGate ValveGlobe ValveHastelloy Ball ValveHastelloy C276 2 Piece Flanged Ball ValveHastelloy C276 2 Piece Screwed Ball ValveHastelloy C276 3 Piece Screwed Ball ValveHastelloy C276/B3 3 Piece Ball ValveHastelloy C276/B3 Butterfly ValveHastelloy C276/B3 Dual Plate Lug Type Check ValveHastelloy C276/B3 Dual Plate Wafer Check ValveHastelloy C276/B3 Floating Ball ValveHastelloy C276/B3 Gate ValvesHastelloy C276/B3 Globe ValveHastelloy C276/B3 Lug Butterfly ValveHastelloy C276/B3 Swing Check valveHastelloy C276/B3 Trunnion Mounted Ball ValveHastelloy C276/B3 ValvesHastelloy C276/B3 Wafer Butterfly ValveHastelloy Check ValveHeavy Duty Investment Casting Ball ValveHigh Performance Lug Butterfly ValveHigh Performance Wafer Butterfly ValveIncoloy 2 Piece Ball ValveIncoloy 3 Piece Ball ValveIncoloy Gate ValveIncoloy Globe ValveIncoloy ValvesInconel 2 Piece Ball ValveInconel 3 Piece Ball ValveInconel Ball ValveInconel Butterfly ValveInconel Check ValveInconel Dual Plate Lug Type Check ValveInconel Dual Plate Wafer Check ValveInconel Floating Ball ValveInconel Gate ValveInconel Globe ValveInconel Lug Butterfly ValveInconel safety relief valveInconel Swing Check ValveInconel Trunnion Mounted Ball ValveInconel ValveInconel Wafer Butterfly ValveInverted Bucket Steam TrapInvestment Casting Ball ValveJacketed Ball ValveJacketed Plug ValveKnife Gate ValveLift Check valveLow Lift Pressure Safety ValveLow Lift Safety ValveLubricated Plug valveLug Butterfly ValveMonel 2 Piece Ball ValveMonel 3 Piece Ball ValveMonel 400 2 Piece Flanged Ball ValveMonel 400 ValvesMonel Ball ValveMonel Butterfly ValveMonel Check ValveMonel Dual Plate Lug Check ValveMonel Dual Plate Wafer Check ValveMonel Floating Ball ValveMonel Forged Trunnion Mounted Ball ValveMonel Gate ValveMonel Globe ValveMonel High Pressure Ball ValveMonel Lug Type Butterfly ValveMonel Swing Check ValveMonel Top Entry Ball ValveMonel Trunnion Mounted Ball ValveMonel ValvesMonel Wafer Butterfly ValveNeedle valveNon Slam Swing Check ValveNon-Lubricated Sleeved Plug ValveNon-Rising Stem Gate ValveNon-Slam Swing Check ValveOrbit Plug ValvePilot Operated Pressure Reducing ValvePilot Operated ValvePressure Relief ValvePiston ValvePlug ValvePlunger ValvePneumatic Actuated 2 Piece Ball ValvePneumatic Actuated 2 Piece Flanged Ball ValvePneumatic Actuated Ball ValvePneumatic Actuated Butterfly ValvePneumatic Actuated Flanged Ball ValvePneumatic Actuated Flanged Butterfly ValvePneumatic Actuated Gate ValvePneumatic Actuated Globe type Control ValvePneumatic Actuated Lug Butterfly ValvePneumatic Actuated Three Piece Ball valvePneumatic Actuated Three Way Ball valvePneumatic Actuated Three Way Heavy Duty Ball ValvePneumatic Actuated Two Piece Ball ValvePneumatic Actuated ValvesPneumatic Actuated Wafer Butterfly ValvePneumatic Angle Control ValvePneumatic Angle Seat Control ValvePneumatic Angle Type High Pressure Regulating Control ValvePneumatic Bi Directional Knife Gate valvePneumatic Cage Control ValvePneumatic Control ValvePneumatic Double Seat Control ValvePneumatic Flow Control ValvePneumatic Knife Gate ValvePneumatic Metal Seat Flanged Ball ValvePneumatic Single Seat Globe Control ValvePneumatic Sleeve Type Control ValvePneumatic Three piece Ball ValvePneumatic Three Piece Flanged Ball ValvePneumatic Three Way Ball ValvePneumatic Three Way Flanged Ball ValvePneumatic Trunnion Casting Ball ValvePneumatic Trunnion Forged Ball ValvePneumatic Trunnion Forged Metal Seat Ball ValvePneumatic Unidirectional Knife Gate ValvePressure Reducing ValvePressure Safety ValvePressure Seal Gate ValvePressure Seal Globe ValvePressure Seal Swing Check ValveRotary Airlock ValveSafety ValveSimplex Basket StrainersSingle Orifice Air ValveSingle Plate Wafer Check ValveSlab Gate ValveSlurry Knife Gate ValveSoft Seal Gate ValveSpeciality ValveSS304 Bellow Seal Globe ValveSS316 Bellow Seal Globe ValveSS316L Gate ValveSS316L Lug Butterfly ValveSS316L Wafer Butterfly ValveSteam Pressure Reducing ValveSteam Safety ValveSteam TrapStrainersSuction DiffuserSuper Duplex 2 Piece Ball ValveSuper Duplex 3 Piece Ball ValveSuper Duplex 5A Flanged Gate ValveSuper Duplex 5A Globe ValveSuper Duplex 5A Swing Check ValveSuper Duplex Ball ValveSuper Duplex Butterfly ValveSuper Duplex Check ValveSuper Duplex Dual Plate Lug Type Check ValveSuper Duplex Dual Plate Wafer Check ValveSuper Duplex Floating Ball ValveSuper Duplex Gate ValveSuper Duplex Gate ValvesSuper Duplex Globe ValveSuper Duplex High Pressure Ball ValveSuper Duplex Knife Gate ValveSuper Duplex Lug Butterfly ValveSuper Duplex Pressure Reducing ValveSuper Duplex Top Entry Ball ValveSuper Duplex Trunnion Mounted Ball ValveSuper Duplex ValvesSuper Duplex Wafer Butterfly ValveSurge Anticipator ValveSwing Check ValveThermal Safety ValveThermodynamic Steam TrapThermostatic Steam TrapThree Piece Flanged Ball ValveThree Way Ball ValveThrough Conduit Knife Gate ValveTilting Disc Check ValveTitanium 3 Piece Ball ValveTitanium Ball ValveTitanium Butterfly ValveTitanium Check ValveTitanium Dual Plate Lug Type Check ValveTitanium Dual Plate Wafer Check ValveTitanium Floating Ball ValveTitanium Forged Trunnion Mounted Ball ValveTitanium Gate ValveTitanium Globe ValveTitanium Gr.2 2pc Flanged Ball ValveTitanium Gr.2 3pc Ball ValveTitanium Gr.5 2pc Flanged Ball ValveTitanium Gr.5 3pc Ball ValveTitanium Lug Butterfly ValveTitanium Swing Check ValveTitanium Trunnion Mounted Ball ValveTitanium valvesTitanium Wafer Butterfly ValveTop Entry Ball ValveTriple Duty ValveTriple Eccentric Butterfly ValveTriple Offset Butterfly ValveTrunnion Ball ValveTwin Seal Plug ValveUL/FM Approved ValvesUnidirectional Knife Gate ValveWafer Butterfly ValveWater Pressure Reducing ValveY StrainerY Type Globe ValveZirconium Floating Ball ValveZirconium Gate ValveZirconium Globe ValveZirconium Valves

diaphragm safety valve factory

There is a wide range of safety valves available to meet the many different applications and performance criteria demanded by different industries. Furthermore, national standards define many varying types of safety valve.

The ASME standard I and ASME standard VIII for boiler and pressure vessel applications and the ASME/ANSI PTC 25.3 standard for safety valves and relief valves provide the following definition. These standards set performance characteristics as well as defining the different types of safety valves that are used:

ASME I valve - A safety relief valve conforming to the requirements of Section I of the ASME pressure vessel code for boiler applications which will open within 3% overpressure and close within 4%. It will usually feature two blowdown rings, and is identified by a National Board ‘V’ stamp.

ASME VIII valve- A safety relief valve conforming to the requirements of Section VIII of the ASME pressure vessel code for pressure vessel applications which will open within 10% overpressure and close within 7%. Identified by a National Board ‘UV’ stamp.

Full bore safety valve - A safety valve having no protrusions in the bore, and wherein the valve lifts to an extent sufficient for the minimum area at any section, at or below the seat, to become the controlling orifice.

Conventional safety relief valve -The spring housing is vented to the discharge side, hence operational characteristics are directly affected by changes in the backpressure to the valve.

Balanced safety relief valve -A balanced valve incorporates a means of minimising the effect of backpressure on the operational characteristics of the valve.

Pilot operated pressure relief valve -The major relieving device is combined with, and is controlled by, a self-actuated auxiliary pressure relief device.

Power-actuated safety relief valve - A pressure relief valve in which the major pressure relieving device is combined with, and controlled by, a device requiring an external source of energy.

Standard safety valve - A valve which, following opening, reaches the degree of lift necessary for the mass flowrate to be discharged within a pressure rise of not more than 10%. (The valve is characterised by a pop type action and is sometimes known as high lift).

Full lift (Vollhub) safety valve -A safety valve which, after commencement of lift, opens rapidly within a 5% pressure rise up to the full lift as limited by the design. The amount of lift up to the rapid opening (proportional range) shall not be more than 20%.

Direct loaded safety valve -A safety valve in which the opening force underneath the valve disc is opposed by a closing force such as a spring or a weight.

Proportional safety valve - A safety valve which opens more or less steadily in relation to the increase in pressure. Sudden opening within a 10% lift range will not occur without pressure increase. Following opening within a pressure of not more than 10%, these safety valves achieve the lift necessary for the mass flow to be discharged.

Diaphragm safety valve -A direct loaded safety valve wherein linear moving and rotating elements and springs are protected against the effects of the fluid by a diaphragm

Bellows safety valve - A direct loaded safety valve wherein sliding and (partially or fully) rotating elements and springs are protected against the effects of the fluids by a bellows. The bellows may be of such a design that it compensates for influences of backpressure.

Controlled safety valve - Consists of a main valve and a control device. It also includes direct acting safety valves with supplementary loading in which, until the set pressure is reached, an additional force increases the closing force.

Safety valve - A safety valve which automatically, without the assistance of any energy other than that of the fluid concerned, discharges a quantity of the fluid so as to prevent a predetermined safe pressure being exceeded, and which is designed to re-close and prevent further flow of fluid after normal pressure conditions of service have been restored. Note; the valve can be characterised either by pop action (rapid opening) or by opening in proportion (not necessarily linear) to the increase in pressure over the set pressure.

Direct loaded safety valve -A safety valve in which the loading due to the fluid pressure underneath the valve disc is opposed only by a direct mechanical loading device such as a weight, lever and weight, or a spring.

Assisted safety valve -A safety valve which by means of a powered assistance mechanism, may additionally be lifted at a pressure lower than the set pressure and will, even in the event of a failure of the assistance mechanism, comply with all the requirements for safety valves given in the standard.

Supplementary loaded safety valve - A safety valve that has, until the pressure at the inlet to the safety valve reaches the set pressure, an additional force, which increases the sealing force.

Note; this additional force (supplementary load), which may be provided by means of an extraneous power source, is reliably released when the pressure at the inlet of the safety valve reaches the set pressure. The amount of supplementary loading is so arranged that if such supplementary loading is not released, the safety valve will attain its certified discharge capacity at a pressure not greater than 1.1 times the maximum allowable pressure of the equipment to be protected.

Pilot operated safety valve -A safety valve, the operation of which is initiated and controlled by the fluid discharged from a pilot valve, which is itself, a direct loaded safety valve subject to the requirement of the standard.

The common characteristic shared between the definitions of conventional safety valves in the different standards, is that their operational characteristics are affected by any backpressure in the discharge system. It is important to note that the total backpressure is generated from two components; superimposed backpressure and the built-up backpressure:

Subsequently, in a conventional safety valve, only the superimposed backpressure will affect the opening characteristic and set value, but the combined backpressure will alter the blowdown characteristic and re-seat value.

The ASME/ANSI standard makes the further classification that conventional valves have a spring housing that is vented to the discharge side of the valve. If the spring housing is vented to the atmosphere, any superimposed backpressure will still affect the operational characteristics. Thiscan be seen from Figure 9.2.1, which shows schematic diagrams of valves whose spring housings are vented to the discharge side of the valve and to the atmosphere.

By considering the forces acting on the disc (with area AD), it can be seen that the required opening force (equivalent to the product of inlet pressure (PV) and the nozzle area (AN)) is the sum of the spring force (FS) and the force due to the backpressure (PB) acting on the top and bottom of the disc. In the case of a spring housing vented to the discharge side of the valve (an ASME conventional safety relief valve, see Figure 9.2.1 (a)), the required opening force is:

In both cases, if a significant superimposed backpressure exists, its effects on the set pressure need to be considered when designing a safety valve system.

Once the valve starts to open, the effects of built-up backpressure also have to be taken into account. For a conventional safety valve with the spring housing vented to the discharge side of the valve, see Figure 9.2.1 (a), the effect of built-up backpressure can be determined by considering Equation 9.2.1 and by noting that once the valve starts to open, the inlet pressure is the sum of the set pressure, PS, and the overpressure, PO.

In both cases, if a significant superimposed backpressure exists, its effects on the set pressure need to be considered when designing a safety valve system.

Once the valve starts to open, the effects of built-up backpressure also have to be taken into account. For a conventional safety valve with the spring housing vented to the discharge side of the valve, see Figure 9.2.1 (a), the effect of built-up backpressure can be determined by considering Equation 9.2.1 and by noting that once the valve starts to open, the inlet pressure is the sum of the set pressure, PS, and the overpressure, PO.

Balanced safety valves are those that incorporate a means of eliminating the effects of backpressure. There are two basic designs that can be used to achieve this:

Although there are several variations of the piston valve, they generally consist of a piston type disc whose movement is constrained by a vented guide. The area of the top face of the piston, AP, and the nozzle seat area, AN, are designed to be equal. This means that the effective area of both the top and bottom surfaces of the disc exposed to the backpressure are equal, and therefore any additional forces are balanced. In addition, the spring bonnet is vented such that the top face of the piston is subjected to atmospheric pressure, as shown in Figure 9.2.2.

The bellows arrangement prevents backpressure acting on the upper side of the disc within the area of the bellows. The disc area extending beyond the bellows and the opposing disc area are equal, and so the forces acting on the disc are balanced, and the backpressure has little effect on the valve opening pressure.

Bellows failure is an important concern when using a bellows balanced safety valve, as this may affect the set pressure and capacity of the valve. It is important, therefore, that there is some mechanism for detecting any uncharacteristic fluid flow through the bellows vents. In addition, some bellows balanced safety valves include an auxiliary piston that is used to overcome the effects of backpressure in the case of bellows failure. This type of safety valve is usually only used on critical applications in the oil and petrochemical industries.

Since balanced pressure relief valves are typically more expensive than their unbalanced counterparts, they are commonly only used where high pressure manifolds are unavoidable, or in critical applications where a very precise set pressure or blowdown is required.

This type of safety valve uses the flowing medium itself, through a pilot valve, to apply the closing force on the safety valve disc. The pilot valve is itself a small safety valve.

The diaphragm type is typically only available for low pressure applications and it produces a proportional type action, characteristic of relief valves used in liquid systems. They are therefore of little use in steam systems, consequently, they will not be considered in this text.

The piston type valve consists of a main valve, which uses a piston shaped closing device (or obturator), and an external pilot valve. Figure 9.2.4 shows a diagram of a typical piston type, pilot operated safety valve.

The piston and seating arrangement incorporated in the main valve is designed so that the bottom area of the piston, exposed to the inlet fluid, is less than the area of the top of the piston. As both ends of the piston are exposed to the fluid at the same pressure, this means that under normal system operating conditions, the closing force, resulting from the larger top area, is greater than the inlet force. The resultant downward force therefore holds the piston firmly on its seat.

If the inlet pressure were to rise, the net closing force on the piston also increases, ensuring that a tight shut-off is continually maintained. However, when the inlet pressure reaches the set pressure, the pilot valve will pop open to release the fluid pressure above the piston. With much less fluid pressure acting on the upper surface of the piston, the inlet pressure generates a net upwards force and the piston will leave its seat. This causes the main valve to pop open, allowing the process fluid to be discharged.

When the inlet pressure has been sufficiently reduced, the pilot valve will reclose, preventing the further release of fluid from the top of the piston, thereby re-establishing the net downward force, and causing the piston to reseat.

Pilot operated safety valves offer good overpressure and blowdown performance (a blowdown of 2% is attainable). For this reason, they are used where a narrow margin is required between the set pressure and the system operating pressure. Pilot operated valves are also available in much larger sizes, making them the preferred type of safety valve for larger capacities.

One of the main concerns with pilot operated safety valves is that the small bore, pilot connecting pipes are susceptible to blockage by foreign matter, or due to the collection of condensate in these pipes. This can lead to the failure of the valve, either in the open or closed position, depending on where the blockage occurs.

The terms full lift, high lift and low lift refer to the amount of travel the disc undergoes as it moves from its closed position to the position required to produce the certified discharge capacity, and how this affects the discharge capacity of the valve.

A full lift safety valve is one in which the disc lifts sufficiently, so that the curtain area no longer influences the discharge area. The discharge area, and therefore the capacity of the valve are subsequently determined by the bore area. This occurs when the disc lifts a distance of at least a quarter of the bore diameter. A full lift conventional safety valve is often the best choice for general steam applications.

The disc of a high lift safety valve lifts a distance of at least 1/12th of the bore diameter. This means that the curtain area, and ultimately the position of the disc, determines the discharge area. The discharge capacities of high lift valves tend to be significantly lower than those of full lift valves, and for a given discharge capacity, it is usually possible to select a full lift valve that has a nominal size several times smaller than a corresponding high lift valve, which usually incurs cost advantages.Furthermore, high lift valves tend to be used on compressible fluids where their action is more proportional.

In low lift valves, the disc only lifts a distance of 1/24th of the bore diameter. The discharge area is determined entirely by the position of the disc, and since the disc only lifts a small amount, the capacities tend to be much lower than those of full or high lift valves.

Except when safety valves are discharging, the only parts that are wetted by the process fluid are the inlet tract (nozzle) and the disc. Since safety valves operate infrequently under normal conditions, all other components can be manufactured from standard materials for most applications. There are however several exceptions, in which case, special materials have to be used, these include:

Cast steel -Commonly used on higher pressure valves (up to 40 bar g). Process type valves are usually made from a cast steel body with an austenitic full nozzle type construction.

For all safety valves, it is important that moving parts, particularly the spindle and guides are made from materials that will not easily degrade or corrode. As seats and discs are constantly in contact with the process fluid, they must be able to resist the effects of erosion and corrosion.

The spring is a critical element of the safety valve and must provide reliable performance within the required parameters. Standard safety valves will typically use carbon steel for moderate temperatures. Tungsten steel is used for higher temperature, non-corrosive applications, and stainless steel is used for corrosive or clean steam duty. For sour gas and high temperature applications, often special materials such as monel, hastelloy and ‘inconel’ are used.

Standard safety valves are generally fitted with an easing lever, which enables the valve to be lifted manually in order to ensure that it is operational at pressures in excess of 75% of set pressure. This is usually done as part of routine safety checks, or during maintenance to prevent seizing. The fitting of a lever is usually a requirement of national standards and insurance companies for steam and hot water applications. For example, the ASME Boiler and Pressure Vessel Code states that pressure relief valves must be fitted with a lever if they are to be used on air, water over 60°C, and steam.

A test gag (Figure 9.2.7) may be used to prevent the valve from opening at the set pressure during hydraulic testing when commissioning a system. Once tested, the gag screw is removed and replaced with a short blanking plug before the valve is placed in service.

The amount of fluid depends on the particular design of safety valve. If emission of this fluid into the atmosphere is acceptable, the spring housing may be vented to the atmosphere – an open bonnet. This is usually advantageous when the safety valve is used on high temperature fluids or for boiler applications as, otherwise, high temperatures can relax the spring, altering the set pressure of the valve. However, using an open bonnet exposes the valve spring and internals to environmental conditions, which can lead to damage and corrosion of the spring.

When the fluid must be completely contained by the safety valve (and the discharge system), it is necessary to use a closed bonnet, which is not vented to the atmosphere. This type of spring enclosure is almost universally used for small screwed valves and, it is becoming increasingly common on many valve ranges since, particularly on steam, discharge of the fluid could be hazardous to personnel.

Some safety valves, most commonly those used for water applications, incorporate a flexible diaphragm or bellows to isolate the safety valve spring and upper chamber from the process fluid, (see Figure 9.2.9).

An elastomer bellows or diaphragm is commonly used in hot water or heating applications, whereas a stainless steel one would be used on process applications employing hazardous fluids.

diaphragm safety valve factory

Safety ValvesOffering you a complete choice of products which include safety shut- off valve, pressure safety valves, safety relief valves, pop type safety valve, safety valves and spring loaded valves.

APop Type Safety Valveto this design is generally said to have high lift, and because of its action it is often referred to as Pop Type Safety Valve. This achieves its high lift pop action by means of a blow down or popping ring.

Our organization specializes in providing an excellent range of IBR Valves that is used in various industries. We are offering this valve in various models and technical specification to meet the requirement of varied clients. Moreover, to maintain industry defined quality parameters, it is manufactured using quality tested components and advance technology. In addition to this, require low maintenance, these valves come in market at pocket friendly prices. We assure to our valuable clients for timely delivery of products.

diaphragm safety valve factory

Pressure Relief ValvesWe have in store for our clients, a highly sturdy and durable gamut of pressure relief valves that is complies with the latest technology. Highly acclaimed for their features of strength, dimensional accuracy and corrosion resistance, these pressure relief valves are available for our clients in standard and customized specifications. Our range includes pressure safety valves, stainless steel safety valves and stainless steel relief valves.

PTFE SS Pressure Safety ValveThis Kind of Pressure Relief Valves are mainly used for Aggressive acids & gases. This can be operated up to 50 bar pressure and 90 degree temperature.

We manufacture premium pressure relief valves. Fitted at the discharge end, these PTFE Pressure Relief Valves are used for curbing any damage or harm caused to the equipment and its components because of sudden increase in excessive pressure.

We deploy premium quality SS, MS, alloy steel, PP coated and non metallic raw material to fabricate a high end range of pressure safety valves. These valves are used for curbing any damage or harm caused to the equipment and its components because of sudden increase in excessive pressure. We design these pressure safety valves on the basis of the following factors:

We manufacture premium quality SS, MS, alloy steel, PP coated and non metallic raw material to fabricate a high end range of pressure relief valves. Fitted at the discharge end, these SS pressure relief valves are used for curbing any damage or harm caused to the equipment and its components because of sudden increase in excessive pressure.

Pressure Relief Valve (Adjustable)offeredcan be made available by us in different finish configuration choices o as to match up with the specific process application demands of the customers.

Safety Valve PTFE Linedoffered comes supported by integrally moulded bonded body seat as well as in light weight construction finish so as to provide for lasting performance. Providing for cost effective working substitute, these can be provided with support of primary & secondary seals as well as with complete integral body lining support. Some of its features include available in different seat and disc combinations; find application in different industry sectors; provide for tight tolerance and uniform performance; available in ASTM/ASME standards; provide corrosion resistance in reducing and oxidizing environment.

These kind of Pressure safety valves are to be used in aggressive gases acids. These PSV can be available in CS SS body. All internals, contact parts is in PTFE. The pressure rating is 0.1 to 50kg/cm2.

We deploy premium quality SS, MS, alloy steel, PP coated and non metallic raw material to fabricate a high end range of pressure relief valves. Fitted at the discharge end, these PTFE pressure relief valves are used for curbing any damage or harm caused to the equipment and its components because of sudden increase in excessive pressure. We design these pressure relief valves on the basis of the following factors:

diaphragm safety valve factory

Strong Valves is known as one of the biggest Safety Valves come in various sizes, shapes, and dimensions and can be modified to match our customers" specific requirements. Strong Valves sells and distributes Safety Valves that have been thoroughly tested. Safety Valves at Strong Valves are subjected to many toughness and hardness tests before being distributed to our customers. Our Safety Valves and their various variants are manufactured in India under international standards.

Safety Valves Manufacturers, Safety Valves Suppliers, Safety Valves Stockists, Back-Flow Safety Valve Manufacturer, High-Temperature Safety Valve Supplier in India

Our high-quality Safety Valves are specifically intended for the petrochemical sector, chemical industries, steel factories, fire prevention systems, and shipping industries, among other applications. Safety Valves, and their various varieties, are created and developed to meet international quality standards. —Precision-crafted Stainless Steel Safety Valves made from the highest quality raw materials.We can also customize Back-Flow Safety Valve and other varieties to meet the needs of our customers. In India, we are also the top supplier of Diaphragm Valves

Product Description: When the front pump pressure exceeds the specified amount, a Back-Flow Safety Valves is installed on the liquidoid refluence pipeline of the pan pump"s output at the liquefied petroleum gas station.

Product Description: Take, for example, Flange connection dimensions that conform with JB/T2769-94 standard series one and two for additional pressure protection devices. These Safety Valves are used for steam-related equipment and pipelines when the operating temperature with the C type is less than 425 degrees Celsius.

Product Description: These Safety Valves are used for steam-related equipment and pipelines where the operating temperature of the C type is less than 425 degrees Celsius and the I type is less than 500 degrees Celsius.

Product Description: This safety valve is utilized in steam, air, and other medium equipment and pipelines where the working temperature is less than 350 oC. Take, for example, supplementary pressure-relieving gadgets.

Product Description: This safety valve is utilised in steam, water, and other pipeline equipment and pipelines. Take, for example, additional pressure-relieving gadgets. The dimensions of the flange connecting flanges are in accordance with JB/T 2769-94 standard series one.

It"s part of a group of pressure safety valves (PSV) or Safety Valves (PRV) that also includes relief valves, safety relief valves, pilot-operated relief valves, low-pressure safety valves, and vacuum safety valves. When cold rinse water is utilized during hot CIP (clean-in-place) or SIP (sterilization-in-place) operations, vacuum safety valves (or combination pressure/vacuum safety valves) are used to prevent a tank from collapsing while it is being emptied.

Strong Valves is one of the only few largest Safety Valves suppliers in India. Strong Valves is one of India"s leading suppliers and manufacturers of Safety Valves. Each month we tend to supply/export Safety Valves, Back-Flow Safety Valves to Indian ports around forty containers to completely different customers.

Due to giving a prime quality of Safety Valves at lower costs with the accessible services, we have our sales representatives at most of the important cities of India that are:

Our high-quality Safety Valves and in-house processing capabilities have helped us establish ourselves as one of India"s most promising and leading exporters ofSafety Valves. We have frequent shipments to various nations for our freshly acquired clientele. Our ready supply of Safety Valves enables us to transport and meet the demands and wishes of our customers.