nominal strength of wire rope manufacturer
Wire rope is always manufactured larger—never smaller—than the nominal diameter when specified in inches. The allowable tolerances are shown in the table.
In standard practice, the nominal diameter is the minimum diameter. All tolerances are taken on the plus side when specified in inches. Wire rope is not termed oversize until its diameter exceeds the allowable maximum. For example, a 1" nominal diameter wire rope may vary between 1" and 1.05" in diameter.
The rope strength design factor is the ratio of the rated strength of the rope to its operating stress. If a particular rope has a rated strength of 100,000 lbs. and is working under an operating stress of 20,000 lbs., it has a rope strength design factor of 5. It is operating at one-fifth or 20% of its rated strength.
Many codes refer to this factor as the "safety factor" which is a misleading term since this ratio obviously does not include many facets of an operation which must be considered in determining safety.
Wire rope is an expendable item—a replacement part of a machine or installation. For economic and other reasons, some installations require ropes to operate at high stresses (low rope strength design factors). On some installations where high risk is involved, high rope strength design factors must be maintained. However, operating and safety codes exist for most applications and these codes give specific factors for usage. When a machine is working and large dynamic loadings (shock loadings) are imparted to the rope, the rope strength design factor will be reduced, which may result in over stressing of the rope. Reduced rope strength design factors frequently result in reduced service life of wire rope.
Original equipment wire rope and replacement wire rope must be selected and installed in accordance with the requirements of this section. Selection of replacement wire rope must be in accordance with the recommendations of the wire rope manufacturer, the equipment manufacturer, or a qualified person.
Wire rope design criteria: Wire rope (other than rotation resistant rope) must comply with either Option (1) or Option (2) of this section, as follows:
Option (1). Wire rope must comply with section 5-1.7.1 of ASME B30.5-2004 (incorporated by reference, see § 1926.6) except that section"s paragraph (c) must not apply.
Option (2). Wire rope must be designed to have, in relation to the equipment"s rated capacity, a sufficient minimum breaking force and design factor so that compliance with the applicable inspection provisions in § 1926.1413 will be an effective means of preventing sudden rope failure.
Type I rotation resistant wire rope ("Type I"). Type I rotation resistant rope is stranded rope constructed to have little or no tendency to rotate or, if guided, transmits little or no torque. It has at least 15 outer strands and comprises an assembly of at least three layers of strands laid helically over a center in two operations. The direction of lay of the outer strands is opposite to that of the underlying layer.
Type II rotation resistant wire rope ("Type II"). Type II rotation resistant rope is stranded rope constructed to have significant resistance to rotation. It has at least 10 outer strands and comprises an assembly of two or more layers of strands laid helically over a center in two or three operations. The direction of lay of the outer strands is opposite to that of the underlying layer.
Type III rotation resistant wire rope ("Type III"). Type III rotation resistant rope is stranded rope constructed to have limited resistance to rotation. It has no more than nine outer strands, and comprises an assembly of two layers of strands laid helically over a center in two operations. The direction of lay of the outer strands is opposite to that of the underlying layer.
Type I must have an operating design factor of no less than 5, except where the wire rope manufacturer and the equipment manufacturer approves the design factor, in writing.
When Types II and III with an operating design factor of less than 5 are used (for non-duty cycle, non-repetitive lifts), the following requirements must be met for each lifting operation:
A qualified person must inspect the rope in accordance with § 1926.1413(a). The rope must be used only if the qualified person determines that there are no deficiencies constituting a hazard. In making this determination, more than one broken wire in any one rope lay must be considered a hazard.
Each lift made under § 1926.1414(e)(3) must be recorded in the monthly and annual inspection documents. Such prior uses must be considered by the qualified person in determining whether to use the rope again.
Rotation resistant ropes may be used as boom hoist reeving when load hoists are used as boom hoists for attachments such as luffing attachments or boom and mast attachment systems. Under these conditions, all of the following requirements must be met:
The requirements in ASME B30.5-2004 sections 5-1.3.2(a), (a)(2) through (a)(4), (b) and (d) (incorporated by reference, see § 1926.6) except that the minimum pitch diameter for sheaves used in multiple rope reeving is 18 times the nominal diameter of the rope used (instead of the value of 16 specified in section 5-1.3.2(d)).
The operating design factor for these ropes must be the total minimum breaking force of all parts of rope in the system divided by the load imposed on the rope system when supporting the static weights of the structure and the load within the equipment"s rated capacity.
Wire rope clips used in conjunction with wedge sockets must be attached to the unloaded dead end of the rope only, except that the use of devices specifically designed for dead-ending rope in a wedge socket is permitted.
Prior to cutting a wire rope, seizings must be placed on each side of the point to be cut. The length and number of seizings must be in accordance with the wire rope manufacturer"s instructions.
Wire rope is a complex mechanical device that has many moving parts all working in tandem to help support and move an object or load. In the lifting and rigging industries, wire rope is attached to a crane or hoist and fitted with swivels, shackles or hooks to attach to a load and move it in a controlled matter. It can also be used to lift and lower elevators, or as a means of support for suspension bridges or towers.
Wire rope is a preferred lifting device for many reasons. Its unique design consists of multiple steel wires that form individual strands laid in a helical pattern around a core. This structure provides strength, flexibility, and the ability to handle bending stresses. Different configurations of the material, wire, and strand structure will provide different benefits for the specific lifting application, including:Strength
However, selecting the proper wire rope for your lifting application requires some careful thought. Our goal is to help you understand the components of a wire rope, the construction of wire rope, and the different types of wire rope and what they might be used for. This will allow you to select the best performing and longest-lasting wire rope for the job at hand.
From childhood, many of us have been conditioned to think of a machine as some device with gears, shafts, belts, cams, and assorted whirring parts. Yet, by the rules of physics, an ordinary pry bar is a simple machine, even though it has only one part.
A wire rope is, in reality, a very complicated machine. A typical 6 x 25 rope has 150 wires in its outer strands, all of which move independently and together in a very complicated pattern around the core as the rope bends. Clearances between wires and strands are balanced when a rope is designed so that proper bearing clearances will exist to permit internal movement and adjustment of wires and strands when the rope has to bend. These clearances will vary as bending occurs, but are of the same range as the clearances found in automobile engine bearings.
Understanding and accepting the “machine idea” gives a rope user a greater respect for rope, and enables them to obtain better performance and longer useful life from rope applications. Anyone who uses a rope can use it more efficiently and effectively when they fully understand the machine concept.
Wires are the smallest component of wire rope and they make up the individual strands in the rope. Wires can be made from a variety of metal materials including steel, iron, stainless steel, monel, and bronze. The wires can be manufactured in a variety of grades that relate to the strength, resistance to wear, fatigue resistance, corrosion resistance, and curve of the wire rope.
Strands of wire rope consist of two or more wires arranged and twisted in a specific arrangement. The individual strands are then laid in a helical pattern around the core of the rope.
The core of a wire rope runs through the center of the rope and supports the strands and helps to maintain their relative position under loading and bending stresses. Cores can be made from a number of different materials including natural or synthetic fibers and steel.
Lubrication is applied during the manufacturing process and penetrates all the way to the core. Wire rope lubrication has two primary benefits:Reduces friction as the individual wires and strands move over each other
The number of layers of wires, the number of wires per layer, and the size of the wires per layer all affect the strand pattern type. Wire rope can be constructed using one of the following patterns, or can be constructed using two or more of the patterns below.Single Layer – The most common example is a 7 wire strand with a single-wire center and six wires of the same diameter around it.
Filler Wire – Two layers of uniform-size wire around a center with the inner layer having half the number of wires as the outer layer. Small filler wires, equal to the number in the inner layer, are laid in valleys of the inner wire.
Seale – Two layers of wires around a center with the same number of wires in each layer. All wires in each layer are the same diameter. The large outer wires rest in the valleys between the smaller inner wires.
Warrington – Two layers of wires around a center with one diameter of wire in the inner layer, and two diameters of wire alternating large and small in the outer later. The larger outer-layer wires rest in the valleys, and the smaller ones on the crowns of the inner layer.
On a preformed wire rope, the strands and wires are formed during the manufacturing process to the helical shape that they will take in a finished wire rope.
Preformed rope can be advantageous in certain applications where it needs to spool more uniformly on a drum, needs greater flexibility, or requires more fatigue-resistance when bending.
Direction and type of lay refer to the way the wires are laid to form a strand (either right or left) and how the strands are laid around the core (regular lay, lang lay, or alternate lay).Regular Lay – The wires line up with the axis of the rope. The direction of the wire lay in the strand is opposite to the direction of the strand lay. Regular lay ropes are more resistant to crushing forces, are more naturally rotation-resistant, and also spool better in a drum than lang lay ropes.
Lang Lay– The wires form an angle with the axis of the rope. The wire lay and strand lay around the core in the same direction. Lang Lay ropes have a greater fatigue-resistance and are more resistant to abrasion.
A fiber core can be made of natural or synthetic polypropylene fibers. Fiber cores offer greater elasticity than a steel core but are more susceptible to crushing and not recommended for high heat environments.
A steel core can be an independent wire rope or an individual strand. Steel cores are best suited for applications where a fiber core may not provide adequate support, or in an operating environment where temperatures could exceed 180° F.
The classifications of wire rope provide the total number of strands, as well as a nominal or exact number of wires in each strand. These are general classifications and may or may not reflect the actual construction of the strands. However, all wire ropes of the same size and wire grade in each classification will have the SAME strength and weight ratings and usually the same pricing.
Besides the general classifications of wire rope, there are other types of wire rope that are special construction and designed for special lifting applications.
Some types of wire rope, especially lang lay wire rope, are more susceptible to rotation when under load. Rotation resistant wire rope is designed to resist twisting, spinning, or rotating and can be used in a single line or multi-part system.
Special care must be taken when handling, unreeling, and installing rotation resistant wire rope. Improper handling or spooling can introduce twist into the rope which can cause uncontrolled rotation.
Compacted strand wire rope is manufactured using strands that have been compacted, reducing the outer diameter of the entire strand, by means of passing through a die or rollers. This process occurs prior to closing of the rope.
This process flattens the surface of the outer wires in the strand, but also increases the density of the strand. This results in a smoother outer surface and increases the strength compared to comparable round wire rope (comparing same diameter and classification), while also helping to extend the surface life due to increased wear resistance.
A swaged wire rope differs from a compacted strand wire rope, in that a swaged wire rope’s diameter is compacted, or reduced, by a rotary swager machine after the wire rope has been closed. A swaged wire rope can be manufactured using round or compacted strands.
The advantages of a swaged wire rope are that they are more resistant to wear, have better crushing resistance, and high strength compared to a round strand wire rope of equal diameter and classification. However, a swaged wire rope may have less bending fatigue resistance.
A plastic coating can be applied to the exterior surface of a wire rope to provide protection against abrasion, wear, and other environmental factors that may cause corrosion. However, because you can’t see the individual strands and wires underneath the plastic coating, they can be difficult to inspect.
Plastic filled wire ropes are impregnated with a matrix of plastic where the internal spaces between the strands and wires are filled. Plastic filling helps to improve bending fatigue by reducing the wear internally and externally. Plastic filled wire ropes are used for demanding lifting applications.
This type of wire rope uses an Independent Wire Rope Core (IWRC) that is either filled with plastic or coated in plastic to reduce internal wear and increase bending fatigue life.
Remember, wire rope is a complex piece of mechanical machinery. There are a number of different specifications and properties that can affect the performance and service life of wire rope. Consider the following when specifying the best type of wire rope for your lifting application:Strength
When you select a piece of rope that is resistant to one property, you will most likely have a trade-off that affects another property. For example, a fiber core rope will be more flexible, but may have less crushing resistance. A rope with larger diameter wires will be more abrasion resistant, but will offer less fatigue resistance.
At Mazzella Companies, we offer all different kinds of wire rope from all of the leading manufacturers. We sell the highest-quality domestic and non-domestic rigging products because product quality and operating safety go hand-in-hand. We have one of the largest and most complete inventories of both domestic and non-domestic rigging and lifting products to suit your lifting needs.
If you’re looking for a standard or custom specified wire rope for your lifting project, contact a Lifting Specialist at a Mazzella Companies location near you.
We stock well over 2,000,000 feet of wire rope in our various locations … ready for immediate delivery! We provide wire rope assemblies, and manufacture bridge cables, crane cables, steel mill cables, and thousands of OEM assemblies.
Galvanized wire rope is categorized by number of strands in its construction. We supply most of them but we concentrate on the two major categories of galvanized (and ungalvanized or bright) wire rope. These “classes” are referred to as 6x19 and 6x36. Within each category of galvanized wire rope there are different “constructions” illustrated in the tables below.
Wire rope, galvanized and ungalvanized is used for many kinds of projects and applications. No matter the application galvanized wire rope must be used properly to insure the safest working conditions. All of our galvanized wire rope is manufactured to meet or exceed Federal Specification RRW-410 and is mill certified.
All of these general purpose wire ropes are available in full reels, custom cut sizes or as part of a custom made wire rope sling. Contact us today for more information.
Galvanized wire rope also comes in different strength categories (IPS and EIPS) and different cores (FC or fiber core and IWRC or independent wire rope core). Relevant data for each is listed in the table below.
Wire rope strength is normally refered to as minimum breaking force or minimum breaking load. The minimum breaking load of any given rope diameter can be increased in two basic ways;
1. An increase in the tensile strength of the wire used to manufacture the rope will increase the minimum breaking load of the final rope. Typical tensile grades of wire used for crane rope manufacture are 1770N/mm2, 1960N/mm2 and 2160N/mm2.
2. Additionally it is possible to increase the steel fill factor of the wire rope. Fill factor means the ratio between the sum of the nominal cross sectional areas of all the wires in the rope and the circumscribed area of the rope based on its nominal diameter. More simply it measures the metallic cross sectional area of the rope.
It is possible to marginally increase the fill factor by varying the construction i.e. adding smaller filler wires. More effectively the individual strands of the rope can be compacted.
The resultant rope has a very high steel fill factor and consequently a relatively high minimum breaking load for any given diameter when compared with a conventional rope.
The high breaking load to diameter relationship offered by compacted ropes can allow crane manufacturers to optimise the design of crane components such as winding drums and sheaves whilst still complying with international crane design standards.
Lower stress levels which occur when crane operators replace a conventional rope with an identical diameter of high strength compacted rope can lead to more ‘comfortable’ operation and longer rope life. Diameter
Correct and consistent wire rope diameter is critical to performance on a modern crane, and a rope which is too large or too small, for the drum and sheaves in which it is operating can cause premature rope failure.
It is not only important to select a rope which has the correct nominal diameter according to the original equipment operating manual, but it is also important that the diameter of the rope is consistent throughout its entire length. Inconsistency in diameter, particularly short lengths where the rope is oversize, can cause premature localised wire breaks and short rope life.
Wire rope strength is normally refered to as minimum breaking force or minimum breaking load. The minimum breaking load of any given rope diameter can be increased in two basic ways;
Bend fatigue resistance is the ability of the wire rope to withstand repeated bending under constant or fluctuating loads. As the load increases in any reeving system so the rate of fatigue will increase. As bending radii decrease in a reeving system so the rate of fatigue will increase.
The compacted strand has very favourable internal and external contact conditions when compared with the point contact of round wires within a conventional strand.
The smooth surface of compacted rope offers a wider bearing surface to the sheave or drum groove. Increased fill factor, lowering internal stress levels, combined with improved internal and external contact conditions lead to longer rope life.
Laboratory fatigue testing indicates that it is possible to achieve up to two times normal rope life when comparing compacted rope with a conventional rope of equivalent construction.
Each wire rope construction will have an inherent torque characteristic where both ends of the rope are secured and an applied force will generate torque at the fixing points. Each wire rope construction will have an inherent turn characteristic where one end of the rope is free to rotate and an applied force will cause the free end of the rope to turn.
The torque or turn generated will depend upon the magnitude of the force applied and also upon the construction of the wire rope selected.In terms of resistance to rotation wire ropes can be divided into three basic catgories.
Single layer ropes have a much greater tendency to rotate under load than the two or three layer ropes which are often referred to as rotation resistant. Similarly the three layer rope will have less tendency to rotate when compared with the two layer rope.
Both the two layer and three layer ropes depend on torsional balance between the outer and inner layers to create rotational stability. With correct rope selection rotation should not cause a problem in service provided that the rope has been correctly balanced in design and manufacture.
Before selecting a rotation resistant rope, consideration should be given to a single layer construction. If the application/duty in question does not require the rope to resist rotation then it is possible that a single layer rope can represent a more robust and more effective solution.
Safety note – Single layer Langs lay ropes (where the direction of strand lay is the same as the direction of rope lay) have exceptionally bad rotational characteristics and must only be used in applications where both ends of the rope are securely fixed.
In multi-layer coiling situations where crushing of lower layers particularly at crossover point is unavoidable. Carl Stahl UK would recommend the use of compacted rope. The high steel fill factor, which is a feature of the compaction process, will offer greater resistance to crushing than an equivalent conventional rope.
Larger external wires can provide greater resistance to wear and abrasion therefore a 6×19 construction might be selected in preference to a 6×36 construction in a situation in which wear and abrasion rather than bend fatigue are the principle cause of rope deterioration.
The smooth surface of the compacted rope offers a wider bearing surface to the sheave or drum groove resulting in improved resistance to wear and abrasion.
Abrasive wear can occur between the rope and any ancillary equipment such as sheaves and the surface of the winding drum but probably the most significant cause of abrasive wear on cranes takes place between adjacent laps of rope where the rope moves on and off the winding drum.
Selection of a compacted rope with its smooth external surface and very good contact condition will minimise abrasive wear between the rope and ancillary equipment and also between adjacent laps of rope.
Laboratory bend fatigue tests show the significant effect which high performance manufacturing lubricant and in-service lubrication has on rope life. In-service lubrication with a suitable lubricant should be carried out wherever possible however the best opportunity to introduce lubricant into the rope is during manufacture.
Wire rope classification is done by the number of strands as well as by the number of wires in each strand, e.g., 6 x 7, 6 x 19, 6 x 37, 8 x 19, 19 x 7, etc. However, these are nominal classifications that may or may not reflect the actual construction. For example, the 6 x 19 class includes constructions such as 6 x 21 filler wire, 6 x 25 filler wire, and 6 x 26 Warrington Seale. Despite the fact that none of the three constructions named have 19 wires, they are designated as being in the 6 x 19 classification.
Hence, a supplier receiving an order for 6 x 19 rope may assume this to be a class reference, and could possibly furnish any construction within this category. But, should the job require the special characteristics of a 6 x 25 filler wire, and a 6 x 19 Seale is supplied in its stead, a shorter service life may result.
To avoid such misunderstandings, the safest procedure is to order a specific construction. In the event that the specific construction is not known or is in doubt, the rope should be ordered by class along with a description of its end use.
Identification of wire rope in class groups facilitates selection on the basis of strength and weigh/foot since it is customary domestic industry practice that all ropes (from a given manufacturer) within a class have the same nominal strength and weigh/foot. As for other-functional-characteristics, these can be obtained by referencing the specific construction within the class.
Only three wire ropes under the 6 x 19 classification actually have 19 wires: 6 x 19 two-operation (2-op), 6 x 19 Seale (S), and 6 x 19 Warrington (W). All the rest have different wire counts. In the 6 x 37 class there is a greater variety of wire constructions. The commonly available constructions in the 6 x 37 class include: 6 x 31 Warrington Seale (WS), 6 x 36 WS, 6 x 41 Seale Filler Wire (SFW), 6 x 41 WS, 6 x 43 Filler Wire Seale (FWS), 6 x 46 WS, etc. – none of which contain exactly 37 wires.
To assure you of the highest quality product and engineering, American Rigger’s Supply represents WireCo WorldGroup products. Wire rope design, manufacture and use are highly specialized fields and that is why we rely on their unsurpassed technical support.
All wire ropes feature design characteristic tradeoffs. For example, when you increase fatigue resistance by selecting a rope with more wires, the rope will have less abrasion resistance because of its greater number of smaller outside wires.
Wire rope strength is generally measured in U.S. tons (2,000 lbs.). In published material, wire rope strength is shown as “nominal strength. Nominal strength refers to calculated strength figures that have been accepted by the wire rope industry. The nominal strength applies to new, unused rope. A rope should never operate at or near the nominal strength.
Fatigue resistanceFatigue resistance involves metal fatigue of the wires that make up the rope. To have high resistance, wires must be capable of bending repeatedly under stress, for example, a rope passing over a sheave. Increased fatigue resistance is achieved in a rope design by using a larger number of wires. It involves both the basic metallurgy and the diameters of wires.
Crushing resistanceCrushing is the effect of external pressure on a rope, which damages it by distorting the cross-section shape of the rope, its strands or core - or all three. Crushing resistance therefore is a rope’s ability to withstand or resist external forces and is term generally used to express comparison between ropes.
Resistance to metal loss and deformationMetal loss refers to the actual wearing away of metal from the outer wires of a rope, and metal deformation is the changing of the shape of the outer wires of the rope. In general, resistance to metal loss by abrasion (usually called “abrasion resistance”) refers to a rope’s ability to withstand metal being worn away along its exterior. The most common form of metal deformation is generally called “peening”. Outside wires of a peened rope appear to have been hammered along their exposed surface. Peening usually occurs on drums, caused by rope-to-rope contact during spooling of the rope on the drum. It can also occur on sheaves.
The word “stability” is most often used to describe handling and working characteristics of a rope. It is not a precise term since the idea is expressed to some degree as a matter of opinion. For example, a rope is called stable when it spools smoothly on and off a drum or doesn’t tangle when a multi-part reeving system is relaxed.
Some rope constructions are by nature more bendable than others. Small ropes are more bendable than large ones. As a general rule, ropes of many wires are more bendable than ropes made with fewer, larger wires.
Reserve strengthReserve strength of a rope is the percentage of its catalog strength which is represented by its inner wires. This recognizes that outer wires should be the first to be damaged or worn away. Usually, the more wires there are in each strand of rope, the greater will be its reserve strength. Reserve strength is especially important in selecting a rope for use where consequences of rope failure are great