susquehanna wire rope butler free sample
When you need chain, cable, wire rope, rigging products, or industrial hardware, Susquehanna Wire Rope & Rigging is the company to call. We guarantee competitive prices, outstanding quality, unparalleled service, and complete customer satisfaction.
We are a full service rigging supply company located in Ridgway, Pennsylvania. Our location is fully equipped to handle your wire rope fabricating, chain and synthetic sling and hardware needs.
We are a full service rigging supply company located in Ridgway, Pennsylvania. Our location is fully equipped to handle your wire rope fabricating, chain and synthetic sling and hardware needs.
We are a full service rigging supply company located in Ridgway, Pennsylvania. Our location is fully equipped to handle your wire rope fabricating, chain and synthetic sling and hardware needs.
We are a full service rigging supply company with four locations. Our headquarters is located in Ridgway, PA and our other locations are in Williamsport, Meadowlands, and Everett, PA. Each location is fully equipped to handle your wire rope fabricating, chain and synthetic sling and hardware needs.
John Augustus Roebling (born Johann August Röbling on June 12, 1806 in Mühlhausen, Thüringen; died July 22, 1869 in Brooklyn, NY) was the foremost designer and builder of wire suspension bridges in the nineteenth century. His crowning design was the Brooklyn Bridge over the East River in New York. It was Roebling’s development of a method for manufacturing wire rope by spinning it in place and his understanding of stress factors and the methods that would be needed to counteract wind and lateral swaying that made the construction of long suspension bridge spans possible. Such has been the worldwide impact of wire rope that Roebling was later inducted into the National Inventors Hall of Fame. Roebling was a man of varied interests, including music and philosophy, but primarily he was the founder of two business enterprises upon which he focused his attention: his civil engineering firm and his wire rope manufactory. Both firms became successful due to Roebling’s attention to detail and his ability to select assistants wisely. Among the latter were his sons, two of whom also studied civil engineering and expanded the manufactory into one of the premier facilities of its kind in the world after Roebling’s death.
Roebling’s course of study at the Berlin Building Academy included engineering and architecture under Martin Friedrich Rabe, foundation construction and bridge building under Johann Friedrich Dietleyn, and hydraulics and dike construction under Johann Albert Eytelwein, who was “the leading authority on river and harbor works” and was conducting research into the comparative value of using cast iron and wrought iron for bridge construction at the time.[5] From the start, bridge construction was Roebling’s favorite subject and he especially enjoyed Dietleyn’s lectures on five small suspension bridges that had recently been constructed in England. These bridges used chains of iron bars to suspend the roadway.[6] Dietleyn had translated into German “excerpts of [French engineer Louis] Navier’s Memoire [sur les Pont Suspendus],” which Roebling no doubt studied.[7] Dietleyn also discussed the construction of a chain bridge built in Pennsylvania in 1796 by James Finley and a wire suspension bridge over the Schuylkill Falls in Philadelphia in 1816.[8]
The year 1830 was one of social and political unrest in France and elsewhere in Europe. With the overthrow of Charles X that summer, the Bourbon dynasty, which had been restored after the ultimate defeat and second exile of Napoleon Bonaparte, was finally swept away. Later that summer Belgium emerged as an independent nation. To the young Roebling brothers and those of similar inclination it seemed only a matter of time before the changes overtook Germany. However to their dismay, the revolution in Prussia was suppressed almost before it began. Indeed, the repressive Prussian government went to extreme lengths to bolster the status quo. It soon became harder for skilled workers and trained technicians to leave Prussia without an official permit, which, needless to say, would be hard to come by for those wishing to emigrate. Despite the new anti-emigration regulations, John Augustus Roebling and his brother first began thinking seriously about emigrating during this time period.
The country of choice for the young men was the United States. A friend of Roebling named Johann Etzler, who was a trained engineer, had returned from the United States to Mühlhausen on a visit and was singing the praises of the New World. Toward the end of 1830, John Augustus Roebling, his brother Carl, and Etzler decided they would organize a group to immigrate to the United States. Personal savings and monies acquired through the sale of property covered the passengers’ costs. As for John and Carl Roebling, their mother, Friederike, provided them with money that she had been saving for years.
It is unclear why Roebling had been so intent on living out Thomas Jefferson’s ideal of the yeoman farmer when he first arrived in the United States instead of immediately pursuing employment for which he had professional training. His sense of responsibility towards his fellow immigrants from Mühlhausen may have had something to do with it. Not dissuaded by his failure at farming, or by his initial inability to secure steady engineering employment due to the ongoing economic depression, Roebling took to poring over technical and engineering journals and books and designing and inventing various apparatuses. An excellent draughtsman, he illustrated his own patent applications. Among the machinery Roebling designed during this period were a new boiler for steamships, a steam-powered tractor that operated plows and reapers, a self-acting gauge, and a radial engine. Working with an inventor in Philadelphia, he took out a joint patent for “submarine propellers,” underwater propellers that could move steam-powered vessels through the water. Roebling was also the inventor of a spark-arrester for locomotives, which prevented sparks from the locomotives’ wood-burning stoves from setting fire to trees, fields, and houses along the tracks, a serious and very-real hazard at the time.
During the same time period, Charles Ellet, who had studied at the École Polytechnique in Paris, was making a name for himself with various wire-suspension bridge proposals, including a thousand-foot span across the Potomac River, one over the Mississippi River at St. Louis, Missouri, and another over the Schuylkill River at Fairmount in Philadelphia. Though nothing came of the first two bridge proposals, the Fairmount proposal was well received by the citizens of Philadelphia and it bolstered Ellet’s growing reputation as a bridge designer. Roebling, working in western Pennsylvania, wrote to Ellet, whom he assumed, mistakenly, was older and more experienced than he, on January 28, 1840, about employment. “Should you at some future period,” he wrote Ellet, “be desirous of engaging an Assistant [sic] for the construction of suspension bridges, who is competent for the task, and who at the same time would execute with pleasure all the necessary drawings, please bear me in mind.”[24] Ellet’s response was perfunctory, and Roebling soon realized that he had no chance of working as the former’s assistant. In time the two would become rival bridge builders.
The loss of the Fairmount Bridge project spurred Roebling to pursue work in a different, but related, field. The Pennsylvania Canal used a series of stationary steam engines and inclined planes, rather than a costly system of hydraulic locks, to haul canal boats on flatbed rail cars over the crest of the Allegheny Mountains. The project was known as the Allegheny Portage Railroad. Roebling was familiar with the inclined-plane system due to his railroad route surveying work in western Pennsylvania and knew of the hazards of using hemp rope, which sometimes frayed and snapped under tension, to link the steam engines and rail cars. Roebling decided that wire rope would be stronger, more flexible, and longer-lasting than hemp. He returned to his Saxonburg farm, purchased a quantity of wire from an iron monger in Beaver Falls, Pennsylvania, and built a ropewalk to manufacture wire rope. Roebling initially enlisted friends and neighbors to twist the wire strands into rope, but later created machinery to mechanize the process. He set up his manufactory while continuing to work on railroad surveys and maps for the State of Pennsylvania. The end result of his wire rope experiments was that in 1842 Roebling was granted patent number 2720 for “Methods of Manufacture of Wire Rope.”[25] Before he was granted the patent, however, he had already received an order for one-inch thick wire rope, 600 feet in length, to draw boats from a river basin to the base of the Portage Railroad.
The big test for Roebling’s wire rope came when he proposed to demonstrate its superiority to hemp rope on one of the inclined planes of the Portage Railroad. Despite his second-hand exposure to the political scheming associated with the Fairmount Bridge project, Roebling was still naïve enough that he failed to understand that money was at stake if his design proved successful and that powerful political and commercial forces were opposed to his new product. He undertook the demonstration at his own expense, but the wire rope was sabotaged and broke during the test. Fortunately the sabotage was discovered and a Roebling supporter, James Potts, who served as the collector of canal tolls, intervened on his behalf with the president of the Pennsylvania Canal Commission, John B. Butler. The cut wire rope was repaired and a new test proved the superiority of wire rope over hemp rope. Within a few years wire rope replaced hemp rope on seven of the other nine inclined planes of the system. Soon other applications were found for wire rope in collieries, on ships, and in dredging operations. The lead article of the November 1843 issue of the American Railroad Journal contained Roebling’s discussion of the still-revolutionary product. By the time of that publication, he was secure enough in his profession that incoming and outgoing correspondence referred to him as “John A. Roebling, Civil Engineer.”[26]
Nevertheless the backers of hemp rope would not go down without a fight, and soon supporters on both sides of the wire-versus-hemp-rope issue were trying to gain the upper hand on the various inclined planes of the Pennsylvania Canal system. For a time it looked like the supporters of wire rope would lose the fight, but the main supporter of hemp rope accepted a position outside the canal system and his underlings lost their impetus to carry on the fight. By 1845, wire rope was installed on the last two inclined planes of the Allegheny Portage Railroad.
Even as he was struggling to have his invention accepted by the engineering community, Roebling was thinking of improvements to the basic design. As far back as 1841, when he was just starting to create wire rope, Roebling had applied for a patent on a process that would alter the wire rope by wrapping it with annealed wire to form a cover over the strands and thus create a cable. Wire cable could be used for suspending bridges, and bridge building was constantly on Roebling’s mind.[27] By the mid-nineteenth century, revolutionary changes were occurring in the design of bridges. Iron began to replace gradually stone and wood as the material of choice, and new truss designs, especially for railroad bridges, began to come into vogue.[28] Despite innovations in truss bridge design, Roebling, who avidly kept up with new developments in the field, remained a confirmed disciple of the suspension bridge, though not all of his bridges utilized that design. Roebling became a trend-setter in bridge design and pioneered innovative applications of iron, and later steel, in his projects.
The first suspension structure Roebling designed and constructed was the world’s first suspension aqueduct over the Allegheny River at Pittsburgh. The aqueduct itself was part of the Pennsylvania Canal system. The previous aqueduct had been so damaged by ice during the winter of 1843-1844 that it had to be torn down, and an invitation for proposals had been issued for a replacement design. Roebling completed the design studies and testing of models at his home in Saxonburg, and then presented his work in Pittsburgh to engineers and others in charge of the project. His bid was the lowest of the forty-four submitted, and he was awarded the contract, which stipulated that the work had to be completed within nine months. The timing of the contract meant that six of the nine months would be during late fall, winter, and early spring, which added complexity to the project. Roebling also had to pay canal tolls for shipments of aqueduct construction materials, which further complicated matters and cut into his profit margin. Nevertheless, Roebling and his workforce, many of whom had been recruited from Saxonburg, completed the project on time in May of 1845. He accomplished the feat by stringing the large suspension cables for the bridge in place, “wire by wire, in their final position.”[29] This innovative method would become de rigeurin suspension bridge construction. He also patented a new form of anchorage design, in which the chains that gave strength to the structure were “permanently sealed and protected” by the masonry of the anchorage.[30] Water was let into the finished aqueduct on May 22, 1845. Of the $62,000 (approximately $2 million in 2010$) spent on the project, Roebling netted about $3,500 (nearly $100,000 in 2010$).
By the time he completed the Allegheny Aqueduct project, Roebling had become a regular contributor to the American Railroad Journal, and he published another article in that periodical describing the aqueduct’s construction and his innovations with wire cable and anchorage design. He wrote: “The plan of this work therefore is a combination which presents very superior advantages, viz. great strength, stiffness, safety, durability and economy… This system, for the first time successfully carried out on the Pittsburgh aqueduct, may hereafter be applied with the happiest results to railroad bridges, which have to resist the powerful weight and great vibrations which result from the passage of heavy locomotives and trains of cars.”[31] The aqueduct lasted until 1861, when it was abandoned at the beginning of the Civil War.
During the next five years Roebling was extremely busy expanding both his professional reputation and his personal fortune. First he contracted with the Delaware and Hudson Company to construct four aqueducts. After inspecting the Allegheny Aqueduct, the engineers of the Delaware and Hudson Canal Company approved his aqueduct designs and authorized the construction of two aqueducts. He was later authorized to construct two additional aqueducts. The first of the quartet, the Delaware Aqueduct, was completed at the end of 1848.[35] Roebling completed a smaller suspension aqueduct over the Lackawaxen River, a tributary of the Delaware River that flows though northeastern Pennsylvania, in the spring of 1849. Soon after, in April of 1849, he began working on the High Falls Aqueduct over the Rondout River in New York and the following summer he began work on the Neversink Aqueduct in New York. The latter employed nine-and-one-half-inch cables, the largest then in use. Both aqueducts were completed in the latter half of 1850. The speed with which these aqueducts were completed was made possible by a patented process that Roebling developed for building suspension bridges: a “method for putting the bridge cable together, on site, by running out the wires separately, two at a time.”[36] For this he received U.S. patent number 4995 in 1847.
At about the time he began working on the aqueducts for the Delaware and Hudson Canal Company, Roebling recognized that his other company, the wire-rope factory, had outgrown its home in tiny, rural Saxonburg. The factory not only needed to expand, but it needed better access to river and rail transportation. The operation in Saxonburg required loading the wire rope onto wagons and hauling it approximately ten miles to the southeast to Freeport, Pennsylvania, where it was then transferred to a local canal for shipment.[39] At the suggestion of New York industrialist Peter Cooper, Roebling decided to move the factory and his family to Trenton, New Jersey. He purchased twenty-five acres of land about a mile from the center of Trenton for $3,000 (approximately $85,000 in 2010$). The site was near both the Delaware and Raritan Canal and the Camden and Amboy Railroad. The expanded factory required new machinery, and since wire rope manufacturing was still in its infancy, it was up to Roebling to design the proprietary manufacturing equipment for which he received patents. Partial operations began in Trenton in October of 1849.
In 1845, Major Charles B. Stuart, a civil engineer who later went on to become New York’s first state engineer and surveyor and eventually engineer-in-chief of the United States Navy, first broached the idea of a railroad bridge over the Niagara River that would link the Rochester and Niagara Falls branch of the New York Central Railroad with the Canada’s Great Western Railway. The new international connection would facilitate the transfer of goods and passengers between the United States and Canada and expand commercial markets in both nations. Stuart himself was not a bridge engineer so he circulated a letter outlining his ideas throughout North America and Europe. Most engineers of the time thought his notion impractical and only four men responded positively: Samuel Keefer, Edward W. Serrell, Charles Ellet, and John Roebling. In 1846, the Niagara Bridge Company was chartered by the New York State Legislature and the Ontario Provincial Parliament, and the following year an invitation was sent out for proposals. Ellet, with his superior publicity and self-promotion skills quickly got the jump on his rivals. With Stuart as his ally, he was awarded the contract in November of 1847. The decision represented a setback to Roebling who was determined to construct a railroad bridge. Ellet’s contract called for the construction of a combination railroad and carriage bridge over the Niagara River, below Niagara Falls. The sum to be paid out was $190,000 (or the equivalent of $5 million 2010$), and the completion date was stipulated as May 1, 1849.[41]
While work proceeded on the Niagara Railroad Bridge, with Roebling carefully overseeing all important phases of the project, he entered into a contract in 1853 to build a bridge over the Kentucky River for the Lexington and Southern Kentucky Railroad. However a brief economic slowdown during 1853-1854 caused the railroad to go bankrupt and work was halted on the project.[44] Commenting on the project, Roebling noted that, “The progress of the Ky. [sic] Bridge is a little doubtful on account of money matters. Several lines have stopped, thousands of men are thrown out of employment in Ohio and wages reduced from 1.25 to 80 cs. p. day. Laborers will be very plenty next winter, and I also think Iron will be a little lower.”[45] In fact, Roebling’s factory at Trenton also felt the economic pinch. The State of Pennsylvania suspended payment for wire rope. This caused Roebling enough consternation over his bank credit that he instructed assistant Charles Swan to “open with Mrs. Roebling my safe and the iron box with the small brass key, and take out of the morocco pocket book my Certificate of Stock of $5000 of the Pennsylvania R.R. Co, and deposit it in bank if necessary.”[46]
The proposed timeframe for the bridge project proved too optimistic. Unforeseen problems at the site and poor weather conditions caused delays. Water filled the excavations on the Cincinnati side due to the pit being lower than the water table. This was compounded by the annual autumn rains that raised the river’s level. Necessity being the mother of invention, Roebling managed to design pumps fashioned from wood and powered by the engine of a nearby steamboat that ejected the water and mud and allowed the work to proceed. The faltering economy also hindered work on the project. Roebling continued to push forward construction of the bridge despite the economic depression that began in August of 1857, but as bank after bank in Ohio and the East failed it became apparent that the bridge company itself was in financial trouble. During these years Roebling sent letters to Charles Swan that effectively instigated a period of hunkering down, both for the wire rope business and for the family in Trenton. Meanwhile construction on the bridge came to a halt in 1859. In December of 1860 the stockholders, at Roebling’s suggestion, worked out a plan to issue preferred stock for approximately $500,000 (equal to $13.5 million in 2010$) in an effort to keep the project moving forward. However, in the intervening years since construction on the bridge had halted, prices had increased. The onset of the Civil War in 1861 brought shortages of workers, especially skilled workers, and material, as well as rumors and threats of raids by Confederate troops.
Roebling threw himself immediately into surveying, design studies, and cost estimates, which needed to be revised upward from his 1865 figure. His report, complete with drawings, was ready on September 1, 1867.[56] While he was involved in the frenzy of work, Washington Roebling was in Europe studying “the pneumatic method of sinking caisson foundations.”[57] The younger Roebling also inspected steel mills in Germany and England as potential sources of steel wire for the cable spans.
Roebling’s design proposal for the East River Bridge met with initial opposition from some of the nation’s most prominent engineers. The span, nearly 1,600 feet in length, was approximately fifty-percent longer than the Covington and Cincinnati Bridge, and some experts felt that such a span would be challenging to build. Furthermore, Roebling suggested the bridge be built using steel wire cables instead of iron, but at the time steel was, by and large, an untested metal in bridge construction. Also, the projected cost of the project had risen to seven million dollars by 1867 (nearly $110 million in 2010$).[58] To allay public and professional concerns, Roebling suggested that a panel of prominent engineers be convened to review his plans. After two months of investigation, the panel, which included one of his staunchest critics, voted unanimously to endorse Roebling’s plan. Simultaneously, three U.S. Army engineers reviewed his proposal, which they too approved with the single caveat that the clearance of the span be increased to 135 feet instead of the proposed 130 feet, possibly due to concerns over tidal variations in the East River. Finally, the federal government formally approved the bridge plan in 1869.
Roebling was a wealthy man at the time of his death. In his will he left the wire rope company to his four sons. He made bequests totaling approximately $80,000 (equal to more than $1.25 million in 2010$) to distant relatives and some charities. Roebling divided the remainder of his estate equally among his second wife and seven children. The bequests, however, revealed a quirk in Roebling’s nature. He had kept a careful accounting of the expenditures he had made for each of the children throughout their lives and these sums were deducted from their individual bequests.
John A. Roebling was an iconoclast, an extreme one at times. He was also a dreamer whose dreams, infused with the practicality of his engineering background, often came to fruition and made him one of the most celebrated bridge builders and civil engineers of his era. When Roebling strayed briefly from his engineering background and sought to establish himself as a farmer he failed miserably. Yet he did not fail in the establishment of the small town of Saxonburg. Its success, and a good deal of his later success, was due in part to his ability to convince others of the integrity of his projects. Roebling led a small group of émigrés into the wilderness of western Pennsylvania and encouraged more to immigrate while still a young man in his twenties. Later some of these immigrants joined him in his wire-rope manufactory and on his construction sites.
During his time as the titular leader of Saxonburg, Roebling acted in a paternalistic manner towards those over whom he had authority. This included not only his family, but also the workers on his bridge-building crews and in his wire rope-making factories, first in Saxonburg then in Trenton. Indeed, his first Trenton home was open to his factory workers. His extended sense of pater familias, while physically distancing himself from his actual family, was not the only seeming contradiction in his personality. Roebling the civil engineer, the student of Hegel with his belief in the natural progress of humanity and rule of just law, later embraced the transcendentalism of American philosopher Ralph Waldo Emerson. After the death of his first wife he also embraced spiritualism. As for organized religion, Roebling was not a strict practitioner. During his Mühlhausen days he, his parents, and his siblings practiced Lutheranism, which carried over to his Saxonburg period. Later he was influenced by Presbyterianism and even Episcopalianism. Roebling’s disinterest toward organized religion has been attributed to his preference for intellectual pursuits, but he nevertheless came to embrace a Swedenborgian form of Christian spiritualism later in life.
As the owner of both an engineering firm and a wire-rope manufactory, Roebling’s initial style was to oversee the day-to-day functions of the project site and the operations of the manufactory in Saxonburg when needed. Yet, he understood that micromanagement had its limits if both businesses were to expand. Thus by the end of his career, though he made the important business, construction, and design decisions himself, he trusted others, including his oldest son Washington, not to veer from the path of perfectionism he had laid out. According to at least one contemporary account, Roebling was more than ready to hand over the supervision of the construction of the Brooklyn Bridge to Washington at the time of his death.[62] Roebling did not live to see any of the innovative European technologies, such as caissons and steel cables that Washington Roebling employed in the bridge’s construction, but these new applications of technology certainly embodied his father’s innovative character.
John Augustus Roebling’s two most outstanding traits were his creativity and his commitment to perfection in his work. He adapted his European training and experience to the problems he encountered in the United States. Roebling’s training included not only what he had learned firsthand at the Berlin Building Academy but also what he gleaned from earlier practitioners and theorists of suspension bridge building such as Frenchman Louis Navier and Americans James Finley and Charles Ellet. He also adapted and improved earlier ideas about wire rope, cable spinning, stiff roadways, and anchor stays for most of his suspension projects. Most importantly, as Roebling advanced in his bridge-building career he made technical changes with each bridge and aqueduct. He adapted each structure to its environment, and was not content to stand on past successes.
Roebling entrepreneurial inclination also shaped the course of his life. He managed to carve out two careers that nicely dovetailed with one another: civil engineer and wire rope manufacturer. The success of his manufactory no doubt owed much to his success as a bridge builder and his proof of the efficacy of iron (later steel) wire rope and cables. Roebling’s success, however, also depended on the assistance of fellow German émigrés. His Saxonburg neighbors helped him set up his wire-rope business, which provided the basis of his wealth. After Roebling’s death, his sons took over management of the firm, renamed John A. Roebling’s Sons Company, and expanded it into one of the world’s premier suppliers of iron and steel rope and cables during the twentieth century. As both engineer and entrepreneur, John Augustus Roebling left a physical and commercial legacy for future generations.
[7] Emory L. Kemp, “Roebling, Ellet, and the Wire-Suspension Bridge,” in Margaret Latimer, Brooke Hindle, and Melvin Kranzberg, eds., Bridge to the Future: A Centennial Celebration of the Brooklyn Bridge, (New York: The New York Academy of Sciences, 1984), 55. See also Seth Goldman, “John A. Roebling: Engineer-Philosopher,” 2007 (accessed May 13, 2011).
[12] The group first took a boat north on the Schuylkill River to Reading, traveled west to Harrisburg by canal boat, then continued up the Susquehanna and Juniata Rivers to Huntingdon, 125 miles from Pittsburgh. The last segment of the trip to Pittsburgh involved an overland passage along “rough and hilly wagon roads.” Steinman, 32-33.
[25] Roebling’s patent reflected the fact that he was the first person in the United States to create wire rope. Wire rope had been invented in Germany in the early 1830s by Wilhelm Albert.
[27] Roebling was not the first to employ wire to suspend a bridge roadway, but his ideas on wire rope manufacture and usage were the most ambitious and successful. See Steinman, 78.
[30] Steinman, 87. The Allegheny Aqueduct Bridge consisted of seven spans of 162 feet each with stone piers and towers. There were two wire cables, seven inches in diameter and each cable consisted of 1,900 parallel wrought iron wires, each of these slightly more than one-eighth of an inch thick. The cables stretched from the anchorage on one shore to that on the other. The aqueduct’s flume was sixteen-and-one-half feet wide at the top, fourteen feet wide at the bottom, and eight-and-one-half feet deep; on each side of the flume were eight-foot-wide towpaths for mules; the weight of the water was greater than 2,000 tons.
[48] Roebling’s design of the Niagara Railroad Bridge differed from the Monongahela Bridge in the use of stiffening trusses to prevent swaying. The bridge, with a railroad track on the upper level and a regular roadway on the lower level, was 821 feet long and weighed approximately 1,000 tons. The levels were suspended using four cables of wrought iron wire, each ten inches in diameter with 3,640 wires per cable. In his initial report of the completed bridge Roebling presciently mentioned the use of steel cables, but in the United States steel cables lay in the future. It would be Roebling’s son, Washington, who would introduce their usage as chief engineer of the Brooklyn Bridge.
Provider of rigging supplies and fabrication services intended for the oil and gas industry. The company offers chain, wire ropes, synthetic web products and hardware.