workover rig videos free sample
![]()
This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.

This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.

Considering the number of Workover Rigs off contract and stacked it is now highly important that contractors have their equipment in ready to go on contract condition. Major oil companies and operating companies will require a history of good Rig Maintenance.
This Workover Rig Maintenance program consist of a complete maintenance schedule for all the equipment listed below. Any item listed on any of the check list worksheets can be changed and edited to suite any Workover Rig and any piece of equipment. It also covers Diesel Haulers and Water Haulers if you own your own trucks. Any item can be removed or changed to suite your Workover Rig and equipment.

This is one of the best drilling 101 videos showing you drilling process from the beginning phase to plug and abandonment phase. Not only do you learn about drilling, this video briefly shows the overall field development phase. This video tends to focus on unconventional well. For educational purposes, our team provides full video transcript to help anybody learn the content clearly and effectively.
Once a prospect area has been selected the right to drill must be secured by leasing the mineral rights of the desired property from a landowner or mineral owner. In some cases a landowner may no longer own the mineral rights. An experienced land man is needed to research deed history and negotiate leases. Once titles are researched, blocks of land are put together to create the lease area. An application for a permit, description of the proposed drilling program, a copy of the plat, the permit fee, an environmental assessment, water allocation, air emissions and land use and disturbance must be submitted. Often companies require additional information as they try to determine optimal locations to drill new wells.
Once the survey has been completed, a stake will be placed where the well is to be drilled. Access roads are created so workers and equipment can get to and from the rig. The site will be cleared and leveled with a bulldozer. For support and permanent positioning of the wellbore the seller and conductor holes are dug and secured into place. The drilling rig and equipment are then trucked to the location unloaded and placed where it will be rigged up. A reserve pit may be excavated to capture drilling fluids, cuttings and mud discharges so they can be recycled or properly disposed. Crew housing facilities, water lines and electricity are brought in for 24/7 operations.
After the rig is erected equipment is moved onto the rig floor, assembled and connected to power sources or pressurized piping systems. Some operators utilize an alternative method of managing returned fluids and solids called ‘A Closed Loop System’ which may reduce or eliminate the need for reserved pits. The Closed Loop System separates the fluids and drilling solids by employing a series of linear motion shakers, mud cleaners, centrifuges and collection equipment to condition the fluids so they can be reused or recycled. The solids or waste is properly disposed off according to state regulations. The hole for the surface casing is then drilled. A drill bit is mounted on the end of the drill pipe as the bit grinds away a mixture of water and additives called ‘Mud’ is pumped into the hole to cool the bit and flush the cuttings to the surface. The pipe and bit are then removed and surface casing is inserted into the hole. Surface casing serves to keep the well bore intact, isolate the freshwater zone from contamination and is the pipe to which the BOP and wellhead are attached. The casing is secured into place by pumping cement through the casing and the shoe at the bottom of the hole. This cement also acts as a barrier to provide a permanent layer to protect the freshwater aquifer. Next, the Blow Out Preventer or BOP is installed on top of the wellhead before the drilling of the well commences. It is usually comprised of an annular preventer; blind ram blind shear ram and the pipe ram.
The BOP units main function is to contain erratic down hole pressures called ‘Kicks’ and the uncontrolled flow of formation fluids quickly and effectively by sealing off the wellbore in several ways. If primary control of the well is lost during drilling or completion, one or more of the BOPs components are initiated to close across part or all of the hole to equalize pressures thereby regaining control of the well. Without the BOP, this underground pressure can force the release of gases, fluids and equipment causing explosion, fire and loss of life. Blowout preventers are critical to the safety of the crew, rig and environment.
Once the well has been logged and deemed a commercial well, the crew inserts the last string of production casing that runs the entire length of the hole and cements the casing in the hole. The cement fills the space between the production casing and the drilled hole called ‘The Annulus’. It also adds stability and strength to the pipe and creates a barrier between the formation and the casing. At the surface the drilling rig is no longer needed. A coil tubing unit or workover rig is brought on location to perforate the targeted zone. A perforating gun is then lowered to the targeted zone; pressure is applied to the coil tubing and perf gun, setting off a charge which shoots holes through the steel casing, cement and out a short distance into the target formation. The perf gun is then pulled out of the hole.
Stimulation is needed on most wells to establish production from the reservoir. Specialized equipment to hydraulically fracture or frack the formation is brought on location. Water, a small amount of chemicals, sand and other province are pumped into the wellbore under extremely high pressure. When the mixture reaches the target zone the pressure forces it out through the perf holes and into the low permeable shale causing it to fracture or crack. This creates a fairway connecting the reservoir to the well. The sand and other province hold the tiny fissures open and allow the released oil to flow to the well bore. This process is repeated in multiple stages to extend across the wellbore. With plugs placed between each stage to maintain pressure and get maximum flow results from the fractured rock. Once the fracking process is complete, the plugs placed between the frack stages are then drilled out to remove any restrictions in the wellbore. The frack fluid also known as ‘Flowback Liquid’ flows back up to the top of the well along with hydrocarbons. The recovered frack fluid is treated and most reused on subsequent hydraulic fracturing jobs. This is done to conserve water and also as a cost savings measure. What is not able to be reused is placed in tanks and then trucked to be properly disposed. The production crew then brings in the work over a unit and rigs it up to prepare the hole for production. The crew runs small diameter pipe called ‘Production Tubing’ inside the production casing string. This serves as the conduit for oil or gas to flow up the well and adds yet another layer of protection to isolate the hydrocarbons from the potable water table.
Next, additional drilling rigs are brought in along with several service companies to help with construction, build infrastructure and assist the drilling company. An oil well can produce for ten to thirty years during the primary recovery phase. Once production has declined secondary or tertiary recovery methods can be used to extend the life of the well. When the well no longer produces at an economic rate the final steps in a wells life cycle are abandonment and reclamation. The wellhead and associated equipment are removed, the wellbore is filled with cement and the well capped and mark. The area is reclaimed and the lease is relinquished back to the landowner.

This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.

This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.
![]()
n: a record made each day of the operations on a working drilling rig and, traditionally, phoned, faxed, emailed, or radioed in to the office of the drilling company and possibly the operator every morning.
(pronounced "tower") n: in areas where three eight-hour tours are worked, the shift of duty on a drilling rig that starts at or about daylight. Compare evening tour, morning (graveyard) tour.
(pronounced "tower") n: in areas where two 12-hour tours are worked, a period of 12 hours, usually during daylight, worked by a drilling or workover crew when equipment is being run around the clock.
n: the crew member who handles the upper end of the drill string as it is being hoisted out of or lowered into the hole. On a drilling rig, he or she may be responsible for the circulating machinery and the conditioning of the drilling or workover fluid.
n: a high-compression, internal-combustion engine used extensively for powering drilling rigs. In a diesel engine, air is drawn into the cylinders and compressed to very high pressures; ignition occurs as fuel is injected into the compressed and heated air. Combustion takes place within the cylinder above the piston, and expansion of the combustion products imparts power to the piston.
n: the employee normally in charge of a specific (tour) drilling or workover crew. The driller’s main duty is operation of the drilling and hoisting equipment, but this person may also be responsible for downhole condition of the well, operation of downhole tools, and pipe measurements.
n: an internal-combustion engine used to power a drilling rig. These engines are used on a rotary rig and are usually fueled by diesel fuel, although liquefied petroleum gas, natural gas, and, very rarely, gasoline can also be used.
n: a type of portable service or workover rig that is self-propelled, using power from the hoisting engines. The driver"s cab and steering wheel are mounted on the same end as the mast support; thus the unit can be driven straight ahead to reach the wellhead.

The contractor was part of a crew from Brigade Energy Services, L-L-C. that had just finished servicing the well and were preparing to reconnect a polishing rod.
Our Undefeated Oilfield Accident Lawyers are investigating the fatal Williston, North Dakota drilling rig accident and will post an update should new information become available.
8613371530291