poclain <a href='https://www.ruidapetroleum.com/product/47'>hydraulic</a> <a href='https://www.ruidapetroleum.com/product/49'>pump</a> free sample

The Poclain Hydraulics" pumps are designed for performance and easy integration on mobile machine, and industrial applications. We cover a wide range of products: axial piston pumps, axial piston heavy duty pumps and radial piston multi-flow pumps.

poclain <a href='https://www.ruidapetroleum.com/product/47'>hydraulic</a> <a href='https://www.ruidapetroleum.com/product/49'>pump</a> free sample

Abstract: A vehicle drive assistance system equipped with an open hydraulic circuit has a hydraulic pump, a hydraulic motor and a reservoir. The system has a three-position valve suitable for: in a first position, supplying the hydraulic motor in a first direction of operation; in a second position, fluidly isolating the hydraulic motor from the hydraulic pump and connecting the hydraulic motor to the reservoir; and in a third position, supplying the hydraulic motor in a second direction of operation. A flow controller is positioned between the hydraulic pump and the three-position valve. The flow controller is configured in such a way as to selectively allow or not allow the passage of fluid through the supply duct of the hydraulic pump toward the three-position valve.

Abstract: The invention relates to a hydraulic device including: a stator and a rotor, in which the rotor can rotate relative to the stator about a first axis of rotation; and a shaft mounted on the rotor such as to rotate therewith. The shaft has a wheel carrier provided at a proximal end thereof and designed to receive a rim and a tire. The shaft includes a through-channel extending from the proximal end to an opposing distal end. The hydraulic device includes an air chamber formed at the distal end of the shaft and connected to the through-channel. The through-channel and air chamber are produced such as to allow a flow of air in order to control the pressure of a tire.

Abstract: The present invention relates to a system for assisting the driving of a vehicle comprising at least one hydraulic machine forming a pump (19), at least one hydraulic machine forming an engine (130, 140) and an open hydraulic circuit (100) extending through a tank (13) and comprising a suction duct (11) extending from the tank (13) to an inlet of the pump (19), a supply duct (15) extending from the outlet of the pump (19) to the inlet of the engine (130, 140) and a return duct (122) extending from the outlet of the engines (130, 140) to the tank (13), characterised in that at least one of the engines (130, 140) is an engine that can disengage the clutch, and in that the system comprises an element forming a restriction (180) and creating a loss of charge over the return duct and a means (190, 192) adapted for connecting to the engine casing, the part of the return duct (122) located upstream of the element forming a restriction (180) and for applying to the engine casing, from the return duct (122), a pressur

Abstract: The present invention concerns a hydraulic system comprising a hydraulic pump (130) installed on a truck tractor (10), a hydraulic pipe (160) connected to the outlet of the pump (130) and a connector (170) positioned at the outlet of the pipe (160) and designed to be connected to a complementary socket (180) provided on a trailer (20) in order to supply a ram (110) positioned on the trailer, for example for tipping purposes, characterised by the fact that it comprises a circuit selector (210) designed to connect said socket (180) selectively either to a ram (110) or a conduit (220) supplying a drive assistance circuit and an assistance circuit return conduit (250) designed to be connected to a tank (120) positioned on the truck tractor.

Abstract: A hydraulic machine including: a casing rotatably mounted relative to a shaft; first brake means constrained to rotate with the casing; second brake means constrained to rotate with the shaft, and adapted to co-operate with the first brake means; a braking piston associated with return means and tending to exert a braking force; and a brake-release chamber adapted to be connected to a pressure force so as to apply a brake-release pressure selectively to the braking piston, so as to enable the first and second brake means to be separated; said hydraulic machine including a sweeping channel arranged in the shaft so as to define a leakage flow between the brake-release chamber and an internal volume of the casing.

Abstract: A hydraulic apparatus comprising a casing (1) having arranged therein a hydraulic machine (2), a shaft (4) mounted to rotate relative to the casing (1) by means of a bearing (5), a braking system (3) having a plurality of brake disks (31, 34) configured to prevent the shaft (4) rotating relative to the casing (1) in selective manner, and a control system (6, 7) for controlling said braking disks (31, 34), the hydraulic system including an irrigation system adapted to cool said brake disks (31, 34) by means of a fluid, the irrigation system including a fluid inlet (81) and a fluid outlet (82), the hydraulic system being characterized in that the fluid inlet and outlet (81, 82) of the irrigation system define a fluid flow within the casing in which the braking system (3) is downstream from the hydraulic machine (2).

Abstract: The hydraulic machine includes a cam and a cylinder block with pistons co-operating with cam lobes, each of which has two ramps extending between top and bottom dead center arcs. The cylinders are connected in alternation to a feed and to a discharge, in sequences separated by switchover stages including an isolation stage during which they are isolated relative to the feed and discharge main ducts. The angular position of the start or of the end of at least one first isolation stage relative to the corresponding dead center arc is different from the angular position of the start or of the end of at least one second isolation stage relative to its corresponding dead center arc, both of these dead center arcs being top dead center arcs or both of them being bottom dead center arcs.

Abstract: A method for controlling a vehicle including a main transmission and a hydraulic transmission, in which, in the absence of a setpoint on the brake, and when the hydraulic transmission is activated, a hydraulic pump of the hydraulic transmission is controlled in such a way as to establish a predetermined pressure inside a hydraulic circuit of the hydraulic transmission, and in the event of a setpoint applied to the brake, the hydraulic transmission is then controlled according to an acceleration setpoint applied to the vehicle. If the acceleration setpoint is greater than or equal to an acceleration threshold value, and the speed of travel of the vehicle is less than or equal to a speed threshold value, the hydraulic transmission is controlled in such a way as to apply a tractive force. If the acceleration setpoint is less than the first threshold value, the hydraulic transmission is disengaged.

Abstract: A method for controlling a transmission device of a vehicle. The device includes a hydraulic transmission. The displacement of the hydraulic pump is controlled so that it delivers to the n hydraulic motors a constant flow that is proportional to the speed of the wheels rotated by the drive. The displacement control of the hydraulic pump is carried out by a correction constant and a correction variable. The correction variable is determined in real time. The correction constant includes the sum of a theoretical constant and an adjusted constant. The theoretical constant is defined according to the theoretical behaviour of the hydraulic transmission. The adjusted constant is defined and corrected when the vehicle is in predetermined conditions of use, in order to reflect the real state of the vehicle.

Abstract: The invention relates to a hydraulic assistance device comprising: a hydraulic machine (30) capable of driving a wheel (W) of the craft; a variable displacement pump (10) comprising a double-acting actuator (12) defining two control chambers (12 a, 12 b) for hydraulically controlling the capacity of said pump (10); two supply lines (40a, 40 b) that connect the hydraulic machine (30) and the variable displacement pump (30) in order to form a closed circuit, characterised in that the device further comprises: two control lines (80a, 80 b), each being respectively drawn from one of the two supply lines (40a, 40 b) and being configured to respectively supply one of the two control chambers (12a, 12 b); two electrically calibratable pressure limiters (90a, 90 b) respectively disposed on the two control lines (80a, 80 b).

Abstract: The invention relates to a pressure-limiting device designed to be installed in a system comprising a first line (11) and a second line (12) that can comprise pressurised oil, as well as comprising a discharge and/or booster line (10). The limiting device is characterised in that it comprises means (131, 132, 133, 134) forming two valves, each associated with one of the two lines and adapted to open in the event of an overpressure above a pre-determined threshold on the associated line, so as to discharge the corresponding overpressure towards the discharge and/or booster line, said two valves comprising a common support stem (126) that operates in traction under the action of at least one spring defining a pressure corresponding to the pre-determined threshold. The invention also relates to a hydraulic assist system and to a vehicle comprising such a device.

Abstract: The present invention relates to a hydraulic-assistance system for motor vehicles, comprising a primary motor (M) and two hydraulic machines (140; 240, 250) connected by a hydraulic circuit such that when a first hydraulic machine (140) operates as a pump, the second hydraulic machine (240, 250) operates as a motor.

Abstract: A drive assembly for a motor vehicle drive shaft including an engine, a gearbox, and a shaft (50) divided into two half-shafts coupled to a differential. A hydraulic machine (10) is linked to the gear box or to the differential in order to be driven by said link. The hydraulic machine (10) forms a bearing (100) for one of the half-shafts (54).

Abstract: The present invention relates to a hydraulic device (10) with radial pistons, comprising: a shaft (12) arranged along an axis (1); a cover (13) forming a casing element, the cover and the shaft being free to rotate with respect to one another; a distribution assembly comprising: a multi-lobe cam (14); a cylinder block (15); a distributor (16) configured to exert a thrust force (P) against the cylinder block (15) along the axis (11) of the shaft; an assembly (22) of mechanical bearings comprising at least one mechanical bearing (22a) mounted in radial contact between the cover (13) and shaft (12), said assembly being configured to take up the thrust force (P) exerted by the distributor (16); and a radial contact ball bearing mounted in radial contact between the cover (13) and the shaft (12).

poclain <a href='https://www.ruidapetroleum.com/product/47'>hydraulic</a> <a href='https://www.ruidapetroleum.com/product/49'>pump</a> free sample

If you are supplying pump supplies, you can find the most favorable prices at Alibaba.com. Whether you will be working with piston type or diaphragm type systems, reciprocating or centrifugal, Alibaba.com has everything you need. You can also shop for different sizes poclain hydraulic pump wholesale for your metering applications. If you operate a construction site, then you could need to find some concrete pump solutions that you can find at affordable rates at Alibaba.com. Visit the platform and browse through the collection of submersible and inline pump system, among other replaceable models.

A poclain hydraulic pump comes in different makes and sizes, and you buy the tool depending on the application. The pump used by a filling station is not the one you use to fill up your tanks. There are high flow rate low pressure systems used to transfer fluids axially. On the other hand, you can go with radial ones dealing with a low flow rate and high-pressure fluid. The mixed flow pump variety combines radial and axial transfer mechanisms and works with medium flow and pressure fluids. Depending on what it will be pumping, you can then choose the poclain hydraulic pump of choice from the collection at Alibaba.com.

Alibaba.com has been an excellent wholesale supplier of poclain hydraulic pump for years. The supply consists of a vast number of brands to choose from, comes in different sizes, operations, and power sources. You can get a pump for residential and large commercial applications from the collection. Whether you want a water pump for your home, or run a repair and maintenance business, and need a supply of pocklainraulicraulic,, you can find the product you want from the vast collection at Alibaba.com Whether it is for refrigeration, air conditioning, transfer, or a simple car wash business, anything you want, Alibaba.com has answer.

poclain <a href='https://www.ruidapetroleum.com/product/47'>hydraulic</a> <a href='https://www.ruidapetroleum.com/product/49'>pump</a> free sample

Already very known for the advantages that it provides on trucks used in construction, theAddiDriveofPoclain ?Hydraulics—?calledHydrodriveat MAN,Optitrackat RENAULT TRUCKS, X-Track atTerbergorEZ-TRACat TDS—also has strong benefits in the agricultural world.

This hydraulic aid, installed on the front or rear axles is an ecological alternative to full-time all-wheel drive, engaging on-demand only when needed for higher torque and improved traction control.

The two hydraulic motors are directly integrated onto the spindle of either a steering axle or a fixed axle. The pump is driven by the engine Power Take-Off (PTO) and provides the energy to the system. The hydraulic valve manages the activation of the system and allows operation in free-wheeling mode.

poclain <a href='https://www.ruidapetroleum.com/product/47'>hydraulic</a> <a href='https://www.ruidapetroleum.com/product/49'>pump</a> free sample

Hyspecs carry a stock range of Poclain Hydraulics MS02 through to MS18 motorsin shaft & wheel mount versions. We also have a large range of spare parts to offer quick support & can usually source any other spares quickly from one of the Poclain Hydraulics plants.

The strength of Poclain Hydraulics is their ability with innovative hydrostatic transmission design, supply & commissioning. They have over 45 years of experience in this field & can work with clients from the concept stage & through the design, manufacture & commissioning stages.

An example of how Poclain Hydraulics works with clients was when Hyspecs was approached by the production manager at Nairn Harvesters Ltd to offer a drive system for their latest grape harvester. There were 2 key criteria Nairn"s stressed to us: delivery needed to be short as the customer had requested delivery of the completed machine in under 2 months, and the system needed to work well right from the start (there was no time for trial and error).

That night we were on the phone with Poclain Hydraulics in France to discuss the project. Poclain Hydraulics design and manufacture final drive hydraulic motors, and working on wheel drives like this is one of the things they do best. The next morning we had 2 draft proposals based on 2 different drives systems, and just 1 week and 1 day from the initial inquiry we had finalised the design and Nairn"s were able to place an order with the confidence that the machine would perform as required, and the tight delivery would be achieved.

poclain <a href='https://www.ruidapetroleum.com/product/47'>hydraulic</a> <a href='https://www.ruidapetroleum.com/product/49'>pump</a> free sample

The present invention relates to a hydraulic mechanism such as a motor or a pump comprising a cam and a cylinder block suitable for rotating relative to each other about an axis of rotation, the cylinder block having a plurality of cylinders connected via cylinder ducts to communication orifices disposed in a communication face of the cylinder block, pistons slidably mounted in the cylinders being suitable for co-operating with the cam, the motor further comprising a fluid distributor, constrained in rotation with the cam about the axis of rotation, and having a distribution face which is provided with distribution orifices comprising orifices suitable for being connected to a feed duct and orifices suitable for being connected to a discharge duct, said distribution face and said communication face facing each other so as to put the communication orifices into communication with the distribution orifices as the cylinder block and the distributor rotate relative to each other.

The speed of rotation of the rotor of such a hydraulic motor is limited by the various types of head loss that are generated in the feed circuit of the motor and, in particular, by the head loss that is generated in the motor itself. Among the various types of head loss, the head loss that is generated in the distribution zone, i.e. where the communication orifices meet the distribution orifices, is the largest.

A hydraulic motor whose cam has n lobes and having a row of cylinders whose pistons co-operate with said cam has, in the distribution face, n feed distribution orifices, which are spaced apart by 360°/n and which are suitable for being simultaneously connected to the feed duct, and n discharge distribution orifices, also spaced apart by 360°/n and suitable for being simultaneously connected to the discharge duct. The feed distribution orifices and the discharge distribution orifices are interleaved. If each of the cam lobes has two ramps, respectively a rising ramp and a falling ramp of equal angles, the angular spacing between a feed distribution orifice and the adjacent discharge distribution orifice is equal to 360°/2n. Thus, in a motor of this type, choosing an angular spacing that is substantially equal to a multiple of 360°/n between the two communication orifices of the same cylinder makes it possible to ensure that, as the rotor rotates, the two orifices are connected in the same way, via the distribution orifices, to the feed or to the discharge.

Thus, advantageously, the cam has a plurality of cam lobes, each of which comprises a rising ramp and a falling ramp, each of which is associated with a respective distribution orifice, a cam lobe being considered to be active when the distribution orifice associated with its rising ramp is connected to the feed duct and when the distribution orifice associated with its falling ramp is connected to the discharge duct, the hydraulic mechanism having a large active operating cubic capacity in which all of the cam lobes are active, and a small active operating capacity in which only some of the cam lobes are active; the cam lobes that are active in the small active operating cubic capacity are disposed asymmetrically.

FIG. 2 is a section view on line II-II, taken perpendicularly to the axis of rotation and in the communication face of the cylinder block of a hydraulic motor of the invention;

Naturally, the invention is not limited to hydraulic motors having stationary casings, but rather it also applies to hydraulic motors having rotary casings and that are well known to the person skilled in the art.

In addition, the invention naturally applies to motors in which cubic capacity is selected directly by the cylinders. It also applies to motors or pumps having axial pistons and cams presenting a plurality of lobes.

poclain <a href='https://www.ruidapetroleum.com/product/47'>hydraulic</a> <a href='https://www.ruidapetroleum.com/product/49'>pump</a> free sample

Check that the pump shaft is rotating. Even though coupling guards and C-face mounts can make this difficult to confirm, it is important to establish if your pump shaft is rotating. If it isn’t, this could be an indication of a more severe issue, and this should be investigated immediately.

Check the oil level. This one tends to be the more obvious check, as it is often one of the only factors inspected before the pump is changed. The oil level should be three inches above the pump suction. Otherwise, a vortex can form in the reservoir, allowing air into the pump.

What does the pump sound like when it is operating normally? Vane pumps generally are quieter than piston and gear pumps. If the pump has a high-pitched whining sound, it most likely is cavitating. If it has a knocking sound, like marbles rattling around, then aeration is the likely cause.

Cavitation is the formation and collapse of air cavities in the liquid. When the pump cannot get the total volume of oil it needs, cavitation occurs. Hydraulic oil contains approximately nine percent dissolved air. When the pump does not receive adequate oil volume at its suction port, high vacuum pressure occurs.

This dissolved air is pulled out of the oil on the suction side and then collapses or implodes on the pressure side. The implosions produce a very steady, high-pitched sound. As the air bubbles collapse, the inside of the pump is damaged.

While cavitation is a devastating development, with proper preventative maintenance practices and a quality monitoring system, early detection and deterrence remain attainable goals. UE System’s UltraTrak 850S CD pump cavitation sensor is a Smart Analog Sensor designed and optimized to detect cavitation on pumps earlier by measuring the ultrasound produced as cavitation starts to develop early-onset bubbles in the pump. By continuously monitoring the impact caused by cavitation, the system provides a simple, single value to trend and alert when cavitation is occurring.

The oil viscosity is too high. Low oil temperature increases the oil viscosity, making it harder for the oil to reach the pump. Most hydraulic systems should not be started with the oil any colder than 40°F and should not be put under load until the oil is at least 70°F.

Many reservoirs do not have heaters, particularly in the South. Even when heaters are available, they are often disconnected. While the damage may not be immediate, if a pump is continually started up when the oil is too cold, the pump will fail prematurely.

The suction filter or strainer is contaminated. A strainer is typically 74 or 149 microns in size and is used to keep “large” particles out of the pump. The strainer may be located inside or outside the reservoir. Strainers located inside the reservoir are out of sight and out of mind. Many times, maintenance personnel are not even aware that there is a strainer in the reservoir.

The suction strainer should be removed from the line or reservoir and cleaned a minimum of once a year. Years ago, a plant sought out help to troubleshoot a system that had already had five pumps changed within a single week. Upon closer inspection, it was discovered that the breather cap was missing, allowing dirty air to flow directly into the reservoir.

A check of the hydraulic schematic showed a strainer in the suction line inside the tank. When the strainer was removed, a shop rag was found wrapped around the screen mesh. Apparently, someone had used the rag to plug the breather cap opening, and it had then fallen into the tank. Contamination can come from a variety of different sources, so it pays to be vigilant and responsible with our practices and reliability measures.

The electric motor is driving the hydraulic pump at a speed that is higher than the pump’s rating. All pumps have a recommended maximum drive speed. If the speed is too high, a higher volume of oil will be needed at the suction port.

Due to the size of the suction port, adequate oil cannot fill the suction cavity in the pump, resulting in cavitation. Although this rarely happens, some pumps are rated at a maximum drive speed of 1,200 revolutions per minute (RPM), while others have a maximum speed of 3,600 RPM. The drive speed should be checked any time a pump is replaced with a different brand or model.

Every one of these devastating causes of cavitation threatens to cause major, irreversible damage to your equipment. Therefore, it’s not only critical to have proper, proactive practices in place, but also a monitoring system that can continuously protect your valuable assets, such as UE System’s UltraTrak 850S CD pump cavitation senor. These sensors regularly monitor the health of your pumps and alert you immediately if cavitation symptoms are present, allowing you to take corrective action before it’s too late.

Aeration is sometimes known as pseudo cavitation because air is entering the pump suction cavity. However, the causes of aeration are entirely different than that of cavitation. While cavitation pulls air out of the oil, aeration is the result of outside air entering the pump’s suction line.

Several factors can cause aeration, including an air leak in the suction line. This could be in the form of a loose connection, a cracked line, or an improper fitting seal. One method of finding the leak is to squirt oil around the suction line fittings. The fluid will be momentarily drawn into the suction line, and the knocking sound inside the pump will stop for a short period of time once the airflow path is found.

A bad shaft seal can also cause aeration if the system is supplied by one or more fixed displacement pumps. Oil that bypasses inside a fixed displacement pump is ported back to the suction port. If the shaft seal is worn or damaged, air can flow through the seal and into the pump’s suction cavity.

As mentioned previously, if the oil level is too low, oil can enter the suction line and flow into the pump. Therefore, always check the oil level with all cylinders in the retracted position.

If a new pump is installed and pressure will not build, the shaft may be rotating in the wrong direction. Some gear pumps can be rotated in either direction, but most have an arrow on the housing indicating the direction of rotation, as depicted in Figure 2.

Pump rotation should always be viewed from the shaft end. If the pump is rotated in the wrong direction, adequate fluid will not fill the suction port due to the pump’s internal design.

A fixed displacement pump delivers a constant volume of oil for a given shaft speed. A relief valve must be included downstream of the pump to limit the maximum pressure in the system.

After the visual and sound checks are made, the next step is to determine whether you have a volume or pressure problem. If the pressure will not build to the desired level, isolate the pump and relief valve from the system. This can be done by closing a valve, plugging the line downstream, or blocking the relief valve. If the pressure builds when this is done, there is a component downstream of the isolation point that is bypassing. If the pressure does not build up, the pump or relief valve is bad.

If the system is operating at a slower speed, a volume problem exists. Pumps wear over time, which results in less oil being delivered. While a flow meter can be installed in the pump’s outlet line, this is not always practical, as the proper fittings and adapters may not be available. To determine if the pump is badly worn and bypassing, first check the current to the electric motor. If possible, this test should be made when the pump is new to establish a reference. Electric motor horsepower is relative to the hydraulic horsepower required by the system.

For example, if a 50-GPM pump is used and the maximum pressure is 1,500 psi, a 50-hp motor will be required. If the pump is delivering less oil than when it was new, the current to drive the pump will drop. A 230-volt, 50-hp motor has an average full load rating of 130 amps. If the amperage is considerably lower, the pump is most likely bypassing and should be changed.

Figure 4.To isolate a fixed displacement pump and relief valve from the system, close a valve or plug the line downstream (left). If pressure builds, a component downstream of the isolation point is bypassing (right).

The most common type of variable displacement pump is the pressure-compensating design. The compensator setting limits the maximum pressure at the pump’s outlet port. The pump should be isolated as described for the fixed displacement pump.

If pressure does not build up, the relief valve or pump compensator may be bad. Prior to checking either component, perform the necessary lockout procedures and verify that the pressure at the outlet port is zero psi. The relief valve and compensator can then be taken apart and checked for contamination, wear, and broken springs.

Install a flow meter in the case drain line and check the flow rate. Most variable displacement pumps bypass one to three percent of the maximum pump volume through the case drain line. If the flow rate reaches 10 percent, the pump should be changed. Permanently installing a flow meter in the case drain line is an excellent reliability and troubleshooting tool.

Ensure the compensator is 200 psi above the maximum load pressure. If set too low, the compensator spool will shift and start reducing the pump volume when the system is calling for maximum volume.

Performing these recommended tests should help you make good decisions about the condition of your pumps or the cause of pump failures. If you change a pump, have a reason for changing it. Don’t just do it because you have a spare one in stock.

Conduct a reliability assessment on each of your hydraulic systems so when an issue occurs, you will have current pressure and temperature readings to consult.

Al Smiley is the president of GPM Hydraulic Consulting Inc., located in Monroe, Georgia. Since 1994, GPM has provided hydraulic training, consulting and reliability assessments to companies in t...