pto and <a href='https://www.ruidapetroleum.com/product/47'>hydraulic</a> <a href='https://www.ruidapetroleum.com/product/49'>pump</a> free sample

Powering a hydraulic pump to a power take-off (PTO) is a common practice. Within mobile hydraulic applications, there are three types of hydraulic pump construction typically found including gear, piston and vane.

Gear pumps are the most common design used in truck mounted hydraulic systems, as the gear pump is relatively inexpensive with its fewer moving parts, ability to be easily serviced and greater tolerance to contamination than other designs.

A hydraulic pump for mobile applications, like the gear, piston or vane pump, can be either direct mounted to the PTO or remote mounted – using a driveline. While each type is a viable option for mounting a hydraulic pump, it is important to understand each type of mount to ensure an effective connection is made between the PTO and pump.

In a direct mount the hydraulic pump is mounted directly to the output flange of the PTO. Direct mounting is the most common type of installation in the mobile equipment industry. When direct mounting a pump it is necessary to:

Select the correct pump rotation to match the PTO output rotation or select what is known as a bi-rotational pump, which tends to have equally sized ports since either can be the inlet or outlet.

For mobile, truck mounted hydraulic systems the most common pump mount is the SAE B, which is a 7/8” diameter shaft with 13 splines – one of the standard pump mounting configurations established by the Society of Automotive Engineers (SAE).

Disadvantages to direct mounting a pump• Concealed maintenance points, which include periodic removal and replacement of grease at the pump to PTO connection

Sometimes it is not possible to direct mount a hydraulic pump, requiring the pump to be remote mounted some distance away from the PTO and then powered from the power take-off by means of a driveline assembly. The correct type and series of driveline must be selected. Solid shafting is not recommended as it cannot be balanced and can vibrate, damaging the PTO and pump shaft seals – causing leaks. The better choice is a balanced, tubular assembly designed to meet the speed, torque and horsepower requirements of the application.

When using a driveline, it is important that it be in phase and incorporates a slip yoke at one end. Round, keyed PTO output shafts are susceptible to failure by high cyclic loading. An out of phase shaft will vibrate and damage the PTO and pump shaft seals while a functioning slip yoke will allow the shaft to adjust for flexing of the truck chassis. As part of a regularly scheduled, preventative maintenance plan, the slip yoke and bearings of the driveline must be lubricated.

As this type of installation has exposed rotating components it is important to make sure proper warning decals and guards are in place to protect workers.

Powering a pump to a PTO is a common practice, but selecting whether to direct or remote mount the pump takes understanding and careful consideration. Regardless of the type of mount you select, remember that this understanding of each mount – along with its advantages and its drawbacks – will be the key to creating an effective, lasting connection between the PTO and pump.

Josh Reimer has been with Muncie Power Products for 22 years. During his career with the company he has served in various capacities from shipping and receiving clerk to customer service manager to his current position as a market specialist and more. He holds four different certificates including those for lean implementer training and advanced facilitation training. When he’s not at work, Josh enjoys walking or hiking with his wife, Chasta.

pto and <a href='https://www.ruidapetroleum.com/product/47'>hydraulic</a> <a href='https://www.ruidapetroleum.com/product/49'>pump</a> free sample

Whether gear, vane, or piston pump, there may come a time when you have to replace your hydraulic pump. When your equipment isn’t working properly and you have narrowed the problem down to a hydraulic pump that needs to be replaced, what do you need to know?

The pump may simply be worn out—they do have a natural lifespan, as they are a wearable item in a hydraulic system. Although it is not possible to give an average lifespan given the different types of pumps and widely varying hours of operation; in general, you can expect many years of good operation from a hydraulic pump in most truck-mounted hydraulic systems. However, the life of a hydraulic pump might be much longer than what you are experiencing. Here are some questions you should ask:

Has the equipment been operating acceptably with this pump for a number of years without incident, and has the decline in performance been gradual over a longer period of time?

In this case, you’ll need to get the pump make and model number so that you can make sure that your replacement will be correct—either with an exact replacement or with another make that has the same operating specifications.

In any case, when replacing a failed hydraulic pump you will want to make sure to use this opportunity to also change out your hydraulic fluid (or at the very least use a filter cart and filter your oil). In the process of failing, your pump has introduced contaminants into your hydraulic system that you want to remove before they damage your new pump or any other hydraulic component. You will want to change your filter element(s) when you install your new pump, and then change it (them) out after a break-in period on your new pump.

If not, then let’s make sure there is not something else going on, or you may just find yourself replacing pumps frequently because the underlying problem hasn’t been addressed.

Input shaft is twisted/bcanroken: This occurs due to an extreme shock load to the pump. Typically, this happens when a relief valve is missing from the system, not functioning correctly, set to a much higher value than what the pump can withstand, or is too small for the system flow and thus cannot function correctly.

Shaft fretting:Fretting corrosion occurs under load in the presence of repeated relative surface motion, for example by vibration. Direct mount pump splines can be worn away. The solutions include:

Using larger pump and PTO shafts will not eliminate fretting, but may resolve the problem because of the increased metal available before the failure occurs.

Make sure that the pump is able to get a good flow of oil from the reservoir—pumps are designed to have the oil feed pushed to the pump by gravity and atmospheric pressure, not by “sucking” oil. If the oil level in the reservoir is lower than the inlet of the pump, or the run too long or uphill, oil may not flow adequately to the pump. You can check if the pump is receiving oil adequately by using a vacuum gauge at the pump inlet. For a standard gear pump, at maximum operating RPM, the gauge should read a maximum of 5 inches HG. Larger numbers will damage a gear pump, and if you have a piston pump, the maximum number will be lower for good pump life.

Over pressurization: Pressure relief settings may have been adjusted or changed, and are now higher than what the pump can withstand without causing damage.

Pumps don’t produce pressure, they produce flow and are built to withstand pressure. When the system pressure exceeds the pump design, failure begins—either gradually or catastrophically.

When installing the new pump, back all the relief settings off. Then with the use of a pressure gauge T’d in at the pump outlet, gradually adjust the pressure relief setting until a cylinder or motor begins to move. Once the cylinder has reached the end of its stroke, gradually increase the pressure relief setting until reaching the max system pressure (which would be the pressure rating of the lowest rated component in the system). Sometimes, if a pump has been replaced and is larger than the original (produces more flow), the relief may not be able to allow all the flow being produced to escape back to tank. When that happens, the relief valve is “saturated” and the effect is the same as having no relief in the system. Pressures can reach levels much higher than the relief settings and components can be damaged or destroyed.

Contamination: Over time, the system oil has gotten dirty or contaminated and no longer is able to lubricate the pump, or is carrying contamination to the pump.

Make sure the oil is clean, the oil filer changed on schedule, and that there are no entry points for contamination like water, dust, or dirt from a reservoir filler cap that is unfiltered or missing, seals in motors or cylinders that are allowing contaminants in, etc.

New hoses can contain leftover bits of rubber and metal particles from the cutting and crimping process and should be cleaned out before installation.

Even new oil may be quite dirty if stored incorrectly, or exposed to dust and dirt. It’s always a good idea to use a filter cart and filter the system once it’s refilled with oil before turning on the system.

pto and <a href='https://www.ruidapetroleum.com/product/47'>hydraulic</a> <a href='https://www.ruidapetroleum.com/product/49'>pump</a> free sample

Model GP-PTO is a Power Take Off gear pump constructed with cast iron end plates and aluminium center section. It offers 4 displacement sizes from 3.41-9.76 in³/rev (56-160 cm³/rev). The standard drive is 1 3/8" diameter 6-tooth female spline.

pto and <a href='https://www.ruidapetroleum.com/product/47'>hydraulic</a> <a href='https://www.ruidapetroleum.com/product/49'>pump</a> free sample

Model GP-PTO is a Power Take Off gear pump constructed with cast iron end plates and aluminium center section. This rear ported pump offers 9.76 in³/rev (160 cm³/rev) displacement and higher flows at reduced engine rpm as compared to other PTO pumps. The standard drive on our rear ported model is a 1 3/8" diameter 21-tooth female spline.

pto and <a href='https://www.ruidapetroleum.com/product/47'>hydraulic</a> <a href='https://www.ruidapetroleum.com/product/49'>pump</a> free sample

Things like restrictions and blockages can impede the flow of fluid to your pump. which could contribute to poor fluid flow. Air leak in suction line. Air present in the pump at startup. Insufficient supply of oil in pump. Clogged or dirty fluid filters. Clogged inlet lines or hoses. Blocked reservoir breather vent. Low oil in the reservoir

Now that we’ve ensured that the directional control is not reversed, it’s time to check that the drive motor itself is turning in the right direction. Sometimes incorrect installation leads to mismatched pipe routings between control valves and motors, which can reverse the direction of flow. Check to see that the motor is turning the pump in the right direction and if not - look at your piping.

Check to ensure that your pump drive motor is turning over and is developing the required speed and torque. In some cases, misalignment can cause binding of the drive shaft, which can prevent the motor from turning. If this is the case, correct the misalignment and inspect the motor for damage. If required, overhaul or replace motor.

Check to ensure the pump to motor coupling is undamaged. A sheared pump coupling is an obvious cause of failure, however the location of some pumps within hydraulic systems makes this difficult to check so it may go overlooked

It is possible that the entire flow could be passing over the relief valve, preventing the pressure from developing. Check that the relief valve is adjusted properly for the pump specifications and the application.

Seized bearings, or pump shafts and other internal damage may prevent the pump from operating all together. If everything else checks out, uncouple the pump and motor and check to see that the pump shaft is able to turn. If not, overhaul or replace the pump.

If your pump is having problems developing sufficient power, following this checklist will help you to pinpoint the problem. In some cases you may find a simple solution is the answer. If your pump is exhibiting any other issues such as noise problems, heat problems or flow problems, you may need to do some more investigation to address the root cause of your pump problem. To help, we’ve created a downloadable troubleshooting guide containing more information about each of these issues. So that you can keep your system up and running and avoid unplanned downtime. Download it here.

pto and <a href='https://www.ruidapetroleum.com/product/47'>hydraulic</a> <a href='https://www.ruidapetroleum.com/product/49'>pump</a> free sample

It is recommended to begin analyzing a PTO application using pre-determined necessary technical information about the work output and installation requirements. Go through the following steps to specify a PTO.

Determine the transmission information being used (i.e. automatic or manual, make, model, side of installation). Parker Chelsea has an application guide that will help organize the necessary information needed. There are identification tags on the transmission itself that provide the make and model of the transmission which is required for the application worksheet.

Establish the approximate engine speed desired during operation or PTO ratio (if known). PTO speed is stated as a percentage of engine speed. An example being the required pump speed of 1000 RPM and having an engine operating speed of 1500 RPM. The percentage of PTO to engine speed would be calculated to approximately two-thirds, or approximately 67 percent (e.g. 1000/1500 = 66.67, or 67%).

Define the direction of the Driven Equipment Shaft Rotation with there being two choices, engine and opposite-engine. The PTO requirements will be determined by the driven equipment. It is important to note the PTO output shaft rotation listed on the application page is in relation to the vehicle crankshaft rotation as viewed from the rear of the vehicle.(See Figure 1).

Define the duty cycle as intermittent or continuous. Intermittent duty cycles are defined as PTO operations that last for less than five minutes in any fifteen-minute period. Conversely, continuous duty cycles are defined as PTO operations for more than five minutes out of every 15. If an intermittent PTO is used for continuous operation, the required torque must be divided by .70 to get the torque requirement for the driven equipment. The PTO will need to de-rated if it was not designed for continuous duty.

Determine the type and size of the PTO output required (i.e. driveshaft – the size of output required, direct mount pump – mounting flange and shaft type/size).

While not all information is always available, here is an informal guideline that can get you started with the right information to help you select the right PTO for your application.

It is important to remember when the appropriate PTO has been selected through the concluded gathered information, review the application guide, and make sure that all the necessary information has been included. When searching for a PTO in a catalog, please remember to read the footnotes as there may be additional information to consider for specifying a PTO. This can include transmissions not being able to withstand torque capacity of the PTO and the application or some other unique feature of the unit may be mentioned through the footnotes.

To further investigate what different PTOs are being offered, including the new 210 series PTO for the 2020 Ford Super Duty 10R140 Transmission, be sure to check out www.parker.com/chelsea to learn more.

pto and <a href='https://www.ruidapetroleum.com/product/47'>hydraulic</a> <a href='https://www.ruidapetroleum.com/product/49'>pump</a> free sample

Helical multiplier gearboxes guarantee low-noise and comfortable operation and high transmission performance. Our gearboxes can be used for drills, loaders, forestry trailers, splitters, sweepers or mowers.

pto and <a href='https://www.ruidapetroleum.com/product/47'>hydraulic</a> <a href='https://www.ruidapetroleum.com/product/49'>pump</a> free sample

Check that the pump shaft is rotating. Even though coupling guards and C-face mounts can make this difficult to confirm, it is important to establish if your pump shaft is rotating. If it isn’t, this could be an indication of a more severe issue, and this should be investigated immediately.

Check the oil level. This one tends to be the more obvious check, as it is often one of the only factors inspected before the pump is changed. The oil level should be three inches above the pump suction. Otherwise, a vortex can form in the reservoir, allowing air into the pump.

What does the pump sound like when it is operating normally? Vane pumps generally are quieter than piston and gear pumps. If the pump has a high-pitched whining sound, it most likely is cavitating. If it has a knocking sound, like marbles rattling around, then aeration is the likely cause.

Cavitation is the formation and collapse of air cavities in the liquid. When the pump cannot get the total volume of oil it needs, cavitation occurs. Hydraulic oil contains approximately nine percent dissolved air. When the pump does not receive adequate oil volume at its suction port, high vacuum pressure occurs.

This dissolved air is pulled out of the oil on the suction side and then collapses or implodes on the pressure side. The implosions produce a very steady, high-pitched sound. As the air bubbles collapse, the inside of the pump is damaged.

While cavitation is a devastating development, with proper preventative maintenance practices and a quality monitoring system, early detection and deterrence remain attainable goals. UE System’s UltraTrak 850S CD pump cavitation sensor is a Smart Analog Sensor designed and optimized to detect cavitation on pumps earlier by measuring the ultrasound produced as cavitation starts to develop early-onset bubbles in the pump. By continuously monitoring the impact caused by cavitation, the system provides a simple, single value to trend and alert when cavitation is occurring.

The oil viscosity is too high. Low oil temperature increases the oil viscosity, making it harder for the oil to reach the pump. Most hydraulic systems should not be started with the oil any colder than 40°F and should not be put under load until the oil is at least 70°F.

Many reservoirs do not have heaters, particularly in the South. Even when heaters are available, they are often disconnected. While the damage may not be immediate, if a pump is continually started up when the oil is too cold, the pump will fail prematurely.

The suction filter or strainer is contaminated. A strainer is typically 74 or 149 microns in size and is used to keep “large” particles out of the pump. The strainer may be located inside or outside the reservoir. Strainers located inside the reservoir are out of sight and out of mind. Many times, maintenance personnel are not even aware that there is a strainer in the reservoir.

The suction strainer should be removed from the line or reservoir and cleaned a minimum of once a year. Years ago, a plant sought out help to troubleshoot a system that had already had five pumps changed within a single week. Upon closer inspection, it was discovered that the breather cap was missing, allowing dirty air to flow directly into the reservoir.

A check of the hydraulic schematic showed a strainer in the suction line inside the tank. When the strainer was removed, a shop rag was found wrapped around the screen mesh. Apparently, someone had used the rag to plug the breather cap opening, and it had then fallen into the tank. Contamination can come from a variety of different sources, so it pays to be vigilant and responsible with our practices and reliability measures.

The electric motor is driving the hydraulic pump at a speed that is higher than the pump’s rating. All pumps have a recommended maximum drive speed. If the speed is too high, a higher volume of oil will be needed at the suction port.

Due to the size of the suction port, adequate oil cannot fill the suction cavity in the pump, resulting in cavitation. Although this rarely happens, some pumps are rated at a maximum drive speed of 1,200 revolutions per minute (RPM), while others have a maximum speed of 3,600 RPM. The drive speed should be checked any time a pump is replaced with a different brand or model.

Every one of these devastating causes of cavitation threatens to cause major, irreversible damage to your equipment. Therefore, it’s not only critical to have proper, proactive practices in place, but also a monitoring system that can continuously protect your valuable assets, such as UE System’s UltraTrak 850S CD pump cavitation senor. These sensors regularly monitor the health of your pumps and alert you immediately if cavitation symptoms are present, allowing you to take corrective action before it’s too late.

Aeration is sometimes known as pseudo cavitation because air is entering the pump suction cavity. However, the causes of aeration are entirely different than that of cavitation. While cavitation pulls air out of the oil, aeration is the result of outside air entering the pump’s suction line.

Several factors can cause aeration, including an air leak in the suction line. This could be in the form of a loose connection, a cracked line, or an improper fitting seal. One method of finding the leak is to squirt oil around the suction line fittings. The fluid will be momentarily drawn into the suction line, and the knocking sound inside the pump will stop for a short period of time once the airflow path is found.

A bad shaft seal can also cause aeration if the system is supplied by one or more fixed displacement pumps. Oil that bypasses inside a fixed displacement pump is ported back to the suction port. If the shaft seal is worn or damaged, air can flow through the seal and into the pump’s suction cavity.

As mentioned previously, if the oil level is too low, oil can enter the suction line and flow into the pump. Therefore, always check the oil level with all cylinders in the retracted position.

If a new pump is installed and pressure will not build, the shaft may be rotating in the wrong direction. Some gear pumps can be rotated in either direction, but most have an arrow on the housing indicating the direction of rotation, as depicted in Figure 2.

Pump rotation should always be viewed from the shaft end. If the pump is rotated in the wrong direction, adequate fluid will not fill the suction port due to the pump’s internal design.

A fixed displacement pump delivers a constant volume of oil for a given shaft speed. A relief valve must be included downstream of the pump to limit the maximum pressure in the system.

After the visual and sound checks are made, the next step is to determine whether you have a volume or pressure problem. If the pressure will not build to the desired level, isolate the pump and relief valve from the system. This can be done by closing a valve, plugging the line downstream, or blocking the relief valve. If the pressure builds when this is done, there is a component downstream of the isolation point that is bypassing. If the pressure does not build up, the pump or relief valve is bad.

If the system is operating at a slower speed, a volume problem exists. Pumps wear over time, which results in less oil being delivered. While a flow meter can be installed in the pump’s outlet line, this is not always practical, as the proper fittings and adapters may not be available. To determine if the pump is badly worn and bypassing, first check the current to the electric motor. If possible, this test should be made when the pump is new to establish a reference. Electric motor horsepower is relative to the hydraulic horsepower required by the system.

For example, if a 50-GPM pump is used and the maximum pressure is 1,500 psi, a 50-hp motor will be required. If the pump is delivering less oil than when it was new, the current to drive the pump will drop. A 230-volt, 50-hp motor has an average full load rating of 130 amps. If the amperage is considerably lower, the pump is most likely bypassing and should be changed.

Figure 4.To isolate a fixed displacement pump and relief valve from the system, close a valve or plug the line downstream (left). If pressure builds, a component downstream of the isolation point is bypassing (right).

The most common type of variable displacement pump is the pressure-compensating design. The compensator setting limits the maximum pressure at the pump’s outlet port. The pump should be isolated as described for the fixed displacement pump.

If pressure does not build up, the relief valve or pump compensator may be bad. Prior to checking either component, perform the necessary lockout procedures and verify that the pressure at the outlet port is zero psi. The relief valve and compensator can then be taken apart and checked for contamination, wear, and broken springs.

Install a flow meter in the case drain line and check the flow rate. Most variable displacement pumps bypass one to three percent of the maximum pump volume through the case drain line. If the flow rate reaches 10 percent, the pump should be changed. Permanently installing a flow meter in the case drain line is an excellent reliability and troubleshooting tool.

Ensure the compensator is 200 psi above the maximum load pressure. If set too low, the compensator spool will shift and start reducing the pump volume when the system is calling for maximum volume.

Performing these recommended tests should help you make good decisions about the condition of your pumps or the cause of pump failures. If you change a pump, have a reason for changing it. Don’t just do it because you have a spare one in stock.

Conduct a reliability assessment on each of your hydraulic systems so when an issue occurs, you will have current pressure and temperature readings to consult.

Al Smiley is the president of GPM Hydraulic Consulting Inc., located in Monroe, Georgia. Since 1994, GPM has provided hydraulic training, consulting and reliability assessments to companies in t...

pto and <a href='https://www.ruidapetroleum.com/product/47'>hydraulic</a> <a href='https://www.ruidapetroleum.com/product/49'>pump</a> free sample

The Bezares 4200 Series Mechanical PTO is a dual output, eight-bolt, heavy-duty PTO with two independently air-operated outputs and a variety of ratio and output combinations. It is extremely versatile for many applications where two PTOs would be required.

Power Takeoff (PTO) units are complicated devices that perform many tasks on work trucks, but generally are used to provide power to hydraulic systems. There are more than a million PTO configurations depending on several factors, including the vehicle, the transmission, the application (work to be done), the required torque and horsepower needs to perform the work in a safe and efficient manner.

To further complicate matters, PTOs operate hydraulic systems which include a range of components for commercial vehicles, including pumps, fittings, tanks, valves and other related mobile power hydraulic components.

These challenges make selecting the right PTO a daunting task, without factoring in changing technology, new products, and changing application demands for vehicles. However, specialty companies who focus on the mobile power hydraulic market, like Eaton and others, can help ensure customers have the right mobile power system, including the PTO, for the job to be done.

One of the first decisions to make when spec’ing a PTO is how fast you want to run the engine when performing work. For example, if it’s a blower system, you must determine the torque specifications required to operate efficiently. Then you must match the vehicle’s transmission to the PTO and determine the best mounting location.

Other factors that determine a proper PTO include whether the vehicle has a manual, automatic or automated transmission and, depending on its age, what type of electronic control unit (ECU) is installed, as the PTO may have to be programed for proper operation.

Further complicating the product identification process is that each PTO component and manufacturer comes with a different part number, different ratios, and specifications making the ordering process confusing.

It’s important to remember there are experts that can help. For example, Eaton has streamlined and simplified the process with its “End Dump wet kit” packages for the Bezares brand of Mobile Power products including Power Takeoff (PTO) units.

The currently established kits fit popular Eaton Fuller and Eaton Cummins transmissions. The wet kits simplify the ordering and installation process by including all the components needed into a single part number. Offering all the needed components in one kit saves time to spec and receive compared to ordering individual parts and allows for a seamless installation.

Wet kits are installed on medium- and heavy-duty trucks that have accessories like booms and cranes that need hydraulic pumps to operate. The wet kits" hydraulic system is activated by the PTO mounted to the truck"s transmission.

Once installed properly, maintaining a mobile power system and PTO becomes a top priority. Failure to do so could lead to poor performance, unplanned down time, costly repairs, and more.

One rule of thumb for PTO maintenance is to have it inspected during normal or routine transmission maintenance, and make repairs, if needed, at that time. Since the PTO and transmission work together, inspecting and maintaining together can save time and money while ensure the efficient operation of your mobile power system.

Normal maintenance should include inspecting the connections between the pump and PTO for leaks, inspecting seals, cleaning and lubricating the shafts between the pump and PTO, and removing of any foreign objects, such as metal shavings, dirt and road grime. Looking for and repairing these commonly missed maintenance items will ensure the smooth operation of the system. Finally, receiving feedback from equipment operators is essential, as they are most likely to notice any unusual operation or noises and can help direct needed attention within the system.

Spec’ing the correct PTO for the vehicle and application, and properly maintaining it, will optimize performance and extend the lifecycle of the unit to provide years of reliable service.

About the author: Tim Bauer is vice president, Aftermarket, Vehicle Group North America at Eaton. He is responsible for all commercial aspects of the group’s aftermarket business. Bauer has extensive experience in the aftermarket business in both North America and Europe, and has held roles in sales, marketing, business development, operations, product strategy, and management.

pto and <a href='https://www.ruidapetroleum.com/product/47'>hydraulic</a> <a href='https://www.ruidapetroleum.com/product/49'>pump</a> free sample

A: PTO stands for power take-off, which is an auxiliary clutch on the bottom of an industrial truck. These are used in construction applications. You see these big trucks with the water tanks on them going up and down and spraying water out the back. They’re using that for dust control.

Every now and then you’ll see one and it’s spraying way over on a freshly finished highway where they just laid grass or hydroseed. They’ll use that to irrigate and that’s basically what it’s for is construction and new construction of highways. Also dust control and irrigation for new sod along fresh highways.

While water covers over 70% of the earth not all of it is readily accessible to all locations. Water trucks often bring water where it’s needed the most. They carry thousands of gallons of water and disperse them using a PTO water truck pump.

Before we get into what a PTO water truck pump is and PTO for that matter, let’s talk about PTO water trucks. A water truck is essentially a water reservoir on wheels that can disperse water at a regulated volume. It is mainly used for irrigation or other watering applications where a fixed water source is not readily accessible.

The rig includes the cab area for a driver and often a single passenger seat for a helper. Also within this cab is a full control panel for controlling how water is dispersed.

You’ll find water trucks being deployed in many applications and industries. They can be found deployed on a Hollywood movie set for water effects. They might also be used at archaeological sites to help in excavation. However, the most common applications include:

When you’re dealing with new construction or mining you can be guaranteed that there will be a lot of displaced dirt. That dirt when the wind picks up can create a ton of dust when it’s very dry. On a large construction or mining site, dust can become a hazard. It can limit visibility to dangerous levels, cause respiratory issues and get out of control in general. Water trucks are an excellent solution to tamp down the dust with a light dousing of water.

PTO water trucks are also used for compaction on construction sites. When dirt is dug up and displaced it is often very uneven. That can be dangerous for heavy equipment, plus it makes it hard to create flat road surfaces. The trucks can add just the right amount of water distributed evenly so that a plate compacter can smooth the ground. If there’s too much water it will turn to sludge, if not enough water the soil particles will not stick to each other. With the controls on water trucks, the water flow can be precisely controlled.

Using PTO water trucks for irrigation became very popular between 2011 and 2017 due to a series of droughts along the west coast and in the Midwest. California, one of the hardest states hit, was struggling to keep crops in the central valley from drying up.

Irrigation isn’t just for the crops though; livestock suffer too when watering holes dry up. A water truck with its large capacity can remedy both. Before these long drought seasons, water trucks were mainly used in construction and mining.

PTO water trucks are used both in a precautionary role and a reactive role in firefighting applications. Especially in the country and rural areas that lack organized water sources such as hydrants. They’re not only used for putting out fires but also as a precaution against wildfires. Water trucks during the summer will frequently dampen areas prone to burn.

Bulk water delivery providers rely heavily on water trucks to deliver bulk water to their residential customers. Often used to fill swimming pools, and landscape water features, for example. This application is especially popular for residential properties under drought control or surviving on untreated water from a well. Rather than wait for days for a hose to fill a pool wasting well water, trucks bring in the water and get it done quickly. This also prevents damage or excess stress on the well pump.

As evident in the recent winter freeze here in Houston—natural disasters, extreme climate events, or hurricanes can cause a water shortage. In the aftermath of the recent storm, water trucks parked outside many communities for people to fill up water bottles. This helped families by providing water to drink, bathe with, and wash dishes until pipes were repaired.

Water trucks use a special type of pump that runs off the powerful engine these trucks have. The process is referred to as “power take-off or PTO for short. A power take-off (PTO) pump is used to convert the rotary power from the engine to hydraulic power to run the water pump. A PTO doesn’t just run pumps, on tractors they can also run cotton balers, power mowers, and more. In the city, you see PTO’s in use on street sweepers and fire truck pumps.

PTO pumps, also called trunk pumps connect directly to the truck’s driveshaft. It uses that rotary power and converts it with the PTO, into hydraulic power. The hydraulic power is used to power the PTO water pump which is typically connected on-frame and to the tank.

PTO pumps deliver water at a high-output, and their most unique benefit is the ability to capture the massive engine output of these trucks. This output is the source behind the pumps ability to move large amounts of water very quickly. There are other great benefits PTO pumps bring to the table:

If you’ve ever tried repairing a broken water pump you know it’s almost easier to just buy a new one. That’s why you have to take such great care in maintaining most water pumps—except PTO pumps. These pumps, since they use the power of the truck engine to drive them—are practically maintenance-free.

There’s no worries about gasoline breaking down the pump. No spark plugs to worry about changing, and PTO pumps are built from powder-coated steel to take a beating.

Because they are quite large and have extreme performance capabilities, some assume these pumps are hard to set up. However, you’d be surprised just how simple it is.

Simply follow the instructions to mount the pump, connect it to the driveshaft and be about your business. They don’t even require many tools for setup and teardown.

These pumps simply do not cut corners on power. In fact, the most powerful PTO pump in existence moves 30,000 gallons of water an hour (GPH). GPH capability is typically the most important factor when choosing the right PTO pump for your application. However, keep in mind most PTO pumps measure capacity in gallons per minute (GPM).

Whether you have a single water truck or a fleet of 20 trucks for your contracting company, we’ve got you covered. Gulf Coast only carries the best pumps from legendary manufacturers such as Goulds. Contact us today and let us show you our selection and help you get the pump you need.