quiet <a href='https://www.ruidapetroleum.com/product/47'>hydraulic</a> <a href='https://www.ruidapetroleum.com/product/49'>pump</a> factory

In axial piston fixed pumps, the flow is proportional to the drive speed and the displacement. Axial piston fixed pumps are available for hydrostatic drives in open circuit.

... control options provide the flexibility to match the pump to a wide range of pressing, punching and other operations. Compare the ZE2 to the other pumps in the ZE-Series and determine the best pump ...

... piston pump type V30D is designed for open circuits in industrial hydraulics and operate according to the swash plate principle. They are available with the option of a thru-shaft for operating additional ...

... adopted for conventional pumps. Accordingly, multiple pumps can be assembled using silent stages together with conventional stages, and silent pumps can also be equipped with all the ...

Gear pump with reversible Rotation direction and internal drainage. Built in aluminium body, lighter than casting pumps, permits to work at high pressures with a low level of noise.

Compact, Portable, Cordless Hydraulic Pump for MRO Applications. Compact, Li-ion 18VDC, 9.0 Ah battery-powered pump provides extended run-time. Two-stage, high-pressure ...

... Team 400 series offers both single or multiple cylinder applications. Two-speed high output pump delivers up to 5 gpm (16 liter/min) of oil, with a low noise level of 73-80 dBA. Integral ...

The Power Team 120 series pump is exactingly designed for heavy duty, extended cycle operation up to 400 Ton. Built in grit, the series 120 pump can start and operate under full load, even with voltage ...

Like all the pumps of the HP Series, it is suitable for any hydraulic application which require very high hydraulic output pressures and a moderate and controllable oil flow, to ensure ...

... HP-LEVER pump of the HP Series is a single-acting air-hydraulic pump with manual operation with an ergonomic lever. It has an oil flow rate of 2.4 to 0.1 l / min and operating pressures ...

Air hydraulic pump, double pneumatic motor, double effect, foot operated with lock-up function, lever distributor valve (4/3), 10L tank, oil flow 8.5 / 0.26 l / min

Gear pumps GP1K Group 1 is an Ideal solution for hydraulic power packs. Modern technologies and many years of experience of the HYDROSILA company allow us to create pumps with high reliability ...

... variable displacement pump DPVD impresses with its innovative technology. Thanks to the inverse piston, the pump manages large swing angles and can be used with nominal pressures up to 400 bar. The model ...

The best match of low-noise and high-efficiency! The helical shape of the patented Elika® profile eliminates the phenomenon of air encapsulation typical of normal gear pumps, curing the ...

... DIN is a series of in-line dual flow pumps with extremely low noise levels for demanding mobile hydraulics. SLPD 20/20-64/32 DIN comes in eight different sizes, where ...

1. High pressure fixed vane pump with high working efficency and can be applied in hydraulic circuits. ...

PGP 500 pumps offer superior performance, high efficiency and low noise operation at high operating pressures. They are produced in four frame sizes (PGP 502, PGP 505,PGP 511, PGP 517) ...

quiet <a href='https://www.ruidapetroleum.com/product/47'>hydraulic</a> <a href='https://www.ruidapetroleum.com/product/49'>pump</a> factory

> quiet series pumps for heavy duty continuous operation. > oil dely (cu. in./min): 730 @ 100 psi, 60 (60 series) & 120 (120 series) @ 10,000 psi. > enclosed 2 hp 230v motor (60 series) & 3 hp 460v motor (120 series). > * - models with S suffix include solenoid valve with 25" remote control.

quiet <a href='https://www.ruidapetroleum.com/product/47'>hydraulic</a> <a href='https://www.ruidapetroleum.com/product/49'>pump</a> factory

Continuum pumps are used to pump fluids in a continuous flow. They are often used in industries such as the chemical, oil and gas industry, water treatment plants, and power stations as well as in forklifts, machine tools, and on boats.

These silent pumps’ helical rotors don’t trap any fluid volume. Continuum pumps run highly efficiently while still producing minimal sound, continuous flow can be maintained even at maximum operating speed. They produce exremely low vibrations and low pulsations, operating silently which helps to not disrupt operations and prevent noise pollution or complaints.

Pumps are a vital part of any water or wastewater project, and choosing the right one is an important decision. Continuum pumps are one of the most popular options because they offer a number of advantages over other types, such as centrifugal pumps. Here at Antech, we can help you choose the right pump for your project or application, we have a team of experts who have been supplying hydraulic equipment for many years and know all the ins and outs of it.

Here at Antech, we’re complete experts in everything to do with hydraulic engineering, as well as our team always being happy to help our existing customers, past customers, and potential future customers. We always provide fantastic customer service and our team is always here to provide advice and guidance when you need it. Simply use our contact form, email us, or call our number and you’ll be put through to a member of our fantastic sales team.

quiet <a href='https://www.ruidapetroleum.com/product/47'>hydraulic</a> <a href='https://www.ruidapetroleum.com/product/49'>pump</a> factory

Meeting the stringent sound-level specifications of today’s industrial hydraulic systems and machines takes careful engineering. In order to design a quiet hydraulic system you firstly need to consider the hydraulic pump. It addition to producing sound directly, it also generates vibrations and fluid pulsations. These react with other machine parts which produce more sound.

Hydraulic pumps generate more acoustic energy per unit of hydraulic power by running at high speed rather than at low. For this reason, a hydraulic pump should operate at 1200rpm whenever sound is critical. Below 3000 PSI, the trade-off between pressure and hydraulic pump size for a given drive power has little effect on noise, so you are free to select any combination of these factors that otherwise meet your needs.

To meet lower sound level limits, the hydraulic pump should be mechanically isolated from the rest of the machine or hydraulic system using anti-vibration mountings. All connections to the hydraulic pump must be made with flexible hose. Flexible hose will often reduce noise even where anti-vibration mountings are not used. It prevents vibrations from reaching other lines and hydraulic components to keep them from becoming sound sources. In long lengths, this hose is, itself, a good sound generator so only short lengths should be used. For long runs, use solid pipes with short hoses at the ends. All long lines must be supported every metre or so, preferably with clamps providing vibration damping. Lines must not contact panels that are good sounding boards. Where they pass through such panels, allow sufficient clearance to prevent direct contact. Never use bulkhead fittings in such cases.

The greatest sound level reductions are attained with the hydraulic pump acoustically, as well as mechanically isolated. This requires that the hydraulic pump be completely enclosed in a non-porous shell weighing at least 10 kg per square metre of surface. No openings can be tolerated and all joints must be sealed with resilient gaskets or mouldings. Grommets of rubber or other soft material are used to close openings around piping and to prevent mechanical contact between the enclosure and piping.

The condition of the hydraulic fluid being pumped is also important in the design of a quiet hydraulic system. Fluid viscosity, temperature and vacuum by themselves have no effect on sound levels. It is important to control them, however, to prevent the formation of entrained air or vapour bubbles that can double sound levels and reduce pump life.

Reservoirs enable entrained bubbles to be released. These can come from sources other than the hydraulic pump inlet and are usually present in the fluid returning to the reservoir. Low reservoir temperatures reduce the rate of bubble escape and may result in incomplete release. As pointed out earlier, high temperatures promote bubble formation. The best balance between these two alternatives is achieved by maintaining the temperature of oil leaving the reservoir in the range of 120-150 degrees F and the temperature of water-based fluids between 100-120 degrees F.

A simple reservoir has to be large to allow complete bubble release. By providing baffles to guide the fluid through a circuitous path and by locating return and pump inlet lines as far apart as possible, a reservoir holding between two to three minutes of maximum pump flow can be adequate.

quiet <a href='https://www.ruidapetroleum.com/product/47'>hydraulic</a> <a href='https://www.ruidapetroleum.com/product/49'>pump</a> factory

The unique design of the PQ120 Series electric hydraulic pump allows operators to start and operate under full load, even with voltage reduced by 10%. It is suitable for cylinders of up to 400 tons and is designed specifically for heavy-duty operation with a throughput of up to 1.6 litres per minute.

quiet <a href='https://www.ruidapetroleum.com/product/47'>hydraulic</a> <a href='https://www.ruidapetroleum.com/product/49'>pump</a> factory

Noise originates at the pump, and system designers can"t do much about that, but they can deal with several additional factors that contribute to and determine the final noise level.

When vibrations (in the form of longitudinal pressure waves) in the sonic or acoustic range reach the ear - whether transmitted through air, liquid, or solid - the person receiving those vibration hears sound. If the sound is unpleasant - because it lacks agreeable musical quality or is too loud it becomes noise. Excessive noise can be mentally and physically dangerous for workers. For both mandated and marketing reasons, much work has been done on reducing noise in the workplace over the past decade. Sound-producing components, such as pumps, are tested for noise generation and their ratings are published as part of their basic specification.

Yet, if you walk through any large automotive plant, you"ll probably pass some hydraulic power units that have sound-deadening enclosures built around them. The presence of a sound enclosure often indicates that the power unit did not operate at the sound rating shown in the manufacturer"s catalog for the pump. In other words, the catalog sound rating for the pump is usually much lower than the sound rating for the completed hydraulic power unit. Something happens during assembly of the power unit to metamorphose a relatively quiet pump into an unacceptably noisy power unit.

It"s generally understood that pump pressure and pump size have about an equal effect on the hydraulic noise that a pump will generate. hi addition, pump speed has about 300% greater affect on noise than either pressure or size. (This is the reason some pump manufacturers recommend lower-speed electric motors.) And fixed displacement pumps are usually quieter than variable-displacement models. But all of these factors are noted in the pump catalog. Something else - not mentioned in the catalog - is contributing to the increase in noise level.

The problem is that any slight noise generated by the pump is amplified throughout the structure of the hydraulic equipment. Lab tests show that pump noise levels are increased by 2 to 3 dB (A) just by adding 12 ft. of outlet and return lines. These lines do not generate noise - instead they radiate noise when they respond to pulsations or vibrations generated by the pump. Long hydraulic lines, whether pipe, tube, or hose, also frequently provide the primary path for propagating pulsations from the pump to components - such as the large flat metal surfaces the typically are part of hydraulic reservoirs - that react to them and radiate even higher noise levels. These phenomena help to explain why many pumps have a low noise rating, but when they are installed on a power unit, the assembly"s noise rating is much higher.Taking control of noiseIn any hydraulic system, the pump is the main source of pulsations and vibrations. While pump manufacturers have made noise reduction a design goal, every pump still produces some ripple the pump manufacturers" term for pulsations. Ripple produces the line vibrations which cause additional noise. System designers cannot change how much ripple the pump produces, so they must find ways to control the propagation of that ripple out through the rest of the system.

One of the first areas that should be reviewed when attempting to reduce power-unit noise is the hydraulic conductors. Somewhat surprisingly, one factor that can contribute much to the noise level is improper use of hydraulic hose. Recent research at a large pump manufacturer showed that they could take an average of 5 dB(A) out of a standard power unit merely by changing the configuration of the hydraulic hose. Frequently, a 90" curved hose is used when a horizontal line has to be connected to a vertical line, and 180" hose curves also are quite common. Experiments show that both of these configurations actually increase system noise level. The solution. don"t bend hydraulic hose; instead, substitute bent metal tubing, Only use hose in a relatively straight line.

It is well known that introducing a compressible medium such as nitrogen into the relatively incompressible medium of hydraulic fluid will help reduce pulsations. The challenge is to get the fluid to interact with the nitrogen so the nitrogen compresses and the fluid merely loses its pulsation.

Over the years, nitrogen-charged accumulators have been installed in many hydraulic circuits to absorb pulsations. At first, accumulators were used as appendage devices - teed off the hydraulic line. The designer hoped that the pulsations would wander into the accumulator. However, experience showed that the majority of the pulsations bypassed the line leading to the accumulator. Different designs then involved in which the full flow was diverted into the accumulator. Correctly sizing this type of accumulator is complicated and the circuit that directs flow into the accumulator is very expensive. Also, pressure drop through these accumulators may be unacceptably high.

Another method of using compliant nitrogen to deal with noise-causing pulsations is to mount an in-line nitrogencharged noise suppressor right at the outlet of the pump. (This suppressor is described in detail in the box at right.) This design is more efficient than a large conventional accumulator because the fluid flow-path to the bladder is short and unrestricted, and the fluid contacts a much greater bladder area,

Pulsations enter the suppressor and then pass through the three baffles - a total radial distance of only in. - and strike the bladder, which typically is charged at 50 to 60% of the hydraulic system operating pressure. The bladder deflects each time it is hit by a pulsation, and this slight deflection absorbs and reduces noise - and as a bonus, any shock waves. The bladder"s large area, its ability to oscillate at high frequency, and short travel distance combine to absorb pulsations with frequencies above 600 Hz.

The size of the suppressor is determined simply by the size of the hydraulic line in which it will be installed. Models are available for pipe and tube sizes from 3/8 to 3 in., with NPT pipe, SAE rube, and splitflange port connections. Sizing older-style, accumulator-type hydraulic pulsation dampeners was a long and complicated process. With this design, the size of the line becomes the size of the suppressor.

One pump manufacturer built 60 double-pump power units for an automotive plant. The completed power units registered a noise level of 90 dB(A), but the plant"s noise specification was 82 dB(A). The manufacturer decided that the least expensive solution was to install inline noise suppressors directly at the outlet of the pumps. The suppressors brought the noise level down to 78 dB(A), and the cost was considerably less than building noise enclosures around the power units.

quiet <a href='https://www.ruidapetroleum.com/product/47'>hydraulic</a> <a href='https://www.ruidapetroleum.com/product/49'>pump</a> factory

Hydraulic systems are in general members of the fluid power branch of power transmission. Hydraulic pumps are also members of the hydraulic power pack/hydraulic power unit family. Hydraulic units are encased mechanical systems that use liquids for hydraulics.

The hydraulic systems that hydraulic pumps support exist in a range of industries, among them agriculture, automotive manufacturing, defense contracting, excavation, and industrial manufacturing. Within these industries, machines and applications that rely on hydraulic pumps include airplane flaps, elevators, cranes, automotive lifts, shock absorbers, automotive brakes, garage jacks, off-highway equipment, log splitters, offshore equipment, hydraulic motors/hydraulic pump motors, and a wide range of other hydraulic equipment.

When designing hydraulic pumps, manufacturers have many options from which to choose in terms of material composition. Most commonly, they make the body of the pump–the gears, pistons, and hydraulic cylinders–from a durable metal material. This metal is one that that can hold up against the erosive and potentially corrosive properties of hydraulic fluids, as well as the wear that comes along with continual pumping. Metals like this include, among others, steel, stainless steel, and aluminum.

First, what are operating specifications of their customer? They must make sure that the pump they design matches customer requirements in terms of capabilities. These capabilities include maximum fluid flow, minimum and maximum operating pressure, horsepower, and operating speeds. Also, based on application specifications, some suppliers may choose to include discharge sensors or another means of monitoring the wellbeing of their hydraulic system.

Next, what is the nature of the space in which the pump will work? Based on the answer to this question, manufacturers will design the pump with a specific weight, rod extension capability, diameter, length, and power source.

Manufacturers must also find out what type of substance does the customer plan on running through the pumps. If the application calls for it, manufacturers can recommend operators add other substances to them in order to decrease the corrosive nature of certain hydraulic fluids. Examples of such fluids include esters, butanol, pump oils, glycols, water, or corrosive inhibitors. These substances differ in operating temperature, flash point, and viscosity, so they must be chosen with care.

All hydraulic pumps are composed in the same basic way. First, they have a reservoir, which is the section of the pump that houses stationary fluid. Next, they use hydraulic hoses or tubes to transfer this fluid into the hydraulic cylinder, which is the main body of the hydraulic system. Inside the cylinder, or cylinders, are two hydraulic valves and one or more pistons or gear systems. One valve is located at each end; they are called the intake check/inlet valve and the discharge check/outlet valve, respectively.

Hydraulic pumps operate under the principle of Pascal’s Law, which states the increase in pressure at one point of an enclosed liquid in equilibrium is equally transferred to all other points of said liquid.

To start, the check valve is closed, making it a normally closed (NC) valve. When the check is closed, fluid pressure builds. The piston forces the valves open and closes repeatedly at variable speeds, increasing pressure in the cylinder until it builds up enough to force the fluid through the discharge valve. In this way, the pump delivers sufficient force and energy to the attached equipment or machinery to move the target load.

When the fluid becomes pressurized enough, the piston withdraws long enough to allow the open check valve to create a vacuum that pulls in hydraulic fluid from the reservoir. From the reservoir, the pressurized fluid moves into the cylinder through the inlet. Inside the cylinder, the fluid picks up more force, which it carries over into the hydraulic system, where it is released through the outlet.

Piston pumps create positive displacement and build pressure using pistons. Piston pumps may be further divided into radial piston pumps and axial piston pumps.

Radial pumps are mostly used to power relatively small flows and very high-pressure applications. They use pistons arranged around a floating center shaft or ring, which can be moved by a control lever, causing eccentricity and the potential for both inward and outward movement.

Axial pumps, on the other hand, only allow linear motion. Despite this, they are very popular, being easier and less expensive to produce, as well as more compact in design.

Gear pumps, or hydraulic gear pumps, create pressure not with pistons but with the interlocking of gear teeth. When teeth are meshed together, fluid has to travel around the outside of the gears, where pressure builds.

External gear pumps facilitate flow by enlisting two identical gears that rotate against each other. As liquid flows in, it is trapped by the teeth and forced around them. It sits, stuck in the cavities between the teeth and the casing, until it is so pressurized by the meshing of the gears that it is forced to the outlet port.

Internal gear pumps, on the other hand, use bi-rotational gears. To begin the pressurizing process, gear pumps first pull in liquid via a suction port between the teeth of the exterior gear, called the rotor, and the teeth of the interior gear, called the idler. From here, liquid travels between the teeth, where they are divided within them. The teeth continue to rotate and mesh, both creating locked pockets of liquid and forming a seal between the suction port and the discharge port. Liquid is discharged and power is transported once the pump head is flooded. Internal gears are quite versatile, usable with a wide variety of fluids, not only including fuel oils and solvents, but also thick liquids like chocolate, asphalt, and adhesives.

Various other types of hydraulic pumps include rotary vane pumps, centrifugal pumps, electric hydraulic pumps, hydraulic clutch pumps, hydraulic plunger pumps, hydraulic water pumps, hydraulic ram pumps, portable 12V hydraulic pumps, hydraulic hand pumps, and air hydraulic pumps.

Rotary vane pumps are fairly high efficiency pumps, though they are not considered high pressure pumps. Vane pumps, which are a type of positive-displacement pump, apply constant but adjustable pressure.

Centrifugal pumps use hydrodynamic energy to move fluids. They feature a rotating axis, an impeller, and a casing or diffuser. Most often, operators use them for applications such as petroleum pumping, sewage, petrochemical pumping, and water turbine functioning.

Electric hydraulic pumps are hydraulic pumps powered by an electric motor. Usually, the hydraulic pump and motor work by turning mechanisms like impellers in order to create pressure differentials, which in turn generate fluid movement. Nearly any type of hydraulic pump can be run with electricity. Most often, operators use them with industrial machinery.

Hydraulic clutch pumps help users engage and disengage vehicle clutch systems. They do so by applying the right pressure for coupling or decoupling shafts in the clutch system. Coupled shafts allow drivers to accelerate, while decoupled shafts allow drivers to decelerate or shift gears.

Hydraulic ram pumps are a type of hydraulic pump designed to harness hydropower, or the power of water, to elevate it. Featuring only two moving hydraulic parts, hydraulic ram pumps require only the momentum of water to work. Operators use hydraulic ram pumps to move water in industries like manufacturing, waste management and sewage, engineering, plumbing, and agriculture. While hydraulic ram pumps return only about 10% of the water they receive, they are widely used in developing countries because they do not require fuel or electricity.

Hydraulic water pumps are any hydraulic pumps used to transfer water. Usually, hydraulic water pumps only require a little bit of energy in the beginning, as the movement and weight of water generate a large amount of usable pressure.

Air hydraulic pumps are hydraulic pumps powered by air compressors. In essence, these energy efficient pumps work by converting air pressure into hydraulic pressure.

Hydraulic pumps are useful for many reasons. First, they are simple. Simple machines are always an advantage because they are less likely to break and easier to repair if they do. Second, because fluid is easy to compress and so quick to create pressure force, hydraulic pumps are very efficient. Next, hydraulic pumps are compact, which means they are easy to fit into small and oddly shaped spaces. This is especially true in comparison to mechanical pumps and electrical pumps, which manufacturers cannot design so compactly. Speaking of design, another asset of hydraulic pumps is their customizability. Manufacturers can modify them easily. Likewise, hydraulic pumps are very versatile, not only because they are customizable, but also because they can work in places where other types of pump systems can’t, such as in the ocean. Furthermore, hydraulic pumps can produce far more power than similarly sized electrical pumps. Finally, these very durable hydraulic components are much less likely to explode than some other types of components.

To make sure that your hydraulic pumps stay useful for a long time, you need to treat them with care. Care includes checking them on a regular basis for problems like insufficient fluid pressure, leaks, and wear and tear. You can use diagnostic technology like discharge sensors to help you with detect failures and measure discharge pressure. Checking vibration signals alone is often not enough.

To keep yourself and your workers safe, you need to always take the proper precautions when operating or performing maintenance and repairs on your hydraulic pumps. For example, you should never make direct contact with hydraulic fluid. For one, the fluid made be corrosive and dangerous to your skin. For two, even if the pump isn’t active at that moment, the fluid can still be pressurized and may potentially harm you if something goes wrong. For more tips on hydraulic pump care and operation, talk to both your supplier and OSHA (Occupational Safety and Health Administration).

Pumps that meet operating standards are the foundation of safe and effective operations, no matter the application. Find out what operating standards your hydraulic pumps should meet by talking to your industry leaders.

The highest quality hydraulic pumps come from the highest quality hydraulic pump manufacturers. Finding the highest quality hydraulic pump manufacturers can be hard, which is why we have we listed out some of our favorites on this page. All of those whom we have listed come highly recommended with years of experience. Find their information nestled in between these information paragraphs.

Once you have put together you list, get to browsing. Pick out three or four hydraulic pump supply companies to which you’d like to speak, then reach out to each of them. After you’ve spoken with representatives from each company, decide which one will best serve you, and get started on your project.

quiet <a href='https://www.ruidapetroleum.com/product/47'>hydraulic</a> <a href='https://www.ruidapetroleum.com/product/49'>pump</a> factory

The high pressure and large capacity pump with ample experience is combined with an electric motor by introducing a unique bellhousing. This development realizes compact pump units. Furthermore the flexible mount of the hydraulic pump alleviates the vibration and system noise.

By Kawasaki Silent System which realizes the best class of low noise characteristics in the industries of high pressure hydraulic deck machinery, it contributes to the improvement of living environment for passengers and crews on the vessel such as ferry.

quiet <a href='https://www.ruidapetroleum.com/product/47'>hydraulic</a> <a href='https://www.ruidapetroleum.com/product/49'>pump</a> factory

The RKP-D family of products has an intelligent control mechanism that allows the user to optimize the usage of control entities within a hydraulic system, often making the need for central control hardware redundant

Moog is the leading supplier for Radial Piston Pumps (RKP) worldwide. This mature and robust product has been used for decades and runs today in over 100,000 machines in various applications around the globe. It is widely known for its robust and reliable design.

In the current generation, Moog made significant product improvements in the design to make it quieter and more compact, while offering rapid response times and high volumetric efficiencies.

The Moog Radial Piston pump comes in 8 pump sizes between 19 cc and 140 cc per revolution (19, 32, 45, 63, 80,100, 140 and 250) and has a maximum speed range of 1,800 to 2,900 rpm

Large selection of controls, including standard pressure compensator (Type F), remote pressure compensator (Type H), pressure and flow control (Type J,R) and digital electro-hydraulic control (RKP-D)

quiet <a href='https://www.ruidapetroleum.com/product/47'>hydraulic</a> <a href='https://www.ruidapetroleum.com/product/49'>pump</a> factory

Repairing and supplying re-manufactured and new Parker hydraulics. We service and supply Parker Hydraulics pumps, Parker hydraulics valves, Parker hydraulics cylinders and Parker hydraulics motors so search our online catalog or contact us and let us know how we can help you..

We can supply what you need or repair what you have. Before purchasing, there may be a good chance that your current hydraulic pump, motor, valve or cylinder can be repaired. Parker hydraulics pump repairs, including motors, cylinders and valves, comes with our two year warranty.

When purchasing, consider Parker hydraulics remanufactured or after market hydraulic units. Best of all they can get you back up and running for less than the cost of a new hydraulic unit. We will give you a free quote so you can compare costs for a new, repaired or reman Parker unit.

In 1924, founder Arthur L. Parker saved the company from bankruptcy, restarting the hydraulic components division for automatic and aviation customers. When Parker died in 1945, his wife Helen hired new management, which helped rebuild the business. Their son Patrick Parker eventually took control.

1978 saw Parker introduce Win Strategy and then in Europe, Parker gathered many companies in fluid power business from 1997 including Commercial Hydraulics and VOAC Hydraulics. In 2005, after Patrick Parker died, two mile stones were met. Company sales reached $8.2 billion and the Parker won the bid for the Boeing 787 Dreamliner passenger jet hydraulic subsystem.

Environment:Parker Hydraulics acts carefully, protecting the world all around so our products limit polluting anything important to customers’ health.

Parker Hydraulics’ gear pumps have operating pressures up to 3,650 psi and speeds up to 2,000 rpm while offering superior performance which gives optimal efficiency and low noise at high operating pressures. Gear pump sizes range from 8-19cc. Screw pumps are dependable and economical low pressure pumps are free from pulsations, ensuring a long service life and quiet operation.

Pressure relief groove special designs ensures low flow pulsations and low noise levels. Generated rotor double-feeds provide first-rate suction ability while dual shaft bearing ensures long service life. Pressure chambers special designs ensures low pressure pulsations while any extra material mixture makes the pump light and compact.

Piston pumps’ two independently controlled over-center piston pumps on a single input drive shaft are housed in a compact reservoir with a filter and associated valving while input speed is 3600 RPM and intermittent pressure is 2600 PSI.

Brake motors often applied with hydraulic release brakes, have superior side load capacity, a high pressure shaft seal and a low speed operation making them ideal for heavy duty applications requiring a parking or holding brake while common brake motor applications include man-lifts, winches, and boom rotates.

Check valves flow devices used mainly in hydraulic systems, remove potential damage caused by fluid back pressure. Available one- and two-stage poppets pilot ratios of 1:5 and 1:40 allow for a wider variety of operating conditions. Their designs ensure an easy configuration of stack systems while they provide a good price-performance ratio.

Needle valves function for speed controls on hydraulic and pneumatic systems where a reverse flow check is not needed while they provide excellent control and a reliable shutoff in a very small envelope. A two-step needle allows fine adjustment at low flow by using the first three turns of the adjusting knob. The next three turns open the valve to full flow, and also provide standard throttling adjustments.

Heavy duty tie rod hydraulic cylinders ratings for use at working pressures up to 210 bars depend on the rod end and type of service while options include feedback transducers and position switches, integral cushions, oversize ports, stop tubes, stroke limiters, gland drains, and rod end protection. Applications include machine tools, transfer lines, injection molding, presses, test equipment and robotics.

This line of hydraulic cylinders’ premium quality and heavy duty aspects lack fatigue at their full rated pressure of 160 bars. Features include removable glands and separate bodies with detachable heads and caps, ensuring ease of maintenance while their accompanying piston rod diameters range from 22mm to 220mm.

quiet <a href='https://www.ruidapetroleum.com/product/47'>hydraulic</a> <a href='https://www.ruidapetroleum.com/product/49'>pump</a> factory

The Power Team P-Series hand pumps come in a variety of configurations to meet the requirements of your application.  Along with various oil capacities and flow rates, you can choose from the following options:

Compact design ensures that the Power Team PA6 series pump is lightweight and portable. The PA6 series consists of single-speed pumps designed to drive single-acting cylinders. The power unit of choice for major manufacturers of auto body, frame straighteners and other equipment. Operates at 40-100 psi (3-8 bar) shop air pressure at the pump, dBA 85 at 10,000 psi (700 bar). Serviceable pump motor is not a “throwaway”, providing economical repair. Permanently vented reservoir cap. Internal relief valve protects circuit components, air inlet filter protects motor.

Compact, lightweight and portable the Power Team PA6D series pumps are single-speed pumps for driving double-acting cylinders. The PA6D series pumps operate at 40-100 psi (3-8 bar) shop air pressure at the pump. Designed with longevity in-mind the PA6D series feature internal relief valve protects circuit components, air inlet filter protects motor. Serviceable pump motor is not a “throw away”, providing economical repair. Permanently vented reservoir cap. dBA 85 at 10,000 psi (700 bar) for all PA6 pump.

Ideal for powering single-acting cylinders and portable hydraulic tools, the Power Team PA9 series pumps are easier to operate than a hand pump, designed for efficiency. Built to be economical in service; the PA9 series is not a “throwaway” unit. Unique bladder design for all-position operation and storage. Operates on 40-120 psi (3-8 bar) shop air, at 20 cfm (570 l). Hard-coat anodized aluminum housing. Oil filler with integral safety relief minimizes chance of damage to reservoir bladder if overfilling occurs.

A two-speed pump, the Power Team PA60 series pumps are designed for rapid oil delivery at low pressure to quickly advance cylinder or tool. Equipped with air pressure regulator, air filter and lubricator. Serviceable air motor for economical repair. Internal relief valve protects circuit components. Permanently vented reservoir cap.

Focused on single-speed and low pressure the Power Team PA50 series pump outputs 3,200 PSI / 220 BAR, fitting serviceable requirements for air motor for economical repair. Integrated air inlet filter protects motor. The PA50 series also features a filter in outlet port protects against contaminated systems Assorted reservoirs to suit your application"s requirements.

Rotary-Style Air Motor.  Use where air is the preferred source of energy.  3 hp motor starting under full load.  Two-speed operation for rapid cylinder advance.  Models available with full remote control over advance and return, except PA554.  Tandem center valve holds the load when pump is shut-off.

Compact, Portable, Cordless Hydraulic Pump for MRO Applications.  Compact, Li-ion 18VDC, 9.0 Ah battery-powered pump provides extended run-time.  Two-stage, high-pressure hydraulic pump offers quick tool advancement in the first stage.  Extremely compact, lightweight with an ergonomic handle grip and transport strap to ease portability.  Self-contained, rubber bladder reservoir allows pump usage in most positions with an impressive capacity of 70 cu. in. usable.  Quiet, smooth-running, serviceable brushed 18VDC motor.  High-impact, fiberglass reinforced shroud protects your investment in the most demanding and harsh applications.  Interchangeable valve configuration accommodates a vast array of applications.  CSA rated for intermittent duty, CE compliant.

The 10 series Power Team hydraulic pumps are designed to have a maximum of 690 bar (10,000 psi) at a flow rate of 164 cc/min (10 cu. in/min). All Power Team pumps come fully assembled, and each with the ability to be valved for either single- or double acting cylinders. Designed to be compact can easily mobile, the power team 10 series includes a portable power source is included for hydraulic cylinders, and tools. The permanent magnet motor is strategically constructed to easily start under load, even with reduced voltage conditions. Battery-operated models have 8 foot (2,4 m) power cord with alligator clips to connect to any 12 volt battery, optional rechargeable battery pack with shoulder strap are alternatives for maximum portability. The Power Team 10 series pump typically delivers 15 minutes of continuous operation at 10,000 psi (700 bar) on a single battery. Built to withstand High-impact, shielded with a flame retardant construction.

The Power Team 17 series pump is delibertly designed for maintenance and construction applications up to 55 Ton. For use with single-acting or double-acting cylinders at operating pressures to 10,000 psi (700 bar). For intermittent duty; starts under full load. Equipped with 1⁄2 hp (0,37 kW), 3,450 rpm, single-phase, thermal protected induction motor; 10 ft. remote control cord (PE172S has 25 ft. (7,6 m) cord) Low amperage draw; small generators and low amperage circuits can be used as power source. Extremely quiet noise level (67-81 dBA).

Vanguard Jr. + Power Team 18 series pumps provide two-speed high performance in a light-weight, compact package. Designed to provide a gauge port and metal reservoir on all pump models. Equipped with a 1⁄2 hp (0,37 kW), 115 volt, 60/50 Hz single phase motor that starts under load, even at reduced voltage. Low amperage draw permits use with smaller generators and low amperage circuits. All pumps have a 10 foot (3 m) remote control. CSA rated for intermittent duty. Noise level of 85-90 dBA. For operating hydraulic crimping, cutting or other tools: No. PE184C - Allows you to alternately operate a spring-return cutting and/or crimping tool without disconnecting either tool. Select a port connection with a manual 4-way valve, start the pump with a remote control hand switch and extend the connected tool. When the hand switch is switched to off, the pump stops and the automatic valve opens, allowing the tool to return. In the center (neutral) position, a manual control valve holds the tool in position at the time valve is shifted.

The 21 series Power Team pump and RD5513 cylinder used in a special press that produces pharmaceutical-grade extracts for herbal medicines. Totally enclosed, fan cooled induction motor: 1 hp (0,75 kW), 1,725 rpm, 60 Hz, single phase. Designed intentional for thermal overload protection. Remote control, with 10 foot (3,1 m) cord is standard on pumps with solenoid valves. Manual valve pumps have “Stop”, “Start” and “Run/Off/Pulse” switches. Pump controls are moisture and dust resistant. Motor drip cover with carrying handles and lifting lug. Low noise level of 70 dBA@ 10,000 psi (700 bar). In the event of electrical interruption, pump shuts off and will not start up until operator presses the pump start button. 24 volt control circuits on units with remote controls provide additional user/operator safety.

Ideal for running multiple tools or cylinders from one power unit. Recommended for cylinders up to 75 tons. Two-speed pumps have the same low pressure and high pressure flows from both valves. Flows and pressures of each pump are independent. Delivers 300 cu. in./min. of oil at 100 psi (4,8 liter/min of oil at 7 bar) and 25 cu. in./min. at 10,000 psi (0,4 liter/min at 700 bar) from each pump. 1 1/2 hp, 110/115 volt, 60 Hz (1,12 kW, 220 volt, 50 Hz) induction motor, 10 foot (3,1 meter) remote control and 5 gallon (19 liter) steel reservoir. Models available for operating single-acting or double-acting cylinders. Each power unit contains two separate pumps and two separate valves allowing operator to control multiple processes with one power unit. Both pumps on each power unit are equipped with an externally adjustable pressure relief valve. Not recommended for frequent starting and stopping.

The Power Team 30 series pump is intently ideal for maintenance and construction applications.  Operating both single-acting or double-acting cylinders. A dynamically built, Integral roll cage protects the 30 series pump from many forms of damage. 1 hp (0,75 kW), single phase, permanent magnet motor. High performance to weight ratio. Starts under full load even when voltage is reduced to 50% of nominal rating. Quit operations: 82 dBA @ 10,000 psi (700 bar) and 87 dBA @ 0 psi (0 bar). CSA rated for intermittent duty. Remote controls and/or solenoid valves feature 24 volt controls.

The Power Team 46 series is best suited for under the roof maintenance and production applications. Equipped with two-speed high-performance pump, for use with single- or double-acting cylinders at operating pressures to 10,000 psi (700 bar) the 46 series pump is versitile. With a 1 1⁄2 hp (1.12 kW), 3,450 (2,875) rpm single-phase, 60 (50) Hz thermal protected induction motor that starts under full load. Noise level of 77-81 dBA. All equipped with a 10 foot (3,1 m) remote control except PE462S which has a 25 foot (7,6 m) remote control. 24 volt control circuit on all units with remote control. CSA rated for intermittent duty.

A powerful multifaceted pump, the Power Team 55 pump excels at multiple applications. From heavy construction to concrete stressing this pump series is designed for intensity. With low voltage starting possible,  the 50/60 Hz universal motor; draws 25 amps at full load, and can start at reduced voltage. CSA rated for intermittent duty. 10 foot (3,1 m) remote motor control (except PE552S which has a 25 foot (7,6 m) remote motor and valve control). True unloading valve achieves greater pump efficiency, allowing higher flows at maximum pressure. Reservoirs available in sizes up to 10 gallons (38 liter). Lightweight and portable. Best weight-to-performance ratio of all Power Team pumps. “Assemble to Order” System: There are times when a custom pump is required. Power Team’s “Assemble to Order” system allows you to choose from a wide range of pre-engineered, off-the shelf components to build a customized pump to fit specific requirements. By selecting standard components you get a “customized” pump without “customized” prices. All pumps come fully assembled, add oil and ready for work.

A compact lightweight pump, the Power Team 60 series is designed for rugged applications and low voltage starting. Experiencing a long, trouble-free life in the most demanding work environments, the 60 series is durable.. Powered by 1 1⁄8 hp, 115 volt, 60/50 Hz (0,84 kW, 220 volt, 60/50 Hz) single phase motor. Starts under load, even at the reduced voltages at construction sites. Optional fan-driven external oil cooler includes rollover guard. Insulated carrying handle. Integral 4" (102 mm) diameter fluid-filled pressure gauge with steel bezel complies with ASME B40.1 Grade A. 0 to 10,000 psi (0 to 700 bar) pressure range in 100 psi (7 bar) increments. Sealed 3⁄4 gallon (4,34 liter (usable) reservoir. Reservoir drain port is standard. Standard oil level sight gauge for accurate oil level monitoring. External spin-on filter removes contaminants from circulating oil to maximize pump, valve and cylinder/tool life.

The Power Team PQ60 series pumps are designed specifically for heavy-duty, extended cycle operation. Integrating single- or double-acting cylinders the PQ60 series is versatile. Constructed for longevity by employing a metal shroud keeps dirt and moisture out of motor and electrical components. An electrical shut-down feature prevents unintentional restarting of motor following an electrical service interruption. Internal relief valve limits pressure to 10,000 psi (700 bar). External relief valve is adjustable from 1,000 to 10,000 psi (70 to 700 bar). The Power Team PQ60 pumps operate below maximum OSHA noise limitation (74-76 dBA). Start and operate under full load, even with voltage reduced by 10%.

The Power Team 120 series pump is exactingly designed for heavy duty, extended cycle operation up to 400 Ton. Built in grit, the series 120 pump can start and operate under full load, even with voltage reduced 10%. An electrical shut-down feature prevents unintentional restarting of motor following an electrical service interruption. Internal relief valve limits pressure to 10,000 psi (700 bar) and an external relief valve is adjustable from 1,000 to 10,000 psi (70 to 700 bar). Pump prewired at factory with a 3 hp, 460 volt, 60 Hz (2,24 kW, 380 volt, 50 Hz), 3 Phase motor. Other electrical configurations are available. 24 volt control circuits on units with remote controls for added user/operator safety. 3 hp (2,24 kW) 3 phase motor with thermal overload protection. Motor starter and heater element supplied as standard equipment; with an intentionally designed metal shroud to keep dirt and moisture out of motor and electrical components. Pumps operate below maximum OSHA noise limitation.

With high tonnage double-acting cylinders, the Power Team 400 series offers both single or multiple cylinder applications. Two-speed high output pump delivers up to 5 gpm (16 liter/min) of oil, with a low noise level of 73-80 dBA. Integral electrical shut-down feature prevents unintentional restarting of motor following an electrical service interruption. Over-current protection prevents damage to motor as a result of overheating. “Stop” and “Start” control buttons are 24 volt. PE4004 has a 4-way/3-position manual valve. The PE4004S has a 4- way/3-position solenoid valve with a 24 volt remote hand switch. External pressure relief valve is adjustable from 1,500 to 10,000 psi (100 to 700 bar). Heavy duty 4" (50,8 mm) diameter casters assure easy maneuvering. 20 gallon (3,927 cu. in. usable) / 75,7 liter (62,8 liter usable) reservoir has a low oil level sight gauge. Powered by a dual voltage 10 hp (7,46 kW), 3 phase, 1,725 (1,437) rpm motor. 3 phase motor has all the electrical components necessary to operate the pump.The customer has no hidden charges when making purchase. Deliver 1,200 cu. in./min. (16 liter/min) of oil @ 200 psi (15 bar), 420 cu. in./min. (5,6 liter/min) of oil @ 10,000 psi (700 bar).

Power team synchronized lifting and lowering system, the MCS ( motion controller system ) series can be used in many hydraulic applications where load position is critical, requiring cylinder synchronization. Whether it is a bridge, a building or any kind of heavy load, with the SPX FLOW power team motion control system, lifting, lowering, pushing, pulling, tilting or positioning loads can be carried out automatically with a high degree of accuracy. The PLC-controlled system is a combination of digital actuation and digital control providing significant advantages such as time savings, repeatability, and extremely low internal stress in the object one is moving. The system also provides documentation for the movement performed.

Extremely durable yet lightweight and operable under low-line voltage conditions, the Power Team PE-NUT series pumps are constructed for challenging conditions. A 115V 5/8 hp (0,46 kW) universal electric motor (50/60 cycle), employing a two-stage pump for efficiency and designed for use with spring-returned remote tools. The PE-NUT series pumps also feature high-pressure safety relief valve, remote hand control with 10-foot (3,1 meter) cord, and a pressure matched quick-coupler supplied. The PE-NUT series uniquely utilizes intermittent duty, piston-type high-pressure pump supercharged by a low-pressure pump. CAUTION: DESIGNED FOR CRIMPING APPLICATION ONLY! This system should not be used for lifting.

Gasoline power ideal for remote locations.  A logical choice at work sites where electricity or compressed air are unavailable. For single or double-acting cylinders at operating pressures up to 10,000 psi.  All gasoline engine/hydraulic pumps feature Posi-Check® valve to guard against pressure loss when valve is shifted from “advance” to “hold.”

PG303 is for single-acting cylinders, has a 9520 valve with separate internal return line which allows oil from running pump to return to reservoir, independently of cylinder return oil, when valve is in “return” position.

PG1200 Series pumps powered by a Honda 4-cycle, 5.5 hp engine with automatic decompression and electronic ignition. Deliver over 0.5 gallon (130 cu. in.) of oil per minute at 10,000 psi.

Rubber anti-skid insulation on bottom of reservoir resists skidding and dampens vibration. PG1200M-4 and PG1200M-4D include a pump cart with 12” wheels.

The Power Team HB series is purposefully constructed to convert low-pressure portable hydraulic pumps or on-board hydraulic systems, into high pressure power sources. HB series applications include utilities, railroads, construction, riggers and others. This product operates single or double-acting cylinders, jacks, and tools such as crimpers, spreaders, cable cutters, or tire tools. Version for use with double-acting torque wrenches available. May be used to operate two separate, single-acting tools (with integral valves) independently, without need for additional manifold. Control valve included. Other Power Team valves available as an option to suit your specific application, if needed; consult factory. Compact and rugged for use inside a utility vehicle aerial bucket or stowing in a vehicle. No reservoir level to maintain; uses low pressure system as oil supply. Has 3⁄8" NPTF ports; compatible with standard fittings for low and high pressure systems.

Portable two-speed pump operated in any position (open or closed-center) providing pressures up to 10,000 psi for the operation of high-pressure tools.

These compact, lightweight boosters do not have reservoirs. The units can be operated in any position on either open- or closed-center (accumulator) hydraulic systems.

“Assemble to Order” means you can choose a basic pump with gas, air or electric motor. Then select the proper valve, gauge, pressure control, motor control and reservoir. You get a two-stage pump that gives high oil volume for fast cylinder approach (and return with double-acting cylinders) in the first stage and high pressure in the second stage.

3 HP Jet Motor, Three-Phase.  Gives low noise level and long life due to its moderate operating speed. Ideal for fixed installations. Consists of basic 10,000 psi pump, jet pump motor: 3 hp, 3,450 rpm, 230/460VAC, 60 or 50 cycle (specify). AC three-phase, with thermal overload switch. Equipped with internal and external relief valve. Will start under load.

or cannot be used. The 5,000 or 10,000 psi pump has a 3 hp air-driven motor at 3,000 rpm (optimum performance based on 80 psi air pressure and 50 cfm at the pump). You can drive single or double-acting cylinders with the correct valve.  NOTE: 80 psi air supply required to start under full load.

unavailable. It is capable of continuous operation at full pressure. Consists of basic 10,000 psi pump, 4-cycle Briggs & Stratton “Diamond Edge” gasoline engine, developing 6 hp. As with all these pumps, this unit can be valved for use with either single or double-acting cylinders.

quiet <a href='https://www.ruidapetroleum.com/product/47'>hydraulic</a> <a href='https://www.ruidapetroleum.com/product/49'>pump</a> factory

Noise reduction is indeed becoming the real challenge for today’s industrial market. Market competitiveness and new European regulations in the handling sector, particularly for pallet trucks, are such that the suppliers are impelled to develop new technologies meeting increasing requirements from their customers.Acoustic nuisances have several origins: the pump hydraulic pulsations, being propagated through hoses and pipes, and then affecting the truck structure via the frame (structure-borne sound) and the aerial noise (rotation frequency of an electric motor or a pump) which can be contained by an acoustic cover.

In order to lessen the hydraulic pulsations, we designed a specific helical tooth profile with a suitable propeller angle and increased the number of teeth of the pinions from 12 to 22.

The acoustic results show that the noise level has been reduced by an average of -10 dBA, when compared with a standard external gear pump. The new HPI Silent Pump is also characterized by a much more pleasant sound when in use. Indeed, the operating frequency ranges have been adapted for optimized working conditions for the user. The 22-tooth helical profile on series 0 pumps, unique for that size of pumps, reduces significantly the hydraulic pulsations. The capacities available are 1 – 1,25 – 1,5 – 1,7 – 2 cc/rev for operating pressures from 125 to 250 bar.