reversing hydraulic pump pricelist
Our New Gear Pump Offers Industry-Leading Reliability and Performance in a Smaller, Lighter, Quieter Package.We are excited to introduce our new 2 and 3L configurations suitable for cylinders all the way to 40Ci.
Cost Savings – the increased efficiency and performance means the pumps can be used with smaller autopilot course computers than equivalent drive units.
The Type 1 hydraulic reversing pump, 4.9-14cu.in. is a component for Raymarine SmartPilotautopilot system. Designed for boats with existing hydraulic steering systems. To match the drive of your vessel, you need to know the size of the actual hydraulic cylinder RAM or RAMs that are mounted to the rudder on inboard engine boats or the RAM mounted to the drive on outboard engine boats.RAM capacity: 4.9 - 14 cu. in.
Model GP-612-12H is a self-priming, compact, powerful, 12VDC electric gear pump. Constructed with helical bronze gears, nickel-plated brass body and stainless steel shafts. Suitable for Diesel fuel transfer, Transmission fluid, Light weight lube oils, Water, Antifreeze etc.
Do you need Geartek hydraulic pump repair, rebuild, or replacement? We offer Geartek pump repair and rebuilds. If you need a free estimate for any Geartek pump, get in touch with us today to find out how much it will cost for repairs.
We provide fast, reliable hydraulic pump repair service on all Geartek models. We are guarantee all repair work will be done with genuine OEM parts, so you know that you aren’t getting gray market or counterfeit parts.
Our team of skilled technicians will give your pump the attention it needs, and put it through our detailed inspection and repair process. Once the pump has been reassembled, we’ll test it thoroughly with our state-of-the-art-test equipment.
When you get your pump back, it will meet or exceed factory specs. Once you work with us, we think that you will keep coming back to us for all of your Geartek hydraulic repair needs.
If you don’t see your model number listed below, don’t hesitate to call or contact us. We service just about every model of pump that is available from Geartek and other manufacturers.
When you are on the job and under a deadline and equipment fails, you need fast, reliable repair. We can send in our field technicians to get your Geartek pump back up and running as soon as possible. Our reliable, experienced team can perform diagnostic services and minor repairs for equipment and machinery used in many industries. Our team can travel throughout the United States and many international locations, including North America and South America.
If repairs cannot be made on-site to your Geartek pump, you can ship it to our facility. If you’re close enough, you can drop it off. We know how important it is to get your operations back up and running. So you can trust us to get your pump repaired and back to you as fast as possible, and working properly.
Geartek hydraulic pumps combine the reliable, economic features of external gear design with modern engineering and materials to produce true pressure ratings up to 4000 psi. Although Geartek is a major supplier to OEM’s, the company is not too big to supply custom-built, small run, or out-of-production-pumps.
Don’t see your Geartek hydraulic pump model number? Not a problem. Call 800-800-6971 or send us an email. Chances are we’ve worked on it before and have parts for it, even if it’s not listed on our website.
The RPU300 is a reversible hydraulic steering pump for boats up to 70ft. It works in conjunction with the NAC-3 / AC42 autopilot computer as part of an autopilot system.
... or, when reversed, drain a ballast tank. Capable of pumping fresh or sea water, the pump’s robust design can handle the rigors of continuous duty usage, is reversible, and has a built-in thermal overload ...
... drain a ballast tank. Capable of pumping fresh or sea water, the pump’s robust design lends itself to High Performance and High Output for intermittent duty usage. The pumps are reversible, ...
With their high level of flexibility, these pumps are ideally suited for use in boats as bilge and deckwash pumps, fresh water pumps, refuelling pumps for oil and diesel. ...
Professional range of self-priming electric 12V and 24V pumps for the refueling and transfer of water, oil and diesel with ON/OFF switch integrated into the water-proof cap. The –R versions are fitted with a 3 positions ...
Compact size oil change kit. Easy to operate and carry. Complete with bronze gears pump, clips, fuse, hoses and accessories for transfer operations. Available also with electronic control panel and 12/24V universal voltage.
... lighting option and a USB plug. This pump is universal: with its multiple adaptable tips, you can inflate your toboggan, SUP, kayak, towed buoy, and more !
This pump is available in a range of flow rates from 0.6L/min to 2.0L/min; however, Coursemaster Autopilots should be consulted to ensure the right pump and autopilot are selected.
Made in the USA, GROCO Vane Pumps are self-priming, instantly reversible, and are capable of operation in either direction. Their relatively high flow (more than gear pumps) makes them ...
... m self-priming reversible pump has impressive capabilities with its star impeller and liquid ring. We suggest to fill the pumps with liquid before first use or after the pump ...
The PR+ range of pumps is also available with relief valves which provide independent control of the maximum pressure available at each service port. Relief valves can be fitted to either 1 or both services.
Self-priming gear pump for oil, diesel or water. Appropriate for cold weather applications and moving cold, heavy oil. The GP-212 also works at a high operating duty cycle.
Reverse displacement motors (RDM) are a key asset to decreasing system costs, boosting machine efficiency, and reducing service downtime. Our RDMs eliminate complex valving and leak points normally required to implement reversing of fan airflow, common to the cooling and cleaning systems of construction and agricultural equipment.
Owing to our expertise in this domain, we are leading manufacturer of Hydraulic Pumps. The gear pumps offered by us are manufactured using finest material and contemporary technology. In order to conforming to internationalread more...
Replacing a failing hydraulic pump can be challenging. If the wrong alteration is made, you risk damaging your entire hydraulics system. Furthermore, there are many reasons why your pump may be failing, but not all of them may require a full replacement.
If your hydraulic pump isn’t working like it used to, you need to start troubleshooting as quickly as possible. Waiting until total failure will only result in costly downtime for your plant.
Some of the most common causes of hydraulic pump failure include fluid contamination, excess pressure, poor fluid quality, cavitation, excessive temperatures, and uncorrected leaks.
Contaminated fluid is the most common cause of hydraulic pump failure. It can take place when particulates get into the system through a cylinder rod or breather valve. Sometimes deficient repairs are the culprit. Contaminants can change the fluid properties, create buildup, and corrode parts, all circumstances that reduce the system’s efficiency.
Every pump is built to work within a specific safe pressure range. Pressures greater than this overwork the pump. The pump is likely to become damaged and eventually stop working entirely. In extreme cases, excess pressure can cause an explosion.
It’s critical to use high-quality cooling and lubrication oil with the correct mineral content and viscosity. Purity of fluid content is especially important for higher-pressure systems. Fluid that’s too viscous can lead to cavitation, which is a serious risk for pump damage. If the viscosity is too low, heat and friction levels can become dangerously high.
If vapor cavities arise, they can implode under pressure, which can erode the metal and contaminate the fluid. To prevent this, it’s important to properly maintain intake lines, keep fittings and clamps tight, maintain the correct fluid level, and check for leaky pump shaft seals.
Leaks can arise from inadequate seals or internal component damage. If these aren’t taken care of, contaminants may enter the system and compromise the pump’s performance.
When inspecting your pump, looking out for these common signs:Increased Noise:All mechanical actuators make noise during operation, but hydraulic systems should not produce loud banging or knocking sounds. If you notice a new, unusual sound coming from your device, it may be experiencing cavitation or aeration.
High Temperatures: Hydraulic systems should never exceed 82 degrees Celsius/180 degrees Fahrenheit. If you detect a higher-than-average temperature, there may be a buildup of residue in the system. You need to address the problem quickly, as temperature changes can damage a pump quickly.
Put new oil in the tank. Be sure to fill the tank with the required oil grade, as pumps can fail if the wrong oil is administered throughout the system. Pumps require a consistent supply of oil and can fail if the levels drop too low.
Exact life expectancy depends on the specific pump and how frequently it’s used, but pumps often last for quite a few years. The manufacturer of your pump should specify how many hours or cycles a pump can be expected to provide before replacement is recommended.
Another critical factor in pump longevity is preventative maintenance. This includes daily maintenance tasks as well as those that need to be done annually.
In addition, perform any maintenance tasks the manufacturer recommends for your specific pump. And, always keep a record of completed maintenance tasks.
The exact cost depends on the type of pump, the pump manufacturer, and whether the replacement is done by a professional.Often a professional hydraulic pump replacement, including labor and parts, is in the vicinity of $1,500.The price depends on whether you buy directly from the manufacturer or from a third party.
Sometimes direct OEM replacement parts are expensive, and it can take weeks or months at times to receive the part. If you’re experiencing an emergency, or your pump has been discontinued by the manufacturer, purchasing a remanufactured pump may be the best solution for you, as they’re often less expensive than direct OEM replacements and the waiting times are typically shorter.
If you are purchasing a remanufactured pump, be sure to double check that your remanufacturer has an OEM guarantee, as you want to make sure the specifications of the remanufactured pump are the same as the OEM pump you are replacing.
Founded over 25 years ago, we’ve become the leading U.S. manufacturer of aftermarket hydraulic parts. We specialize in remanufacturing and repairing all types of pumps and components from manufacturers like Vickers/Eaton and Rexroth®. All of our pumps are made in-house in the U.S., guaranteed to meet OEM specifications, and are backed by a 12-month warranty.
One of the biggest limitations of a traditional centrifugal pump is its inability to reverse the direction of flow. By design it can only be run in one rotation and one direction of flow. Liquid enters the eye of the impeller at the suction port (typically on the front of the pump), is pushed out radially, and exits the pump at the discharge port (typically on top of the pump). For most centrifugal pumps the suction port is larger than the discharge port to better feed liquid into the pump, and to remove any confusion as to which port is “in” and which port is “out.” Rotation arrows can be found cast onto the pump or printed on the nameplate to make it perfectly clear that these pumps run in one direction of rotation and one direction of flow.
Which brings us to the subject at hand: running internal gear pumps in reverse. They can be easily converted from one direction of rotation and flow to the other; or even be made to run in two directions of rotation and in two directions of flow. The capacity of the pump remains constant in either direction, making this a beneficial and unique feature of the Internal Gear pumping principle.
The most common reason for changing a pump’s rotation is to accommodate the system. If the supply tank is on the right, then it’s not ideal to have the inlet port on the left. “Creative” piping can be used to accommodate the pump, but changing the pump’s rotation to swap the inlet and outlet ports makes for a cleaner system design, and avoids adding extra length and restrictions to the inlet piping. The pump can be ordered and built in either rotation, but sometimes the pump comes from your inventory or from another part of your facility. Rotation changes can happen for a variety of reasons.
Another common example is a pump which is going to be run in both rotations and both directions of flow. This is common for customers loading or unloading liquids through hoses or manifolds. Once the load is complete, they briefly run the pump in reverse to strip-clean the pipes. In these cases, there’s a primary direction of rotation and flow in which the pump runs most often, and a secondary direction of rotation and flow which is less frequent and usually shorter duration.
There are some outliers…designs of internal gear pumps that cannot be reversed. Before we get too far down this path it’s best to check first to make sure your pump does not show any “red flags” that would indicate that they fall into this group of “directional” pumps.
The first “red flag” would be a rotation arrow on the casting or nameplate of the pump. Common examples for Viking Pump include Mag Drive pumps from the 895 Series™ (rotation arrow on the nameplate), or the 4 inch and larger Motor Speed pumps from the 4195 Series™ (rotation arrow cast into the head). In either case, these pumps have design features that make them rotational, so running them in reverse rotation is not advised.
The second “red flag” would be differences in port sizes. Internal Gear pumps typically feature identical port sizes so that the inlet and outlet can be swapped. However, some pumps are designed to have a designated inlet and outlet port. In these cases, the inlet is always larger than the outlet for the same reason that this is done in centrifugal pumps (to better feed liquid into the pump and to remove any confusion as to which port is “in” and which port is “out”.)
Viking pump-mounted relief valves, whether internal or return-to-tank, are directional. They only provide over-pressure protection in one direction of rotation and flow. Most are reversible though. By removing the valve from the pump, swapping the orientation by 180°, and reinstalling it, the direction of overpressure protection for the pump reversed. Modifying the valve orientation is the most common required modification for changing the direction of flow of an Internal Gear pump.
First, there are a few Viking models where the relief valve is not a separate component, but rather built into the body of the pump itself. One common example of this is the smallest 432 Series™ sizes where the valve is built into the casing. For these models the direction of overpressure protection cannot be reversed.
Second, if a pump is to be run in both directions this could mean that an overpressure, upset condition could occur on either side of the pump. If running the pump in both directions, both sides of the pump need over-pressure protection. A Viking internal relief valve, which only functions in one direction of flow, could not be used as the only means of over-pressure protection.
Many pumps feature either an internal or external seal circulation plan. These include internal holes or external tubing which route pumped fluid through the seal chamber to help lubricate, and ultimately extend the life of, the seal and pump parts. Common examples include an API Plan 11 (or flush line), or an API Plan 13 (or suckback line). For these seal circulation plans a line is connected between the seal (or stuffing box) to the discharge port or suction port, respectively.
Reversing the rotation of the pump and direction of flow will reverse the flow through the seal plan, turning a Plan 11 into a Plan 13 (or vice versa). For some applications either API plan may be acceptable and no modifications would be needed. For others the appropriate seal circulation plan should be used; the line would need to be removed and replaced accordingly.
In a few models, the seal circulation plan is internal to the pump, and may or may not be easily changed. A common example of this is the 75 Series™, where a hole in the suction port ensures fresh liquid and low pressure at the seal. For these pumps the discharge side hole is plugged. When changing the direction of rotation, it would be necessary to move this plug to the other side of the casing.
Some Internal Gear Pump models and sizes feature additional paths for internal lubrication of bushings, or to improve flow behind the rotor. A common feature is the pressure lubricated idler pin, which has a hole that allows liquid to be fed in from the discharge side of the pump and exit underneath the bushing. This helps to ensure the bushing and pin always have plenty of lubrication, and the life of these parts is extended. When reversing the rotation of the pump, this internal lubrication path reverses. While still providing lubrication, its effectiveness is somewhat diminished. It’s preferable to have the discharge side hole open to pressure-feed the idler pin. Often this can be done by sampling changing the location of a pipe plug (though some models and sizes feature check valves which require no modification to change direction).
Another, though somewhat less common, internal lubrication option is a casing groove. These are used to promote flow behind the rotor for liquids that may set up or settle out in the back of the casing. Casings with two grooves can be run in either direction. Casings with one groove are directional, and should be replaced before changing the primary pump rotation. In some cases a pump may be suitable running with either a flush groove (discharge side) or suckback groove (inlet side), but this should always be checked with your authorized Viking Pump distributor before making this change.
Fitted properly, most Viking Internal Gear Pumps can be run in either direction or both! After checking the list from above and making the proposed changes you will be ready to roll in a new direction.
To suit manufacturing process industry, factory machines, test rigs and test benches, commercial vehicles, agricultural and heavy plant machinery, lifting machinery, mining industry, offshore industries and renewable energy technologies, a vast range of hydraulic systems.
Most standard pumps and motors Groups 1, 2 and 3, and micro pumps held in stock for quick delivery. Other sizes, mountings and specifications on request when we will do everything possible to accommodate your needs.
Flow reversal is a serious problem that can occur in piping systems with parallel pumps or in systems that pump uphill. When one or more pumps trip out of service, the loss in pressure can cause reverse flow to form based on the piping’s elevation, slope, flow resistance, and pressure differential.
Circulating water (CW) pumps used for condenser cooling are normally the largest pumps at a power station, commonly delivering flows of 150,000 gallons per minute or higher. If a CW pump trips, reverse flow, water hammer, backwards pump rotation, pump over speed, pipe over pressure, pipe vacuum pressure, cavitation, or a forced steam turbine shutdown can occur.
Power station CW pumps deliver cooling water to steam turbine condensers. The CW pumps are commonly high-specific-speed, low-head, high-flow designs. Systems come primarily in two basic configurations (Figure 1).
If the heated water exiting the condenser is discharged, the design is known as an open cooling system. Alternatively, a cooling tower system reuses the heated water. Both configurations pump uphill. The most important difference, related to reverse flow, is that an open cooling design operates with a lower operating static head and, therefore, has a lower potential for reverse flow and water hammer.
Most CW systems have two or more operating pumps. The worst-case scenario is when all of the operating pumps simultaneously trip, such as following a complete power failure. The sudden loss of CW pump pressure combined with a low static head pressure, uphill pumping, and a routing that has intermediate high points creates a high potential for water hammer.
A sudden loss in pump pressure generates a large down-surge (negative pressure wave), which travels downstream at the acoustic (sonic) velocity of the water. This wave will reflect, reverse, and split into more waves at branches and pipe diameter changes. Soon, positive and negative pressure waves will be traveling throughout the system, crashing into pipe bends and fittings. Pipe overpressure and unrestrained movement can damage the piping, hangers, and attached equipment.
A power-assisted valve (PAV) can also be used to prevent reverse flow. Unlike a check valve, a PAV does not start closing at the time of flow reversal, but rather, is programmed to start closing when the pump trips. Once closed, it does not begin to reopen until the pump starts.
If the valve is opened or closed by a motor operator, a power source is needed. High-torque applications may require a hydraulic operator. In case of a power failure, a battery power source, a design that fails closed, or a pneumatically powered system could be used.
If an event occurs that trips one or more pumps, but not all of the pumps, the amount of reverse flow that occurs while the valve is closing may be large enough to cause equipment performance problems. Before selecting a valve, the following issues should be considered.
Condenser Vacuum Loss.CW systems are designed so that sufficient flow to the condenser is possible with one or more pumps out of service. However, backflow through a slow closing valve after a pump trip will cause additional loss of condenser cooling water flow. Although temporary, this loss may be enough to cause the steam turbine to trip on high backpressure.
Pump Runout.CW pumps are designed to remain operating if one or more pumps are taken out of service. However, backflow from the operating pumps through a tripped pump will temporarily further reduce system resistance, causing the performance of the operating pumps to runout on their curves to higher flow rates. Higher flows may result in operation out of their operating range and off the pump curve, which can lead to cavitation, vibration, and possibly overloading of the motor.
If pump runout conditions are possible, valve closing time should be decreased to minimize backflow through a tripped pump, or the pump manufacturer should be consulted concerning the runout condition.
Backwards Pump Rotation. Reverse flow will make an unpowered centrifugal pump spin backwards. These pumps are not designed to rotate in reverse, and can be damaged if they reach a backward speed much greater than their forward design speed. High-vibration, undesirable stresses, and detrimental loads on the motor, bearings, and other components could result.
The Hydraulic Institute, a North American association of pump industry manufacturers, publishes allowable back-speed limits that could be used, if the original pump manufacturer does not provide limits. Higher specific speed pumps are more tolerant of high back-speed. If the allowable back-speed is exceeded, a shorter valve closing time should be specified, or the pump should be supplied with a reverse speed prevention (ratchet) device.
Pump Restart. If tripped pumps are reenergized before the flow has been given time to stabilize, the up-surge in pressure can trigger water hammer. Any trapped vapor cavities that collected at system high points will violently collapse due to the pressure increase. The pressure waves generated may shake and overstress the piping and damage it, as well as restraints and connected equipment.
2. Effects of check valve closing time differences. This chart shows the effects that different check valve closing times have on the pressure wave created in circulating water systems. In this example, flow reaches zero about six seconds after the pump trips. With no valve installed, reverse flow peaks in 16 seconds and then slowly stabilizes. When the valve closes instantly, no reverse flow occurs. However, in the 4- and 12-second valve closure scenarios, potentially damaging pressure waves are created in the system. The best real-world design would minimize the pressure wave while preventing reverse flow. Source: Michael F. Czyszczewski
No Flow Restriction. This is a baseline case illustrating unrestricted flow without a check valve. The velocity steadily drops after the pump trip and reverses direction after 6 seconds. At the time of reversal, the flow is decelerating at 1.07 ft/sec2. The reverse velocity reaches a maximum value in approximately 16 seconds and afterwards begins to slow and stabilize.
4. Pressure versus time. The chart shown here compares the pressure-time history near the pump discharge for different pressure-assisted valve (PAV) closing times when all pumps trip in an open cooling system model. Source: Michael F. Czyszczewski
No Flow Restriction. This is the baseline case illustrating unrestricted flow without a PAV. The pump pressure rapidly drops in about one second. Although the drop is steep, the pressure always remains above atmospheric.
PAV Closes Before Flow Reversal.Closing the valve before the flow reverses, such as two seconds after the pump trip, will create a low-pressure zone on the downstream side of the valve and a high-pressure zone on the upstream side. It is very common for pressure to drop to near full vacuum on the downstream side as shown in Figure 4 by the flat line near 0 psia. Full vacuum pressure will cause the water to vaporize and cavitate. If significant vaporization occurs and forms into a vapor cavity, water hammer can occur when the flow reverses and collapses the vapor space.
Restarting one or more pumps too quickly could result in a pressure surge. In general, a pump should not be restarted until after it has stopped spinning and its discharge valve has finished closing. Pump restart computer simulations should be used to determine the minimum permissible pump restart time. In parallel pumping systems, the restart times should be staggered to avoid surges. The PAV opening speed is typically specified to be the same as the closing speed.
Some CW installations have both a check valve and PAV installed downstream of each pump. This arrangement performs primarily like a check valve installation. The check valve is the first line of defense against reverse flow, and it will passively react and close based on the fluid velocity and differential pressure. The PAV provides backup protection against reverse flow in the event that the check valve sticks open. Some other benefits of this design include:
■ Starting a medium-specific-speed pump against a closed valve will reduce the power required to start and will also prevent pump runout. If there is a concern that the motor could be overloaded by running the pump “dead headed” against a closed valve, the pump start can be momentarily delayed until the valve is about 10% open.
The PAV closure time is not critical unless there is a possibility that a pump trip could develop an oscillating wave in the sump that will cause the check valve to repeatedly cycle between open and closed. If the computer model shows that type of behavior, the PAV should be specified to close shortly after the check valve closes.
When the CW pumps trip, the pressure may drop to near full vacuum at the pump discharge. Adjustments to the check valve or PAV closing time are not always sufficient to raise the pressure above full vacuum and prevent cavitation from occurring. In those cases, a vacuum breaker (air-inlet) valve is needed to raise pressure by automatically admitting air when a vacuum is detected.
The pump discharge and condenser outlet are areas prone to full vacuum pressure due to their high elevation. A computer model is an ideal tool for determining if vacuum breakers are needed and how to size them. However, a discussion of vacuum breakers and air valves is beyond the scope of this article. If these valves are needed, readers should discuss sizing options with a reputable equipment manufacturer.
There are additional methods for mitigating pump trip and reverse flow transients that are not presented here. They include the use of surge tanks, changes to the pump motor inertia, adding pump bypass lines, using pressure relief valves, or installing surge anticipation valves.
Most options offer some cost and performance advantages and disadvantages. Some installations have unique configurations or operating conditions that may require investigation of these other alternatives. However, it has been the author’s experience that installing a single-speed, butterfly-type PAV at each CW pump discharge is the simplest and most cost-effective solution for the majority of cases, which might be encountered. Computer modeling of complex hydraulic transients is the best way to evaluate the options and ensure a problem free design. ■