servo driven <a href='https://www.ruidapetroleum.com/product/47'>hydraulic</a> <a href='https://www.ruidapetroleum.com/product/49'>pump</a> pricelist

Baumüller supplies innovative and optimized drive solutions for all sectors through years of intensive cooperation with mechanical engineers. Due to the integrated control unit in the converter, Baumüller servo pumps can easily be connected to your machine control systems. In the process, they reduce the energy consumption of your drive system significantly and also allow for shorter cycle times, greater accuracy as well as lower noise development. See for yourself and rely on the flexibility and power of innovation of the experts from Baumüller.

Servo pump drives for the hydraulic supply consist of a fixed displacement pump driven by a servo motor. The flow rate and pressure can be controlled precisely by highly dynamic changing of the motor speed. If neither flow rate nor pressure are required, the motor stops and does not consume any energy.

These production steps are highly differentiated, meaning that within one process step the injection molding machine has widely fluctuating output requirements. Closing and injection sequences require large quantities of hydraulic oil and a high volumetric flow. Cooling times, on the other hand, require no or just minimal output.

The difference in energy consumption can be clearly seen in the typical hydraulic system shown in the diagram. The high energy efficiency of the servo-hydraulic solution arises from a needs-specific pump output. When the machine is at rest, e.g. during cooling, then the motors will also be at rest and will consume no energy.

An additional example is presses. The cycle in the figure is divided into three partial cycles: lose press (compacting the material), dwell time, press back and handling. The comparison of energy consumption between the three different systems shows that the solution with a servo pump in the individual partial cycles has a significantly lower power input and thus has a significantly lower energy consumption overall. Unlike conventional hydraulic systems, only the energy that is actually needed is used, while in the classic systems the losses are higher due to the constant revolution of the standard motor in rest phases, such as when stopped (see figure).

Injection molding machines and presses are not the only applications for servo-motor pumps. The use of a servo-hydraulic system is a sensible option wherever phases with high power requirements alternate with pause times in the machine cycle, such as in stamping and bending machines.

The advantages of hydraulic power transfer and electric power setting using servo technology combined, as an alternative to hydraulic pressure and volumetric flow control, yields an energy-efficient and cost-effective solution in the form of a dynamically controllable servo pump.

As a special feature, Baumüller offers three different options for the connection between the pump and the motor. In the Standard Line, the attachment is made using the conventional solution of coupling and pump support. This tried-and-tested option can be achieved with a standard motor shaft and motor flange and is flexible due to the separate components. The second development stage, the Advanced Line, designates the direct attachment of the pump on the motor via internal toothing. Here, there is no need for a pump support and coupling, so the system is more compact and robust. Omitting the pump support as a resonating body also reduces the noise impact.

In the third stage, the Performance Line, the hydraulic fluid is additionally used for intelligent circulating oil lubrication. For this purpose, connections were added not only to the motor but also to the fixed displacement pump, allowing the leakage flow of the pump to be used for the permanent lubrication of the toothing. This eliminates an otherwise necessary grease lubrication of the internal toothing, which would be due every 3,000 operating hours on average, also rendering the system particularly robust. Baumüller thus offers a patent-pending solution, which leads to significantly reduced service costs in operation.

Permanent magnet synchronous motors are used as motors in servo-hydraulic systems. The main criterion for selecting servo motors is good performance in terms of dynamics and overload capacity.

Baumüller offers various motor series for use in servo-hydraulic systems, from the dynamic three-phase current servo motor DSD2 to the three-phase current synchronous motor DS2. All motors are available in an air-cooled and a water-cooled version. Size 45–132 servo motors are also available in an oil-cooled form. This is an advantage in the hydraulic system, since the oil is available in the machine anyway. Another advantage is that liquid-cooled motors have a higher power density and can therefore be dimensioned smaller.

Direct attachment is available for the Advanced and Performance Line models. The following motor-pump combinations are possible. The Standard line, attachment via coupling and pump support is possible with all the motors listed here.

servo driven <a href='https://www.ruidapetroleum.com/product/47'>hydraulic</a> <a href='https://www.ruidapetroleum.com/product/49'>pump</a> pricelist

In a conventional hydraulic system, a fixed-speed motor drives the pump that circulates the hydraulic oil from the reservoir to the hydraulic cylinder. To keep the oil circulating, the pump needs to run constantly, consuming energy even when the actuator is stationary.

Pumps in hydraulic systems are commonly driven by induction motors, which are inherently less efficient than the permanent-magnet motors used in servo designs. Induction motors have to draw current in order to generate the magnetic field required to get the rotor to turn. Their efficiency also decreases when they are run below their rated speed.

Of course, if you’re reading this article, you probably know about these problems firsthand. What you need is a solution. Hybrid electrohydraulic systems leverage the power density of hydraulics with the responsiveness and energy savings of electromechanical technology. Unlike the induction motors used in fixed-speed pumps, the permanent magnet motors used in servo pumps operate synchronously and without any latency. Even better, they run efficiently across a range of speeds. “With a servo pump, you don’t have to have continuously circulating hydraulic fluid,” says Kerns. “Basically, the motor comes on and runs when you need pressure, and with a much faster response time.”

This means that you’re not paying to operate the pump full speed when the hydraulic actuator is stationary. Indeed, analysis shows that a conventional hydraulic system will cost considerably more over time than a hybrid version using a servo pump (see figure 2).

“The end-user gets energy savings very similar to that of an all-electric driven machine,” says Monte Swinford, regional factory automation sales manager for Bosch-Rexroth (Hoffman Estates, Illinois). “If they run the same part, same cycle, they will see significant savings. I had one client who saw a 90% reduction in energy usage.”

The instant response delivered by servo motors enables the actuator to operate much more quickly and deterministically, making it a good fit for applications like punch presses. The solutions also involve less complex systems with smaller footprints while incorporating value-added devices like smart drives with real-time diagnostic capabilities (see figure 3). In the case of applications that would normally place the reservoir at a distance from the hydraulic cylinder, the use of a servo pump at the actuator can eliminate the need for long hydraulic hoses that are prone to leaks or breakage.

Applications like injection molding are perfectly positioned to benefit from the technology. Rubber injection molding processes, for example, require the pressure to be applied and then maintained at a set level for an extended period of time while the rubber fills all nooks and crannies of the mold. In the case of a system run by a fixed-speed pump, the motor would be running the entire time, consuming power and generating heat, even though it is only maintaining pressure. With a servo pump, the holding torque of the motor is sufficient to generate the required pressure. “Because you’re using permanent-magnet servo motors, there’s virtually no voltage on the motor,” says Raymond Seifert, director of application engineering, Baumueller Nuermont Corp. (Windsor, CT). ”As a result, even though you might have to maintain a holding current, the actual power that you’re using is minimal.”

Indeed, a calculation of energy consumption and cost for this application based on the duty cycle of the motor showed a clear advantage for the servo-driven design. “The customer was happy with the prototype and could justify the cost,” Seifert says. “They are now looking at retrofitting more machines.”

A new hybrid electrohydraulic press using a dual-pump design has been developed as an off-shoot of the servo-motor-driven pump technology. The approach allows bi-directional pumping of the hydraulic fluid, enabling the customer to reduce the size of the existing hydraulic press reservoir to nothing more than an accumulator in the hydraulic circuit. Fewer components and less oil means a smaller footprint, lower cost for the system, better products, less chance of leakage, and less money spent on both purchase and disposal of the hydraulic oil.

Of course, shrinking the volume of oil does increase the importance of thermal management. The smaller volume of oil means that it heats up more quickly. When the temperatures get too high, the pump can fail. To guard against this, the addition of auxiliary cooling in the hydraulic circuit may be necessary to ensure temperatures remain under control.

Servo pumps deliver benefits beyond just cost savings. The level of control provided by closed-loop feedback leads to more precise motion. In contrast, conventional hydraulic systems may not even use a drive, let alone feedback. They may simply use a motor with a simple on/off switch that runs at constant speed. The closed loop feedback of a servo pump equips the system to deliver the exact torque or speed required for the application, and do it instantly.

“Even if you use a drive with a standard induction motor, you still have an element of delay in getting that system up to a certain pressure,” says Kerns. “More often than not, you’ll see a hydraulic system that doesn’t even have a digital feedback loop, just a regular analog loop. The big benefits of the servo motor are the response time and the fact that you’re able to run those motors up to really, really high RPMs to get to where you need to be much quicker.”

This level of fine control can benefit applications like metalforming. When metal is deformed into a shape, it has to be slightly over bent so that it will assume the correct form after recoil. For best results, full force should only be applied in the last millimeter or two of motion. Servo pumps enable much more accurate control of the motion of the hydraulic actuator, creating better quality parts.

Although system cost and performance are important, the modern industrial environment imposes other challenges to machine design and operation. Particularly if you are involved in industries like automotive manufacturing, you face growing regulation for working conditions. Here, too, servo motors provide superior solution to conventional fixed-speed pump designs by virtue of their whisper-quiet performance. “When customers take the risk and make the change, their jaws just drop with how quiet their new machine is,” says Swinford. That performance is not just good for end-users but for OEMs, he notes. “I have one client who has kept their factory full for the last three years because their end users are so excited by the noise reduction that they keep ordering new machines just to replace the ones in the field. Most of them wind up having flashing lights on the machine to let customers know that the power’s on.”

As intriguing as the technology may be, it’s important to remember that the performance of the system is only as good as the design approach. “It’s not the kind of thing that you just kind of slap together,” Swinford says, citing limiting factors like minimum and maximum pump speed, pressure rises, etc. “The best thing to do is to start with a clean piece of paper. Sure, you can just add something onto what you have and make it work, but it’s not going to be as competitive in the global marketplaces as starting over.”

Everyone interviewed for this article agreed that the adoption of the technology is still in the early stages. Far from tempting manufacturers to wait until later to consider the technology, that should spur OEMs and end-users alike to explore the use of servo pumps. Taking action at the beginning of a market evolution is the way to derive maximum benefit from the conversion. Designing servo pumps into your next hydraulic system will position your organization to gain a significant competitive advantage over organizations working with the incumbent technology.

servo driven <a href='https://www.ruidapetroleum.com/product/47'>hydraulic</a> <a href='https://www.ruidapetroleum.com/product/49'>pump</a> pricelist

A servo motor is an actuator that allows for precise control of angular position in automatic control system. It also requires a servo drive to complete the system. The drive uses the feedback sensor to precisely control the rotary position of the motor. Compared with other motors, such as stepper motors and AC induction motors, what are the advantages of servo motors?

The servo motor has strong resistance to overload, and can withstand three times the load of rated torque. It is especially suitable for the occasion of instantaneous load fluctuation and fast starting.

The servo motor runs smoothly at low speed, and it does not produce the step running phenomenon similar to stepper motor. It is suitable for situations with high speed response requirements.

ATO AC servo motors give you unprecedented choice and flexibility from a wide range of standard products power rating from 50w to 7.5kw, so you can select the best servo motor with lower price for your application.

Note: The AC servo motor prices listed in the table are just for your reference, they may be different with the selling price. Please go to the servo motors product page for the latest quotation.

servo driven <a href='https://www.ruidapetroleum.com/product/47'>hydraulic</a> <a href='https://www.ruidapetroleum.com/product/49'>pump</a> pricelist

At NPE2018, both Jomar Corp., Egg Harbor Township, N.J., and Bosch Rexroth Corp., Bethlehem, Pa., introduced new products that provide an educational illustration of the differences between two types of energy-saving variable-speed drives for hydraulic pumps.

The term “servo-hydraulic” has gained currency to describe new generations of plastics machinery that utilize hydraulic pumps but with energy savings and noise reduction closely approaching those obtained with all-electric servo motors and drives. At the same time, popularity has also been growing for aftermarket retrofits of conventional hydraulics with variable-frequency drives (VFDs), another way of saving energy by varying pump speed—even to zero—according to the instantaneous load demand of the system.

Bosch Rexroth introduced at the show its Sytronix DRn 5020 VFD, aimed specifically for converting variable-displacement hydraulic pumps driven by conventional fixed-speed (1800 rpm) motors to quieter, more energy-efficient variable-speed operation. It reportedly saves up to 75% in electrical energy for systems that have long dwell times; and the average noise reduction is 8 to 10 dBa vs. fixed-speed hydraulic drives. This “intelligent” drive senses the motor torque and pump pressure to calculate the pump displacement, or position of the swash plate, to keep it in the most efficient position for the real-time load requirement. This drive is Industry 4.0 compatible, as it adds operating data collection and digital communications to conventional electric motors and hydraulic pumps that normally do not have these capabilities.

Bosch Rexroth notes that VFDs are considerably less expensive than servo drives, but the firm also points out in a white paper that they provide less tight control over motor speed than servos and have lower dynamic performance—ability to respond and control pressure/velocity changes. VFD drives are thus more suited to steady or slowly changing loads. They also have low-speed limitations and are usable only to 400-500 rpm.

Bosch Rexroth points to an instructive use of both its MSK servo motor and the new Sytronix DRn 5020 on Jomar’s new IntelliDrive injection-blow molding machines. Jomar often refers to these machines as “servo-hydraulic,” but the servo drives only the hydraulic pump for the injection unit. The injection and blowing clamps use a pump with the new VFD. The Jomar IntelliDrive 85S at the show boasted 42% lower energy consumption than a standard model 85S and required a 40% smaller oil tank.

servo driven <a href='https://www.ruidapetroleum.com/product/47'>hydraulic</a> <a href='https://www.ruidapetroleum.com/product/49'>pump</a> pricelist

However, molders who are using high-tonnage hydraulic machines for molding large parts have faced serious issues trying to find cost-effective ways to achieve similar energy savings. Depending on the drive concept, hydraulic drives take up on average about 48% of the machine’s total energy consumption (see Fig. 1).

One recent advance in this area that shows great promise is the use of speed-controlled servo drives in place of the traditional fixed-speed, three-phase motors to drive the hydraulic pumps.

Traditional fixed-speed motors pump oil continuously, regardless of the needs of the various machine axes. Any excess volume of oil pumped is bled out over relief valves, which generates frictional heat in the oil, both shortening its life and requiring additional energy from the oil-cooling system. This wasteful pumping of unneeded oil volume is greatest during long clamp hold or cooling times.

Servo drives, however, can vary the pump speed—all the way to a dead stop, if appropriate—according to the system’s demand for oil. The longer cycles encountered in molding larger parts on large injection machines can benefit particularly from throttling back or stopping the hydraulic pump while the clamp is closed and the screw is not turning. Unlike a fixed-speed

Use of servo-driven hydraulic pumps has shown significant energy savings—up to 35%—compared with conventional drives. Additionally, servo drives contribute to longer service life for the machine’s hydraulic oil, since it is heated less, and lower overall sound levels for the machine due to lower average motor speed.

While it is clear that the all-electric machine would deliver the best overall energy efficiency, it is also clear that in the case of the hydraulic machines, the model using the servo-driven hydraulic pumps would help the molder achieve far greater energy savings than the model using the traditional drives.

Large parts being produced on high-tonnage molding machines typically have long cycle times, and the benefits of the servo-driven hydraulic pumps in these instances are evident. For the same 240-ton machine comparison used to determine overall energy savings, it was determined that the longer the cycle time, the better the savings (Fig. 3).

As shown in Fig. 3, at a cycle time of 15 sec, the servo-driven hydraulic machine has an energy use of 0.39 kWh, while the machine with the traditional motor-driven pumps shows an

energy use of 0.58 kWh, nearly a 49% increase. When the energy usage is calculated for a 25-sec cycle, the servo-driven machine shows energy use of 0.47 kWh, while the traditional

Note that this experiment was conducted using 240-ton machines, primarily so the all-electric machine could be included. However, the differences in energy usage would be even larger with high-tonnage machines. Wittmann Battenfeld has employed the new servo-driven pumps as an option on its MacroPower line of large machines (400 to 1600 tons).

The conventional hydraulic pumps consist of a fixed-speed, three-phase motor with electrically adjustable, variable-volume pumps (Bosch Rexroth DFEE types), applying a modular, three-stage concept with parallel functions (Fig. 4). This concept makes possible a significant reduction in cycle times.

A speed-controlled servo drive (water-cooled) is available as an option (Fig. 5), which enables a reduction in energy consumption as well as the sound level. This concept is based on a highly dynamic servo motor instead of a three-phase motor with fixed speed.

The hydraulic pumps are again electrically adjustable axial piston pumps with a variable displacement volume. In this system, the oil delivery is regulated via the motor speed and the pivoting angle of the hydraulic pump.

In this way, the optimal relationship between the pump’s degree of efficiency and the motor speed is calculated for every operating point and regulated automatically by the machine’s control system.

servo driven <a href='https://www.ruidapetroleum.com/product/47'>hydraulic</a> <a href='https://www.ruidapetroleum.com/product/49'>pump</a> pricelist

Features a hybrid drive system that combines the benefits of hydraulics with the controllability of an AC servo motor and inverter motor to satisfy a broad range of specifications with a small volume pump. Users will find energy savings in fields such as industrial machinery and machine tools.

Total weight 3.3kg. The weight of the device on ankle part where the exercise load is big is reduced to 0.97kg by wearing the power supply on the waist. 65Nm torque is generated by Takako"s standard 0.4cc pump.

servo driven <a href='https://www.ruidapetroleum.com/product/47'>hydraulic</a> <a href='https://www.ruidapetroleum.com/product/49'>pump</a> pricelist

For hydraulic systems that place high demands on control engineering, servo pumps are the perfect solution. The basic version of these pump systems also consists of three main components:Servo inverter

Servo pumps control the pressure or the volume flow. They precisely convert electrical energy into the hydraulic energy that is currently needed in the system. The classic use of valves for control can be either completely or partially omitted. This considerably simplifies every hydraulic system.

servo driven <a href='https://www.ruidapetroleum.com/product/47'>hydraulic</a> <a href='https://www.ruidapetroleum.com/product/49'>pump</a> pricelist

We carry a large selection of Bosch Rexroth hydraulics pumps, motors & more. If you can’t find the Rexroth Pump you’re looking for or you need a Bosch Rexroth hydraulics pump repair, contact us today!

We can supply what you need or repair what you have. Before purchasing, there may be a good chance that your current Bosch Rexroth hydraulic pump or motor can be repaired. Bosch Rexroth hydraulics repairs and motor repairs come with our two year warranty.

When purchasing, consider remanufactured Bosch Rexroth hydraulics or after-market hydraulic units. They can get you back up and running for less than the cost of a new Bosch Rexroth hydraulic unit. We will give you a free quote so you can compare costs for a new, repaired or re-manufactured Bosch Rexroth unit, saving you money without compromising the results of your Bosch Rexroth hydraulic unit.

In 1795, the Rexroth family established an iron forge in Spessart, Germany. However, it wasn’t until 1952 that they began producing standardized hydraulic components and hydraulics. In 1953 they invented the first industrialized gear pump for mobile machines. Later, in 1972, Rexroth launched the first hydraulic servo valve onto the market and became a wholly-owned subsidiary of Mannesmann AG in 1975. They developed the world’s first maintenance-free AC servomotor in 1979, revolutionizing the mechanical engineering industry. Throughout the 90s Rexroth continued to grow and revolutionize the industry, launching inventions used in a variety of industries. Mannesmann Rexroth AG and Bosch Automation Technology merged to form Bosch Rexroth in 2001 and today, Bosch Rexroth is one of the leading specialists in drive and control technologies.

Axial piston pumps: intended for the medium and high-pressure range and come in a variety of designs, performance ranges, and adjustment options for mobile, stationary and industrial applications.

Bosch Rexroth hydraulic motors are known for their reliability, long life cycles, low noise emissions, as well as high efficiency, and cost-effectiveness. The range is available in swashplate or bent axis designs which are used in medium and high-pressure applications. They have several models including:

Bosch Rexroth hydraulics offers a range of hydraulic “on/off” valves including isolator valves, directional valves, pressure valves, flow control, and throttle valves, and directional cartridge valves.

Directional valves:control the flow and direction of movement or rotation of hydraulic actuators which include directional seat or spool valves, direct operated or pilot operated valves.

servo driven <a href='https://www.ruidapetroleum.com/product/47'>hydraulic</a> <a href='https://www.ruidapetroleum.com/product/49'>pump</a> pricelist

The S-series SMART Electro-Hydraulic Actuator (SHA) combines proven technologies into an innovative new actuation product with servo actuation control. We also have a long stroke actuator with up to 120".The SHA offers significant advantages compared with hydraulic cylinder actuators or high-force Electro-Mechanical ball screw / roller screw actuators including:

Eliminates costly, messy and energy-wasting hydraulic power units used with hydraulic cylinders and the all-in-one design of the SHA eliminates hoses and leaky connections.

Kyntronics has an extensive library of S-Series CAD models to help you with engineering and specification development for our electro hydraulic actuators.

servo driven <a href='https://www.ruidapetroleum.com/product/47'>hydraulic</a> <a href='https://www.ruidapetroleum.com/product/49'>pump</a> pricelist

Dynamic response, low noise, and reduced energy consumption are just some of the advantages of Voith servo pumps. Comprised of an IPVP internal gear pump, a servo motor and servo controller, this systems efficiency is maximized for versatility and energy efficiency.

The Voith servo pump delivers pumping power proportional to the speed, reaching high pressures quickly, even at minimal speeds while maintaining pressure at zero conveyor