vane vs gear hydraulic pump pricelist
The type of pump you choose for your power unit affects the nature of the HPU build. Pump choice boils down to cost, complexity and performance. There are three major types of pumps: the gear pump, the vane pump and the piston pump. There are other, less common pumps, but we’ll stick to these three for this discussion.
Gear pumps are economical, but on the low end of the efficiency range. They’re reliable and durable, but efficiency tends to drop over time. Remember, a pump’s job is to convert incoming mechanical energy into hydraulic energy, and the more efficiently it does so not only allows you to choose a smaller motor, but more efficiency saves you money over time. Traditional spur gear pumps average about 80% efficiency, meaning your 10 input horsepower will net you 8 hydraulic horsepower.
Vane pumps reside in the middle ground between gear and piston pumps. They’re more efficient than gear pumps, but less so than piston pumps. Vane pumps are quiet, making them popular for industrial applications. They’re also available with myriad control options, such as pressure compensation, load sensing and displacement control. Vane pumps typically cannot handle high-pressure circuits, however.
Piston pumps take up the premium end of the range. They’re capable of very high pressure, and have nearly infinite methods of control, including pressure compensation, load sensing, servo control, horsepower control, etc. They’re also very efficient; some designs are capable of 95% efficiency, allowing you to get the most from your prime mover. Their downside is cost, both for initial investment, and for service and repair.
You’ve heard about the difference between a vane pump and a gear pump, but not exactly know what it means. Well, this article is here to clear things up. Read on to learn more about the differences between these two types of pumps:
Gear pumps are better suited for high-pressure applications, while vanes can handle lower pressure. However, vane pumps are also used in higher-pressure applications as well.
A gear pump uses gears and a vane pump uses vanes to increase the flow rate of the liquid. A gear pump is built with a series of gears that spin around their axis at different rates. This creates a number of different patterns that allow for more fluid to pass through each gear than just one. The result is an increased flow rate for each gear because it has access to more volume.
Vane pumps use vanes which move toward and away from each other in order to create a larger area for fluid flow through. The overall design of a vane pump is similar to that of a gear pump but instead of using gears, it uses vanes which move toward and away from each other in order to create a larger area for fluid flow through.
Vane pumps have a unique design that allows them to pump more viscous liquids, such as honey, molasses and oil. They are also able to handle much higher flow rates than other types of pumps. Vane pumps are ideal for applications that require high-pressure or high-viscosity liquid pumping. In addition, they’re easier to clean than other types of pumps because they don’t need lubrication or seals.
In general, vane pumps have a larger diameter than gear pumps, but they have the same overall volume as a gear pump. This means they’ll be able to handle more volume at higher speeds and pressures than a gear pump would be able to do.
Vane pumps are typically more efficient at operating at low speeds because they rely on the rotation of their vanes rather than gears or other mechanisms that can reduce efficiency over time.
This is because the gear pump’s shaft is offset to allow it to be mounted in a larger diameter housing, which reduces the noise generated by the motor. The smaller diameter housing of a vane pump can cause it to vibrate excessively, thereby adding noise. However, vane pumps are also quieter than other kinds of pumps, including impeller pumps and centrifugal pumps.
Vane pumps are often used in applications where they need to be extremely quiet or where there are other concerns about vibration or humming caused by other types of motors or machinery. Vane pumps are also used in industrial applications where high pressure is required and there is no need for continuous power supply like that provided by a gear pump.
Gear pumps are typically used as a source of power for larger systems and for applications that require a high flow rate. They have many advantages, such as being able to deliver a high head (pressure) for a low flow rate. Because of their high efficiency, they are also used in the production of concrete, where they deliver a high head at low flow rates.
Vane pumps can produce much higher pressure than gear pumps. They do this by using a large diameter shaft with multiple vanes which rotate around it. This makes it possible to turn the pump shaft faster than with a gear pump and therefore achieve greater pumping speed without sacrificing efficiency.
Gear pumps are more efficient because they rotate at a constant speed, while vane pumps are not. When you put a gear pump in your system and it starts to spin up, it won’t increase the flow until it reaches its maximum rotational speed (which is slower than an impeller).
Vane pumps have a fixed volumetric efficiency that cannot be changed from the manufacturer’s spec. This means that as you increase the flow through your system, you may get less throughput per revolution of the pump.
Gear pumps are also more efficient, which means they can produce the same amount of horsepower at a lower cost. Gear pumps have advantages over vane pumps in that they can be used for both high- and low-pressure applications, and their construction is more durable than vane pumps. Vane pumps are generally more expensive, but they do have some advantages over gear pumps, such as being able to work at higher pressures.
Although they were not commonly used in the petrochemical industry until recently, they are now used extensively in this area. In addition to the traditional applications, vane pumps are also being applied as a motor for windmills and other machines that require a high output torque at low speed.
Vane pumps come in different forms such as axial piston vane pumps, radial piston vane pumps, centrifugal vane pumps, etc. The most common types of vane pumps are axial piston pump and radial piston pump.
Axial Piston Pump: This type of pump is used for water supply or waste water applications where the discharge pressure is relatively high and flow rate is relatively low. It consists of an enclosed rotor with a number of vanes arranged parallel to it. The arrangement of these vanes provides an efficient distribution of flow into the discharge line while maintaining its velocity in a vertical direction by using countercurrent flow technique.
A gear pump is a device used to transfer fluid from one place to another using a rotating shaft. They are designed to operate at low speeds and high pressures. A gear pump does not use a vane pump, but rather gear wheels or disc wheels to turn the shaft. Vane pumps are better for stationary applications, but gear pumps are best for portable equipment.
A vane pump has two parts: the impeller and the casing. The impeller is mounted on the shaft of the pump and has two vanes that spin around it. This type of pump has flow control by means of vanes that change in size as they rotate. A vane pump can work at any rotational speed, but it will deliver more power at higher speeds because its flow rate is greatest at these higher speeds.
Gear pumps have only one moving part, which is the shaft itself. We haven’t added any other internal parts to affect its operation; thus, you can spin as fast as you like if there aren’t any complications.
This blog post hopes to provide a brief, simple explanation of the difference between geared and vane pumps, and it was written with the hope that you can use this information as a guide to help you in the future. Happy reading!
The goal of a hydraulic pump is to move hydraulic fluid through a hydraulic system, acting much like the beating heart of the system. There are two things that all hydraulic pumps have in common: (1) they provide hydraulic flow to other components (e.g., rams, hydraulic motors, cylinder) within a hydraulic system, and (2) they produce flow which in turn generates pressure when there is a resistance to flow. In addition, most hydraulic pumps are motor-driven and include a pressure relief valve as a type of overpressure protection. The three most common types of hydraulic pumps currently in use are gear, piston, and vane pumps.
In a gear pump, hydraulic fluid is trapped between the body of the pump and the areas between the teeth of the pump’s two meshing gears. The driveshaft is used to power one gear while the other remains idle until it meshes with the driving gear. These pumps are what is known as fixed displacement or positive displacement because each rotation of the shaft displaces the same amount of hydraulic fluid at the same pressure. There are two basic types of gear pumps, external and internal, which will be discussed in a moment.
Gear pumps are compact, making them ideal for applications that involve limited space. They are also simple in design, making them easier to repair and maintain. Note that gear pumps usually exhibit the highest efficiency when running at their maximum speed. In general, external gear pumps can produce higher levels of pressure (up to 3,000 psi) and greater throughput than vane pumps.
External gear pumps are often found in close-coupled designs where the gear pump and the hydraulic motor share the same mounting and the same shaft. In an external gear pump, fluid flow occurs around the outside of a pair of meshed external spur gears. The hydraulic fluid moves between the housing of the pump and the gears to create the alternating suction and discharge needed for fluid flow.
External gear pumps can provide very high pressures (up to 3,000 psi), operate at high speeds (3,000 rpm), and run more quietly than internal gear pumps. When gear pumps are designed to handle even higher pressures and speeds, however, they will be very noisy and there may be special precautions that must be made.
External gear pumps are often used in powerlifting applications, as well as areas where electrical equipment would be either too bulky, inconvenient, or costly. External gear pumps can also be found on some agricultural and construction equipment to power their hydraulic systems.
In an internal gear pump, the meshing action of external and internal gears works with a crescent-shaped sector element to generate fluid flow. The outer gear has teeth pointing inwards and the inner gear has teeth pointing outward. As these gears rotate and come in and out of mesh, they create suction and discharge zones with the sector acting as a barrier between these zones. A gerotor is a special type of internal gear pump that eliminates the need for a sector element by using trochoidal gears to create suction and discharge zones.
Unlike external gear pumps, internal gear pumps are not meant for high-pressure applications; however, they do generate flow with very little pulsation present. They are not as widely used in hydraulics as external gear pumps; however, they are used with lube oils and fuel oils and work well for metering applications.
In a piston pump, reciprocating pistons are used to alternately generate suction and discharge. There are two different ways to categorize piston pumps: whether their piston is axially or radially mounted and whether their displacement is fixed or variable.
Piston pumps can handle higher pressures than gear or vane pumps even with comparable displacements, but they tend to be more expensive in terms of the initial cost. They are also more sensitive to contamination, but following strict hydraulic cleanliness guidelines and filtering any hydraulic fluid added to the system can address most contamination issues.
In an axial piston pump, sometimes called an inline axial pump, the pistons are aligned with the axis of the pump and arranged within a circular cylinder block. On one side of the cylinder block are the inlet and outlet ports, while an angled swashplate lies on the other side. As the cylinder block rotates, the pistons move in and out of the cylinder block, thus creating alternating suction and discharge of hydraulic fluid.
Axial piston pumps are ideal for high-pressure, high-volume applications and can often be found powering mission-critical hydraulic systems such as those of jet aircraft.
In a bent-axis piston pump (which many consider a subtype of the axial piston pump), the pump is made up of two sides that meet at an angle. On one side, the drive shaft turns the cylinder block that contains the pistons which match up to bores on the other side of the pump. As the cylinder block rotates, the distances between the pistons and the valving surface vary, thus achieving the necessary suction and discharge.
In a radial piston pump, the pistons lie perpendicular to the axis of the pump and are arranged radially like spokes on a wheel around an eccentrically placed cam. When the drive shaft rotates, the cam moves and pushes the spring-loaded pistons inward as it passes them. Each of these pistons has its own inlet and outlet ports that lead to a chamber. Within this chamber are valves that control the release and intake of hydraulic fluid.
In a fixed displacement pump, the amount of fluid discharged in each reciprocation is the same volume. However, in a variable displacement pump, a change to the angle of the adjustable swashplate can increase or reduce the volume of fluid discharged. This design allows you to vary system speed without having to change engine speed.
When the input shaft of a vane pump rotates, rigid vanes mounted on an eccentric rotor pick up hydraulic fluid and transport it to the outlet of the pump. The area between the vanes increases on the inlet side as hydraulic fluid is drawn inside the pump and decreases on the outlet side to expel the hydraulic fluid through the output port. Vane pumps can be either fixed or variable displacement, as discussed for piston pumps.
Vane pumps are used in utility vehicles (such as those with aerial ladders or buckets) but are not as common today, having been replaced by gear pumps. This does not mean, however, that they are not still in use. They are not designed to handle high pressures but they can generate a good vacuum and even run dry for short periods of time.
There are other key aspects to choosing the right hydraulic pump that goes beyond deciding what type is best adapted to your application. These pump characteristics include the following:
Selecting a pump can be very challenging, but a good place to start is looking at the type of pump that you need. Vane pumps have been largely replaced by compact, durable gear pumps, with external gear pumps working best for high pressure and operating speeds while internal gear pumps are able to generate flow with very little pulsation. However, vane pumps are still good for creating an effective vacuum and can run even when dry for short periods of time. Piston pumps in general are more powerful but, at the same time, more susceptible to contamination.
Whether the pump is needed for the rugged world of mining, the sterile world of food and beverage processing, or the mission-critical aerospace industry, MAC Hydraulics can assist you with selecting, installing, maintaining, and repairing the right pump to meet the needs of your hydraulic system. In the event of a breakdown, our highly skilled technicians can troubleshoot and repair your pump — no matter who the manufacturer happens to be. We also offer on-site services that include common repairs, preventative maintenance, lubrication, cleaning, pressure testing, and setting.
First, a bit of background. Positive displacement (PD) pumps were developed long before centrifugal pumps. Greek mathematician Archimedes is said to have invented the first screw pump around 225 B.C. The operation of PD pumps is signified by the displacement of a known quantity of liquid with each revolution of the pumping elements, which can include vanes, lobes, gears, rotors, screws, etc.
The liquid is displaced through the spaces that are created between the PD pump’s specific pumping elements. After the liquid is collected in this space, the movement of the pumping elements transports it to the discharge port. In general, this method of operation allows PD pumps to handle liquids with viscosities up to 1,320,000 centistokes (cSt)/6,000,000 Saybolt Seconds Universal (SSU); capacities up to 1,150 cubic meters per hour (m3/hr) or 5,000 gallons per minute (gpm); and pressures up to 700 bar or 10,000 pounds per square inch (psi).
Today, according to the Hydraulic Institute, pumps account for nearly 27 percent of total electricity use in the industrial sector. While centrifugal-style pumps remain the most-used technology in industrial fluid-handling applications, there is no “one pump fits all” solution. This opens the door for operators to consider the benefits PD pumps can offer from an efficiency and energy-savings perspective, even in applications that have traditionally relied on centrifugal pumps.
When making the final choice in pump type, several crucial factors need to be taken into account, including required flow rate, suction and differential pressure, temperature, viscosity, weight and corrosiveness of the liquid being handled. In addition, facility managers too often choose oversized pumps as a fallback under the erroneous belief that such equipment will address future capacity needs.
While the majority of the world’s pumping tasks may be performed with centrifugal-style pumps, PD pumps can become a top-of-mind choice when facility operators are apprised of the functionality PD pumps can offer users, including:
PD pumps are inherently self-priming. Centrifugal pumps must be pre-primed. Industrial facilities can design their process around this by including pre-fill cycles, minimum tank levels or expensive below-grade installations. On the other hand, industrial facilities can reduce or eliminate these considerations by using a PD pump that is inherently self-priming. This capability allows the PD pump to draw a suction vacuum and compress air into the discharge piping, all while dry running. This enables the pump to be used in top-offload suction-lift installations or with long sections of suction pipe.
PD pumps can line strip. Product recovery is critical for both safety and cost savings. PD pumps left on after a batch cycle can evacuate the suction and discharge piping, preventing product spillage when the pumps are maintained or when an operator disconnects a hose. This is a critical safety advantage. Further, PD pumps can extract costly products from the bottom of supply tanks (known as the liquid “heel”). The site may purchase an entire tanker, but a portion of the liquid may be left behind by centrifugal pumps, which creates the risk of product cross-contamination, as well as increased tank-cleaning costs. PD pumps can also recover liquid from within the piping system.
PD pumps are insensitive to the system’s pressure fluctuations. Some operations feature a batch process, have high backpressure or struggle with operating near a centrifugal pump’s best efficiency point (BEP). PD pumps do not have a BEP and are immune to any system pressure fluctuations.
PD pumps are viscosity flexible. There is no reduced performance at increasing viscosity (or decreasing viscosity for ultrathin multiphase liquids). PD pumps can operate continuously at 0.2 centipoise (cP) or 200,000 cP viscosities. In fact, many PD-style pumps can be used on a thin solvent and on thick crude oil, which makes them ideal for liquid-terminal or bulk-transfer applications.
PD pumps operate at reduced speeds. This capability reduces the surface velocity of rotating seal faces and improves seal life. PD pumps often require less than 500 revolutions per minute (rpm), which yields slower sealing velocities, friction-heat buildup and the cooling-lubrication needs of the seal. The result is that seals are more robust, resulting in longer component life and reduced maintenance costs over the life of the pump.
This article will address rotary PD pumps. By their design and operation, rotary pumps displace a fixed quantity of liquid for every rotation of the pump shaft. Again, vanes, lobes, gears and screws are among the pumping elements that can be used to facilitate the transfer of the liquid.
Within the single-rotor rotary-pump family tree resides sliding vane pumps. The design of the sliding vane pump places a series of metal or plastic “vanes” in dedicated slots in an offset rotor in the pump casing. As the rotor spins past the suction port, the vanes are forced out of their slots and ride against the inner bore of the pump casing, forming pumping chambers.
The pumping chambers trap the liquid and transport it around the pump casing to the discharge port, where it flows into the discharge piping. This design virtually eliminates product “slip” (the movement of the fluid being handled against the direction it is being pumped), meaning that the pump’s high volumetric efficiency is maintained.
The method of operation also makes sliding vane pumps ideal for use with thin, low-viscosity liquids, such as propane, ammonia, solvents, alcohol, gasoline, fuel oil, petroleum-based chemicals, refrigerants, and multiphase and high vapor-pressure liquids with zero net positive suction head available (NPSHa).
Based on their self-compensating design that accounts for pumping element wear through the extension of the vanes during operation, PD sliding vane pumps are energy and mechanically efficient. Other operational advantages of sliding vane pumps include:
Rotary self-compensating sliding vane pump technology was developed in the early 1900s by an engineer who was looking for a solution to ill-performing gear pumps that were consistently wearing and losing volumetric efficiency, leading to product slip that hampered flow rates.
At the time, gear pumps were far and away the most common type of PD pump used in industrial liquid-handling applications. There are two typical types of gear pumps: internal and external gear, both of which transport liquids through the action of a series of gears coming into and out of mesh. While the pumping action for both is comparable, external gear pumps use two similar rotating gears to mesh, whereas the internal gear pump uses a drive, or rotor, gear operating against a smaller internal, or idler, gear.
Both modes of gear pumps possess some advantages that are similar to sliding vane pumps—nonpulsing, self-priming and dry-run capability; ability to handle thin liquids at varying pressures; and ease of maintenance.
But because of the style of operation, gear pumps wear as the pump’s gears mesh, or come into contact with each other, to move fluid. This increases the internal pumping clearances, reducing flow capacity that results in less fluid pumped per rotation while simultaneously increasing slip within the pump. To compensate for these larger clearances the pump speed or size must be increased, which can result in higher energy consumption and accelerate the pump’s wear.
The alternative in this gear-wear scenario is to tolerate a lower level of pumping capacity until the pump’s performance drops to an unacceptable level.
However, the gear wear can often go undetected by the operator, which can sap the pump of efficiency—both energy- and performance-related—before the necessary maintenance can be performed.
Conversely, because the self-compensating vanes in the sliding vane pump continuously adjust for wear, they can allow the pump to maintain near-original efficiency and capacity throughout their life. The pump speed also does not need to be increased over time, making sliding vane pumps natural energy-savers.
If the sliding vanes wear out or are damaged, replacing them is quick and easy. Vane replacement can be accomplished by simply removing the pump’s outboard head assembly, removing the old vanes, inserting new ones and reinstalling the head, all without the need for special tools. Also, it is not necessary to remove the pump from the system. All replacements can be completed while the pump remains in line.
With demanding production schedules, tight operating budgets and environmental-safety concerns to consider, facility operators must identify and implement pumping technology that can reliably satisfy these demands, which can appear to be at odds with each other.
The operational characteristics of sliding vane pumps have held many advantages over centrifugal pumps and other PD-pump technologies in the areas of maintaining flow rates and optimizing energy efficiency—especially if the application requires the handling of nonabrasive liquids at temperatures less than 500 F (260 C) and with viscosities less than 22,500 cP.
In the end, the main goal of today’s industrial manufacturer is to improve pump performance in an era where consistent global energy consumption and population growth continue to put pressure on them to control energy usage while maintaining strict production rates. Sliding vane pumps can play a role in meeting those demands.
With so many choices available for industrial pumps, the selection process often comes down to carefully evaluating the needs of the industry and choosing a pump that will be efficient and reliable in a specific application.
The case is no different when selecting sliding vane and rotary gear pumps. While both are types of positive displacement pumps, there are nuances that make one or the other better suited for a particular application.
A sliding vane pump uses a rotor with sliding vanes that creates suction between the vanes when the rotor rotates, thereby drawing the fluid behind each vane. The rotation carries the fluid between the inlet and the outlet. This type of construction allows sliding pumps to deliver constant flow under different pressure conditions.
While both sliding and rotary gear pumps are considered positive displacement pumps, the differences in their construction give them unique characteristics. Let us explore some of them in detail.
Sliding vane pumps have average performance in pumping viscous fluids. This is mainly because viscous fluids cannot easily enter the cavities formed within the pump. For pumping high viscous fluids, the speed of the sliding vane pumps must be lowered significantly.
Gear pumps, especially internal gear pumps, are great at handling viscous fluids. Their ability to work at slow speeds with minimal inlet pressure makes them ideal for viscous fluids.
Sliding vane pumps excel in pumping thin fluids. Their design makes it easier for the low viscosity fluids to enter the cavities. Therefore, the pump exhibits good suction capability.
Both gear and sliding vane pumps create pumping action with tight clearances. Pumping solids can significantly affect these clearances in a negative way, and the pumps can even lose their efficiency drastically.
Sliding vane pumps are better at handling wear. Since the vanes can be easily adjusted, these pumps are often referred to as wear adjusting pumps, where the pump automatically adjusts for the wear to maintain efficiency throughout its lifetime. If the wear becomes excessive to the degree that the pump cannot self-compensate, you can easily swap out the vanes.
Gear pumps wear at the meshing surface. A high degree of wear can introduce play between the meshing surfaces of the gears, causing the pump to lose its efficiency.
While both sliding vane pumps and rotary gear pumps have pros and cons, choosing between them depends largely on your specific fluid transport application. With over 40 application specialists on staff, Hayes Pump can help you find the right pumps for your requirements and have the setup running in no time.
The type of hydraulic pump you need depends on a variety of factors, including, but not limited to, the type of hydraulic fluid used in your machinery, operating pressure, application speed, and flow rate requirements.
Two of the most common pumps used in hydraulic equipment are piston pumps and gear pumps. This article will highlight everything you need to know about each pump, including its common uses and benefits.
A piston pump is a positive displacement pump that uses reciprocating motion to create rotation along an axis. Some piston pumps have variable displacement, while others have a fixed displacement design.
A hydraulic piston pump is capable of the highest pressure ratings and is commonly used to power heavy-duty lifts, presses, shovels, and other components.
The downside of piston pumps is that they are often more expensive (especially when compared to gear pumps). Still, their improved efficiency often makes them a better investment for long-term production.
Gear pumps use gears or cogs to transfer fluids. The cogs are tightly aligned to create suction as they draw liquid in and discharge it. The gears can be internal or external, depending on the application. Gear pumps are also positive displacement pumps, but they are always fixed displacement, so you would need separate pumps or valves to control the amount of displacement.
Gear pumps are known for being reliable and durable when they are well-maintained. Compared to piston pumps, they also don’t require as much maintenance and are typically more affordable. However, these pumps usually max out at 3000 PSI. While this is enough pressure to power some machinery, it may not have the power to operate large presses and other industrial equipment. A gear-style pump also lacks the ability to vary the displacement of your system.
Gear pumps are often used in low-pressure applications where dispensing high-viscosity liquids is required. They are typically used in the food and beverage, pulp and paper, and oil/chemical industries.
The primary difference between a gear pump and a piston pump is how they are designed. While both pumps need hydraulic fluid to generate mechanical power, a piston pump uses a piston to move liquid throughout the pump valves, while a gear pump uses cogs to move fluid throughout the pump.
Gear pumps are affordable for low-pressure applications (35 to 200 bar or 507 to 2900 PSI), while piston pumps are more efficient options for high-pressure applications. A piston pump is also a better option if you’re looking for a pump with a higher discharge rate. Lastly, a piston pump will provide the most efficiency if your application is high-speed.
Founded over 25 years ago. Panagon Systems specializes in remanufacturing cost-efficient obsolete or discontinued piston pumps, motors, and replacement components from brands like Vickers/Eaton, Caterpillar, and Rexroth. All pumps we manufacture are made in-house in the United States and are guaranteed to meet OEM specifications.
If you’re looking for cost-effective and timely pump replacement options, you’re looking for us.Contact us todayfor help in selecting the right pump for your application, or to request a product quote.
Hydraulic pumps come in different forms to accommodate a range of application requirements, from industrial die presses to heavy-duty off road equipment. One hydraulic system can vary greatly from another. For one system, a hydraulic piston pump may be the best solution, while a hydraulic gear pump may be better suited for a different one.
Powered by a hydraulic drive, a piston pump has a reciprocating positive displacement design to manage fluid flow. Pistons, or cylindrical elements within a cylinder block, create a vacuum, generated by a drive mechanism, that draws in fluid. The cylindrical chamber is pressurised by distributing energy into the fluid, compressing and forcing it towards the pump’s outlet.
Basic designs can generate about 4,000 psi, but pumps with up to 14,500 psi operating pressure are available. There are many different models that can displace a specific amount of fluid. Some allow you to adjust the displacement per revolution, which can make them more energy efficient. Piston pumps are relatively complex in design and expensive, but practical in energy-efficient applications that require high pressures and effective oil flow control.
A hydraulic gear pump is a lower-cost option, but it is quite durable, with many options available. The typical pressure rating is about 3,000 psi, but many displacement sizes and pressures can be found. Some gear pumps are rated as high as 4,500 psi, although additional valves will be needed in systems that require regular flow adjustments.
Gear pumps function by drawing fluid between their meshing gears. The adjacent gear teeth form chambers that are enclosed within the housing and pressure plates. A partial vacuum forms at the inlet where the gear teeth unmesh, allowing fluid to fill the space and be moved along the outer edge of the gears; as the gear teeth mesh again, fluid is forced out of the pump.
Both pumps use hydraulic fluid to transfer energy or generate mechanical force. Hydraulic piston pumps rely on reciprocating motion. Rotational forces are generated along an axis. Fixed and variable displacement pumps are available, as are different types, including axial, inline, bent-axis, plunger, and radial pumps, each with its own unique method of pushing fluid.
On the other hand, gear pumps move fluid via tightly aligned cogs that create suction to draw in and discharge fluid. Pumps with internal or external gears can be used, depending on the application requirements. Lobe, screw, and vane pumps are just some available types. A downside of using gear pumps is that additional devices are needed to control the desired amount of displacement, as they operate on fixed displacement only.
While gear pumps are available in a wide range of displacement sizes and pressures, and they suit various machinery applications, piston pumps offer the benefits of higher pressure ratings and are variable displacement and energy efficient. Rapid cooling means each pump is ready for the next operating cycle and can be serviced soon after shut-off.
Gear pumps typically don’t move more than 50 gallons per minute of fluid. On the other hand, some piston pumps can move hundreds of gallons per minute. Either one has advantages, depending on your hydraulic application.
Hydraulic pumps are available in different types, sizes, pressure ratings, and other specifications. It is important to choose the right pump for your hydraulic system. Gear pumps are suited for various types of machinery. Piston pumps are often found in oil field and agricultural applications, as well as in heavy-duty construction equipment. They are reliable and efficient, and they resist leakage at high speeds and pressures.
White House Products, Ltd. supplies, repairs, and maintains hydraulic gear pumps and hydraulic piston pumps from leading manufacturers. We can assist you in choosing a pump that meets your application requirements. Start browsing our catalog or register/login to view prices/availability and place an order. Contact us at +44 (0)1475 742500 for more information.
The tips of the vanes are the most vulnerable part of each pump. Because the vanes are held out under pressure and subject to centrifugal forces, the area where the tip moves across the outer ring is critical. Vibrations, dirt, pressure peaks or high local fluid temperatures can all result in a breakdown of the fluid film, resulting in metal to metal contact and reduced service life. With some fluids, the high fluid shear forces created at points like this can damage the fluid and again lead to reduced service life. Although this effect is not limited to vane pumps.
Suction head pressures are very important for vane pumps and must not exceed the manufacturers stated minimum. Always pre-fill the tank suction line and pump casing. It"s always better to make sure the installation has a positive suction head, e.g. the pump is below the fluid level, but never self-prime. Remember that as soon as you remove any valve or break the circuit in any way, it"s likely all of the fluid will drain out of the pipework and back into the reservoir. This will result in the need to re-prime any pumps that do not have positive pressure heads.
Case leakage lines allow all of the fluid that has leaked past the rotating faces to drain back to the reservoir. Without a case leakage line, the pumps would instantly fail. Because these case leakage lines take away the lost fluid, the volume and temperature of the fluid will be directly related to the operating efficiency of the pump. By monitoring the temperature of this fluid and preferably flow, and contamination level as well, you should get a good indication of the condition of the pump and an early warning of potential failures.
Which pump you choose for your power unit affects the nature of your HPU builds. Pump choice usually depends on cost, complexity, and performance. There are three major types of pumps to select from: the gear pump, the piston pump, and the vane pump. Below, we’ll get into the specifics of each pump to help you make the best decision for your system.
Gear pumps are usually very economical but hold lower efficiency values. Their efficiency typically drops over time. However, they are quite durable. A pump’s job is to convert incoming mechanical energy into hydraulic energy. The more efficient the pump, the smaller the motor you can choose. Efficiency saves you the most money over time. Traditional spur gear pumps an average of about 80% efficiency, which puts you at a disadvantage over time.
Vane pumps fall between gear pumps and piston pumps when it comes to practicality. They’re more efficient than gear pumps but less efficient than piston pumps. Vane pumps are known for being very quiet, making them ideal for industrial applications. They’re also available with a myriad of control options, like pressure compensation, displacement control, and load sensing. However, Vane pumps usually can’t handle high-pressure circuits.
Piston pumps account for the premium end of the range. These pumps are capable of supporting very high pressure and have infinite methods of control, including pressure compensation, servo control, load sensing, horsepower control, and more. Piston pumps are also incredibly efficient, with many designs being capable of 95% efficiency. The biggest downside to choosing a piston pump is cost. The initial investment will be pricey, and service or repair can be costly as well.
If you’d like more information about choosing the best pump for your HPU design, contact GCC, Inc. today! Our team of experts is ready to help you find a pump that suits your needs.
There are typically three types of hydraulic pump constructions found in mobile hydraulic applications. These include gear, piston, and vane; however, there are also clutch pumps, dump pumps, and pumps for refuse vehicles such as dry valve pumps and Muncie Power Products’ Live PakTM.
The hydraulic pump is the component of the hydraulic system that takes mechanical energy and converts it into fluid energy in the form of oil flow. This mechanical energy is taken from what is called the prime mover (a turning force) such as the power take-off or directly from the truck engine.
With each hydraulic pump, the pump will be of either a uni-rotational or bi-rotational design. As its name implies, a uni-rotational pump is designed to operate in one direction of shaft rotation. On the other hand, a bi-rotational pump has the ability to operate in either direction.
For truck-mounted hydraulic systems, the most common design in use is the gear pump. This design is characterized as having fewer moving parts, being easy to service, more tolerant of contamination than other designs and relatively inexpensive. Gear pumps are fixed displacement, also called positive displacement, pumps. This means the same volume of flow is produced with each rotation of the pump’s shaft. Gear pumps are rated in terms of the pump’s maximum pressure rating, cubic inch displacement and maximum input speed limitation.
Generally, gear pumps are used in open center hydraulic systems. Gear pumps trap oil in the areas between the teeth of the pump’s two gears and the body of the pump, transport it around the circumference of the gear cavity and then force it through the outlet port as the gears mesh. Behind the brass alloy thrust plates, or wear plates, a small amount of pressurized oil pushes the plates tightly against the gear ends to improve pump efficiency.
A cylinder block containing pistons that move in and out is housed within a piston pump. It’s the movement of these pistons that draw oil from the supply port and then force it through the outlet. The angle of the swash plate, which the slipper end of the piston rides against, determines the length of the piston’s stroke. While the swash plate remains stationary, the cylinder block, encompassing the pistons, rotates with the pump’s input shaft. The pump displacement is then determined by the total volume of the pump’s cylinders. Fixed and variable displacement designs are both available.
With a fixed displacement piston pump, the swash plate is nonadjustable. Its proportional output flow to input shaft speed is like that of a gear pump and like a gear pump, the fixed displacement piston pump is used within open center hydraulic systems.
As previously mentioned, piston pumps are also used within applications like snow and ice control where it may be desirable to vary system flow without varying engine speed. This is where the variable displacement piston pump comes into play – when the hydraulic flow requirements will vary based on operating conditions. Unlike the fixed displacement design, the swash plate is not fixed and its angle can be adjusted by a pressure signal from the directional valve via a compensator.
Vane pumps were, at one time, commonly used on utility vehicles such as aerial buckets and ladders. Today, the vane pump is not commonly found on these mobile (truck-mounted) hydraulic systems as gear pumps are more widely accepted and available.
Within a vane pump, as the input shaft rotates it causes oil to be picked up between the vanes of the pump which is then transported to the pump’s outlet side. This is similar to how gear pumps work, but there is one set of vanes – versus a pair of gears – on a rotating cartridge in the pump housing. As the area between the vanes decreases on the outlet side and increases on the inlet side of the pump, oil is drawn in through the supply port and expelled through the outlet as the vane cartridge rotates due to the change in area.
Input shaft rotates, causing oil to be picked up between the vanes of the pump which is then transported to pump outlet side as area between vanes decreases on outlet side and increases on inlet side to draw oil through supply port and expel though outlet as vane cartridge rotates
A clutch pump is a small displacement gear pump equipped with a belt-driven, electromagnetic clutch, much like that found on a car’s air conditioner compressor. It is engaged when the operator turns on a switch inside the truck cab. Clutch pumps are frequently used where a transmission power take-off aperture is not provided or is not easily accessible. Common applications include aerial bucket trucks, wreckers and hay spikes. As a general rule clutch pumps cannot be used where pump output flows are in excess of 15 GPM as the engine drive belt is subject to slipping under higher loads.
What separates this pump from the traditional gear pump is its built-in pressure relief assembly and an integral three-position, three-way directional control valve. The dump pump is unsuited for continuous-duty applications because of its narrow, internal paths and the subsequent likelihood of excessive heat generation.
Dump pumps are often direct mounted to the power take-off; however, it is vital that the direct-coupled pumps be rigidly supported with an installer-supplied bracket to the transmission case with the pump’s weight at 70 lbs. With a dump pump, either a two- or three-line installation must be selected (two-line and three-line refer to the number of hoses used to plumb the pump); however, a dump pump can easily be converted from a two- to three-line installation. This is accomplished by inserting an inexpensive sleeve into the pump’s inlet port and uncapping the return port.
Many dump bodies can function adequately with a two-line installation if not left operating too long in neutral. When left operating in neutral for too long however, the most common dump pump failure occurs due to high temperatures. To prevent this failure, a three-line installation can be selected – which also provides additional benefits.
Pumps for refuse equipment include both dry valve and Live Pak pumps. Both conserve fuel while in the OFF mode, but have the ability to provide full flow when work is required. While both have designs based on that of standard gear pumps, the dry valve and Like Pak pumps incorporate additional, special valving.
Primarily used on refuse equipment, dry valve pumps are large displacement, front crankshaft-driven pumps. The dry valve pump encompasses a plunger-type valve in the pump inlet port. This special plunger-type valve restricts flow in the OFF mode and allows full flow in the ON mode. As a result, the horsepower draw is lowered, which saves fuel when the hydraulic system is not in use.
In the closed position, the dry valve allows just enough oil to pass through to maintain lubrication of the pump. This oil is then returned to the reservoir through a bleed valve and small return line. A bleed valve that is fully functioning is critical to the life of this type of pump, as pump failure induced by cavitation will result if the bleed valve becomes clogged by contaminates. Muncie Power Products also offer a butterfly-style dry valve, which eliminates the bleed valve requirement and allows for improved system efficiency.
It’s important to note that with the dry valve, wear plates and shaft seals differ from standard gear pumps. Trying to fit a standard gear pump to a dry valve likely will result in premature pump failure.
Encompasses plunger-type valve in the pump inlet port restricting flow in OFF mode, but allows full flow in ON mode lowering horsepower draw to save fuel when not in use
Wear plates and shaft seals differ from standard gear pumps – trying to fit standard gear pump to dry valve likely will result in premature pump failure
Live Pak pumps are also primarily used on refuse equipment and are engine crankshaft driven; however, the inlet on a Live Pak pump is not outfitted with a shut-off valve. With a Live Pak pump, the outlet incorporates a flow limiting valve. This is called a Live Pak valve. The valve acts as an unloading valve in OFF mode and a flow limiting valve in the ON mode. As a result, the hydraulic system speed is limited to keep within safe operating parameters.
Outlet incorporates flow limiting valve called Live Pak valve – acts as an unloading valve in OFF mode and flow limiting valve in ON mode restricting hydraulic system speed to keep within safe operating parameters
A hydraulic pump can be defined as a mechanical power source which converts mechanical power into hydraulic energy. Hydraulic pumps are typically used for hydraulic drive systems. The way it works is by generating flow with sufficient power capable of overcoming the pressure created from the pump outlet’s load. When in operation, a hydraulic pump generated a vacuum right at the pump inlet, and that forces liquid to move via an inlet line into the pump from the reservoir.
Hydraulic gear pumps that typically come with outer teeth are economically simple pumps. While they have a swept displacement or volume range between 1 to 200 mm, they tend to have the lowest volumetric efficiency of all pump types.
Rotary vane pumps, both simple adjustable and fixed displacement tend to have higher efficiency compared to gear pumps, however, they are functional for mid range pressures (180bar). Units made today can withstand pressures more than 300bar during continuous operation.
Screw pumps are made of 2 Archimedes’ screws which intermesh and closed into a single chamber. Screw pumps are suitable for high flows with low pressures of around 100bars. Screw pumps are mainly used because they generate little to no noise, however they are not that efficient.
Piston pumps make use of a swashplate principle to devices both adjustable and fixed displacement. This gives them the design advantage of being compact. These pumps are much more economical and easier to make, however, one disadvantage is that they do become prone to contamination by oil. Axial piston pumps are known to be the most used variable displacement type, as it has been found in nearly everything from mobile to heavy industrial applications.
A hydraulic motor can be defined as a mechanical actuator which transforms hydraulic flow and pressure into angular displacement and torque. A hydraulic motor is the movable piece of a hydraulic cylinder. In a broader sense, devices known as hydraulic motors sometimes include those that are able to run in hydropower, however, this term has been refined to define only motored that make use of hydraulic fluid as a portion of their closed hydraulic circuits.
Vane and gear motors: these are basic rotating systems with benefits such as a high rpm at a reduced initial cost. A vane motor is made up of a housing which contains an erratic bite which then tunes a rotor consisting of bands that slide out and in. An integral element of the design is the way the vane tips have been created to meet the motor housing and the vane tip.
To avoid any unnecessary and frustrating breakdowns, it is important to keep your machinery well maintained. With regular preventative maintenance you will be able to spot any developing problems and have them repaired quickly and efficiently by CJ Plant, before any further, more severe, and expensive damage occurs. Below are some key steps to prioritise when maintaining your hydraulic motor.
Pressure and flow make up the foundation of hydraulic operation. Consistent testing of these measures will provide a good indication of the overall health of your hydraulic motor. Changes in either level will generally suggest a bigger problem that could range from leaking seals to contaminated hydraulic fluid.
Taking samples of the hydraulic fluid or oil from several points on the motor is very important. You should take more than one, as a single sample might not show contamination that occurs further in the system. Compare multiple samples to each other for both viscosity and integrity. Look out for if the fluid appears to thicken, thin, or become contaminated anywhere in the system.
Mark the normal fluid levels on the reservoirs and label each one with the type of fluid to use. If you mix or use the wrong type of fluid, you could contaminate the system and result in it becoming damaged. You should empty the reservoir, clean it, and refill it with fresh fluid on a schedule dictated by the manufacturer’s recommendations. Pay close attention to contaminated fluid and flush the entire system if the hydraulic liquid looks dirty.
Remove and clean key components of the hydraulic system including filters, couplers, gauges and more. Replace any of these that seem damaged or have excessive build up on them. Also, be sure that each junction of the system moves as expected.
Regular maintenance should include the draining and flushing of valves in the hydraulic system. After cleaning these points, test the valves and actuators in operation. Look for signs of any inefficient function, which could suggest a growing issue. Repair the problem to restore to full operation of the hydraulic motor and reduce the risk of it breaking down completely.
Right from the definition of these two types of hydraulic components, you can tell that they are different. In essence, Hydraulic pumps as components absorb mechanical kinetic energy to create hydraulic energy, while hydraulic motored do exactly the opposite.
While a hydraulic pump is connected to a prime mover, with the pump shaft with no extra radial load, the hydraulic motor is connected to the load via pulleys, sprockets and gears, so its main shaft can bear an increased radial load.
A hydraulic pump typically has a vacuum in its low pressure chamber. To ensure that it is able to be more efficient at oil absorption and anti-cavitation capability, its suction nozzle is typically larger than its nozzle for high pressure, however a hydraulic motor does not require any of these.
Hydraulic motors typically need negative and positive rotation, which then causes the motor’s internal structure to be symmetrical. Whereas hydraulic pumps usually rotate in a single direction, which negates the need for such a requirement. For instance, a vane motor’s blades have to be arranged radially, unlike the incline of a vane pump, else the blades could become broken when they reverse. An axial plunger motor needs its distribution plate to be symmetrical in design, however an axial plunger pump does not. This is the same for a gear motor as it has to have a unique leakage tube, which cannot be directly connected into the low pressure chamber as a gear pump would.
A hydraulic motor has a vastly wider speed range which means it is able to switch from lubrication mode to hearing form. A hydraulic motor requires a low minimum stable speed, and certain hydraulic motors also require variable brake and speed.
Hydraulic motors require a large amount of start up torque, so as to be able to overcome the static friction encountered during start-up. They also require enough start-up torque when there is a case of pressure fluctuation. For example, for internal friction to be reduced in a hydraulic motor, the amount of teeth a gear motor has is increased, and an axial clearance compensation device with a smaller compression coefficient than that of a pump is introduced.
Hydraulic pumps have to be integrally self-priming. This is one of the reasons why point contact plunger motors can’t be used as pumps as they do not have the self-priming capability.
A vane pump’s blade is pushed out due to centrifugal force and that creates a working chamber. If this pump is used as a motor, it will not function as the blade is not able to create the external force required of a working chamber when it starts.
For friction to reduce, version plunger motors eradicate slipper to become point contact motors, whereas plunger pumps are unable to function without slippers.
A hydraulic motor has a larger internal leakage, compared to the hydraulic pump. The reason for this is because a hydraulic motor’s leakage direction points in the same way as its motion and that results in motion speed becoming involved.
If you’re looking to get your hydraulic pumps or hydraulic motors repaired, why not contact the experts in hydraulic repairs at CJ Plant on 01527 535 804
A vane pump is a self-priming positive displacement pump providing constant flow at varying pressures. Operation is via a motor connected to a gearbox as typically the maximum rpm is 900. The pump is fitted with a relief valve to prevent the pump from building to a pressure which may damage the pump.
The pump head is circular for the most part but has a flat portion as the vanes move in and out of the main rotor. The vanes will push out towards the casing due to the centrifugal force when the pump is in operation with forces exerting outwards keeping the vanes tight against the casing. When the vanes reach the outlet of the pump the casing is flatter and tighter against the rotor causing the vane to be pushed into the rotor and the fluid to expel through the outlet of the pump.
They are typically used for viscous fluids which are lubricating such as oils, petroleum’s, diesel, animal oils/blood, and fuel oil. They can also handle non-lubricating fluids such as solvents due to their being no metal to metal contact. Vane pumps self-compensate for wear meaning they can maintain peak performance without loss of flowrate.
Can handle viscous fluids up to 10,000cstPump requires a gearbox meaning pump can be larger / heavier than other designs and can also be less efficient due to mechanical losses through gearbox. Belt Driven designs can eliminate gear box
Heating chamber allows solidifying liquids to be kept at low viscosity and prevent solidification within the pumpLimited viscosity handling compared to other positive displacement pumps - maximum of 10,000cst
Vane Pumps self-compensate for wear. As vane tips wear they extend further out of the rotor ensuring efficiency is maintained. Other pump types lose efficiency as they wear
VP do not have metal to metal contact allowing pump to prime from dry but also strip containers, and handle non lubricating liquidsVP do not have metal to metal contact allowing pump to prime from dry but also strip containers, and handle non lubricating liquidsVP flow is maintained if viscosity is increased, whereas centrifugal pumps experience a drop in flow once outside designed duty point.
Gear pumps can have bearing or bushings in contact with fluid which can cause bearing lubrication issues with low lubricating fluidsLiquid ring pumps do not have as many sealing options.VP are self-priming by design.
Gear pumps are more precise for dosing or meteringVP typically have a lower NPSH requirementVP do not have metal to metal contact allowing pump to prime from dry but also strip containers, and handle non lubricating liquids